MBSE Workshop
Opening Plenary

Find a seat and strap in…
MBSE: Failing Faster Earlier Once

Mark Sampson
MBSE Initiative Chair, INCOSE
Doing the math…

Nodes = 5
Potential Links = 10
Networks = $2^{10} \times 1024$

Nodes = 30, potential links = 435, unique configurations = 2^{435}
Number of atoms in the universe est. between 2^{158} and 2^{246}

Murphy happens at the interfaces
Integrated MBSE Vision
What does the integrated digital thread look like…

Minimum Turn Radius: 24 ft.
Automatic Dry Pavement Braking
Distance at 60 MPH: 110 ft, 90 ft

Hydraulic Fluid: SAE 1340 not-compliant
Recent Headlines from other industries...

Boeing Says Charges Tied to 737 Max Grounding to Reach $8 Billion

The New York Times

Boeing 737 Max planes are parked at the municipal airport in Renton, Wash. The Max planes have been grounded after two were involved in fatal accidents.

By David Gelles

July 16, 2019

The financial fallout from the troubled 737 Max jetliner continues to swell for Boeing, which on Thursday announced $7.3 billion in costs that will hit its bottom line.

Walmart sues Tesla over solar panel fires at seven stores

CNBC

Walmart is suing Tesla for breach of contract after Tesla solar panels ignited atop seven of its stores.

Walmart has also pre-ordered at least 45 Tesla electric semi-trucks to add to its vehicle fleet.

Tesla Solar Panels... Defective connectors/grounding Amazon joins the suit as well

08/20/19
Do you see the problem?
Case Study: Fuel Pump Control Module

Fuel pump control module bad placement...

- Resulting in Bi-Metal Corrosion, failed ECU
- 86,000 vehicles recalled.. $8.6M direct costs
How about now?
Even when you were evaluating places to put it

Bi-metal contact, corrosion risk

What about purchasing?
Supply chain?
Imagine this working across an entire supply chain!
Model Based Design Chain (MBDC)

Hydraulic Fluid: SAE 1340 not-compliant

Minimum Turn Radius: 24 ft.
Automatic Dry Pavement Braking Distance at 60 MPH: 110 ft. 90 ft
MBSE Process…
Shift left…

- **Product Definition**
 - Concept Design
 - Derived System Requirements
 - Derived mechanical Requirements
 - Derived EE Requirements
 - Derived Software Requirements
 - Derived By Parts Requirements

- **System Design**
 - Mecanical Design
 - Components (virtual)
 - EE Design
 - Components (virtual)
 - Software Design
 - Components (binary)
 - Purchase
 - Buy Parts

- **Component**
 - Mechatronic BOM
 - Manufacturing BOM
 - Maintained BOM

- **Product Implementation**
 - eBOM
 - mBOM

- **Product Build**

Use Cases & Demands

Selected Product Requirements

Solution (wished by Customer)

SoS

- Scope
- Constraints
- Interactions
How do we learn the lessons from the threads? How to store/recall from somewhere so we don’t repeat them

Problem resurface metric: how long does a problem once solved take to come back

- Auto: ~3 years
- High Tech ~6 mo.
- Aero ~15 years

Cross-Domain problems result from:
- Siloed/Disconnected Decisions
- Form follows function, Problems follow functions
- Everyone involved, including purchasing
- Disconnected requirements
- Uncommunicated change
- Happen at domain/organizational boundaries
- Migrate with people (overt or covert)
- Missing/disconnected product architecture

“Water on the knee”
Where are we?
Our Murphy-risk profile?

<table>
<thead>
<tr>
<th>Capability Assessment:</th>
<th>Basic</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBSE Process Maturity Level 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Modeling/Architecture</td>
<td>PPT in docs</td>
<td>Disconnected bliss</td>
<td>Sys Models with Simulations</td>
<td>Multiple model exchange/optimization</td>
<td>Integrated architecture models for cross-domain sim/optimization</td>
</tr>
<tr>
<td>PLE/Configuration (variation)</td>
<td>None</td>
<td>Variation documents, spreadsheets</td>
<td>Disconnected variation rules</td>
<td>Integrated variation rules</td>
<td>PL variation definition built into architecture decisions</td>
</tr>
</tbody>
</table>

MBSE Process Maturity Level 3					
Interface Management	ICD in docs	Managed interfaces	Standard-based Interface library	Reused interfaces	Functions/logical allocation drives interface definitions
Logical Modeling	Logical description documents	Logical hierarchy	Isolated logical behavior models	Integrated logical behavior models	Logical architecture with allocation with traceability
Parameter Management	Unmanaged spreadsