Systematic Literature Review:
How is Model-based Systems Engineering Justified?

Ed Carroll
Principal Systems Research Analyst
November 9, 2016

SAND2016-11485 PE
MBSE Study Introduction
What is the value of MBSE to Sandia?

- Principle Investigator: Ed Carroll
 - Retired Naval Aviator
 - 25 years in software / systems engineering
 - 15 years in systems analytics and data management

- Four questions were outlined for the MBSE study:
 - What does it look like? (Industry standards, guidelines, and manuals)
 - What can we learn from others? (Literature review & external visits)
 - What are we currently doing? (SMEs and MGRs, & pilot projects)
 - What is the path forward? (based on conclusions from above)

- Pilots:
 - 4 pilot projects, including: small, large, complex, hardware, software

- External Visits
 - Lockheed Martin, JPL, Huntington Ingalls, USAF, US Navy, DOD, & DOE
Definitions - MBE vs. MBSE

- Model-Based **Enterprise** – the tools, models, and infrastructure used to share design information across the enterprise that develops and supports the system
- Model-Based **Engineering** -- Integrated use of models to define the system technical baseline across the full life cycle, across all disciplines, across all program members [models are the authoritative definition of the system]
- Model-Based **Systems Engineering** – a specialized type of descriptive modeling used to create and analyze systems engineering information across the life cycle [the model is the authoritative definition for all systems engineering information]
Agenda

- Introduction – What is the value of MBSE to Sandia?
 - Gathering metrics about MBSE
- What is Systems Engineering?
 - Industry description (iterative processes)
 - What is driving us toward MBSE?
- What is Model-based Systems Engineering?
 - Conclusions and Key Findings from my Systematic Literature Review
 - An MBSE approach provides significant advantage
 - Systems engineering improves engineering efficiency
 - MBSE Prevents Defects and Rework
 - Systems engineering needs to drive engineering processes
 - Skilled system engineers are needed
 - Prerequisites and Commitments
Metrics Being Gathered

- Gathered from existing processes:
 - SME and MGR use characteristics and opinions
 - Defect rates
 - Failure mode analysis – tracing, mistake proofing
 - Halt Hass, Fagen Inspections, CONOPS reviews
 - Interaction points, degree of completion, consistency
 - Compare to COQUALMO defect predictions
 - Level of Effort (cost and schedule)
 - compare manhours to $$ and schedule overage
 - Informal Assessment of SE Capability
What are the Key SE Standards?

EIA – Electronics Industry Alliance
ANSI – American National Standards Institute
ISO – International Organization for Standardization
IEEE – Institute of Electrical and Electronics Engineers

Legend
- Supersedes
- Derived From

Figure 1: © Garry Roedler 2016, adapted with permission
The applicable standards

The industry standards have converged into ISO/IEC/IEEE 15288

Cooperative Technical Co-evolution Model

Acquisition Addendums

IEEE 15288.1 DOD Addendum
NATO AAP-48

ISO/IEC/IEEE 15288

INCOSE SE Handbook

SEBok

INCOSE SE Handbook

SEH evolves through new versions

INCOSE SEBok evolutions gathered through wiki

Influence evolution

SNL: R012, T059-62

ANSI/EIA 632

NNSA DP Program Execution Instruction

Drives lower level standards and user documents

Drives SE Certification

NIST Security Standards (uses 15288 process framework)

DOD SE Refs (DAG: Ch 4; Sys Assurance; SoSE)

NASA SE Handbook

Influence evolution

Significant Collaboration in this Co-evolution

Figure 2: © 2016 Garry Roedler, adapted with permission
The industry standard processes

Figure 3: © the Defense Acquisition University
Why MBSE?

- Complex system example:
- Heavily document-based approach
- over 6000 parts per system
 - Customer docs:
 - Text: 327 pages, over 750 mined requirements
 - Physical: 396 mined requirements
 - These led to system and major component requirements documents:
 - 832 pages of functional requirements
 - 232 pages of interface requirements
- Documents do not address
 - Subordinate components
 - Environments
 - Dev Test plan
 - Qual plan
 - Maintenance/Ops Plan
 - Standards and Best Practices
 - Any production related requirements

How do I navigate this???
What is driving the industry to MBSE?

- Systems are getting more complex
- Customers want to reduce cost / schedule
- Customers want guaranteed reliability

- Modeling is prevalent in all engineering disciplines
 - Electrical, mechanical, physics-simulation, software
 - Data shows a positive ROI for using models to solve the problems of complexity, cost, and reliability

- DOD is mandating models in contracts
 - ie., The Ground Based Strategic Deterrent SOW (section 3.2.3)
 - Nunn-McCurdy breach on the GPS III program – due to inadequate systems engineering at program inception, the Air Force said in a press statement.

- Additive Manufacturing requires models

Others have said “how can we not use an MBSE approach?”
- Consider SNL’s agile, adaptable, affordable initiative
What Would MBSE Look Like …
In Current Practice to Future Practice

Today: Standalone models related through documents

Future: Shared system model with multiple views, and connected to discipline models
What SE Processes does MBSE overlay?

Figure 6: © Copyright ROI Training, Inc. 2016, adapted with permission
What is Different When Using MBSE?

The Model is the Center of MBSE Effort

Figure 7: © ROI Training, Inc. 2016, adapted with permission
Overlaying MBSE to SE Foundation

Figure 8: © INCOSE, with permission 2012

Figure 9: © ROI Training, Inc. 2016, adapted with permission
Findings and Conclusions from Lit Rev

- 67 case studies justified by claiming benefits of:
 - Completeness, consistency, and improved communications
 - Or highlighted contributions to test and evaluation, V&V, concept exploration, design reuse and systems margin analyses

- 21 case studies justified with quantified results of:
 - Cost and schedule improvement
 - Finding defects and preventing rework

- Case studies were from:
 - (67) 8 countries, 10 defense, 33 space, 5 non-defense, 6 commercial
 - (21) 4 countries, 12 defense, 5 space, 4 commercial, 6 used MBSE to develop complex weapon systems
MBSE Provides Significant Advantage

MBSE is an extension of Systems Engineering,
And model-based product line engineering is an extension of MBSE.
SE Improves Engineering Efficiency

Figure 12: © Carnegie Mellon University 2012, adapted with permission
MBSE Prevents Defects and Rework

Figure 13: © Raytheon Company 2011, Defense AT&L
SEs Need to Drive Engineering Processes

- To effect delivery, SEs must drive their processes
 - First change the model, then change the system
 - High access to systems management, who pays attention

Figure 14: © The Boeing Company 1995, adapted with permission
Skilled SEs are Needed to Drive Engineering Processes

- Delivery times are not effected by data entry clerks
- Systems Engineers must be well trained engineers
 - MBSE employs new techniques, tools, and processes

Figure 15: © INCOSE adapted with permission 2012
The data shows an optimal SE staffing at 12-17% of total

Figure 16: © Eric Honour 2013, adapted with permission
Adding MBSE to the SE Foundation?

- Good SE = Good Program Performance
- Good SE → begets → Good MBSE
- Good MBSE = Good program Performance

- The model becomes the center of information
 - For Communication – across team and across program
 - For Technical Process Performance
 - For Technical Management Processes
MBSE Provides Significant Advantage

Figure 17: © INCOSE 2014, adapted with permission

Figure 18: © by-sa 2.0 Tim Felce – Gripen – RIAT 2010
MBSE Avoids Rework

Much higher cost to fix defects in traditional approach

Fix Cost$^t = 5x$

Fix Cost$^t = 20x$

Much lower cost to fix defects with MBSE

Platform / System Test

SE&I IPT: Untested Interface Requirements Focus Areas

SoS MBSE Integration Methodology
- IPT-generated Interface Requirements
- More Interface problems solved early
- More predictable platform tests
- Fewer “new” problems
- Significant cost reduction
- Improved Schedule, Technical Performance

Figure 19: © Lockheed Martin Corporation 2015, adapted with permission
MBSE Avoids Rework

<table>
<thead>
<tr>
<th>System f0 Phase</th>
<th>Success Probability [probOfSuccess]</th>
<th>Failure Probability [1 - probOfSuccess]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change to design</td>
<td>Baseline</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Without MBSE</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>With MBSE</td>
<td>0.93</td>
</tr>
</tbody>
</table>

From 73% chance of success to 93% chance of success

Specification Defects (Per Shall)

Figure 20: © Rafael Mareni Perez 2014, adapted with permission

Figure 21: © Raytheon Company 2011 (DAT&L)
What are the keys to effectiveness?

- From our Systematic Literature Review of the industry, the following findings were reported as keys for effectiveness:
 - Engage Systems Engineers as engineering process leaders
 - Diligently perform defined (iterative) processes
 - Systems Engineering effort is highest early in the project
 - The optimal SE staffing is up to 12-17% of total program staffing
Engage System Engineers as technical leaders of these processes.
Key Processes – Iterate through feedback

Figure 23

Figure 4. Recursion of Processes on Layers (Faisandier 2012). Permission Granted by Sinergy’Com. All other rights are
reserved by the copyright owner.
SE Effort is highest early in project

Figure 24
Prerequisites

- Well documented SE processes that spans the SDLC
- Trained systems engineers
- Access to training in the SE processes at SNL
- Defined processes for model management throughout the SDLC
- Invest in full scale MBSE tools
Commitments

- Initiate modeling with appropriate staffing levels at the beginning of a program

- Configuration manage the model “change the model first, then the design”

- Provide continuous resources to maintain the models throughout the SDLC

- Provide MBSE resources and models to support qualification

- Provide appropriate computing infrastructure throughout SDLC
Orion - Human Space Flight

“Orion was designed from inception to fly multiple, deep-space missions. The spacecraft is an incredibly robust, technically advanced vehicle capable of safely transporting humans to asteroids, Lagrange Points and other deep space destinations that will put us on an affordable and sustainable path to Mars.”

Lockheed Martin Space Systems
Denver, CO
100% system reliability required
Model-centric customer (NASA)
Core MBSE Team

Figure 25: © NASA Photo
Europa Exploration Mission

“This effort entails a highly complex integration of extensive modifications and numerous subsystems which must seamlessly interface with each other in order to meet the NASA ‘no fail’ mission.”

JPL
Pasadena, CA
Model-driven customer (NASA)
100% digital design and documentation
References

1. Key Systems Engineering Standards, © Garry Roedler 2016, adapted with permission
2. System Engineering Standard Relationships, © Garry Roedler 2016, adapted with permission
4. How do I navigate
5. What Would MBSE Look Like graphic © INCOSE, with permission
6. What SE Processes, © ROI Training, Inc. 2016, adapted with permission
8. Overlaying MBSE on SE, © INCOSE 2012
9. SE Foundation, © ROI Training, Inc. 2016, adapted with permission
10. What does MBSE Look Like
12. SE Improves Efficiency, © Carnegie Mellon University. November 2012, adapted with permission
13. MBSE Cost Model, © Raytheon Company 2011, Published in the Defense AT&L (public domain)
15. Engineering Processes, © INCOSE, with permission 2012
16. Optimal SE Staffing, © Eric Honour 2013, adapted with permission
17. Early Defect Detection, © INCOSE, with permission 2012
18. JAS 39E Fighter Jet, © by-sa 2.0 Tim Felce – Gripen – RIAT 2010
19. Rework Avoided, © Lockheed Martin Corporation 2015, adapted with permission
20. Failure Probability, © Rafael Maren Perez 2014, adapted with permission
21. Specification Defects, © Raytheon Company 2011, Published in the Defense AT&L (public domain)
22. Systems Engineering “V” (2), The Defense Acquisition University
23. Key Processes Iterate, © Faisandier 2012
24. SE Effort Early in SDLC
25. Orion Human Space Flight, NASA photo
26. Europa Exploration Mission, NASA/JPL photo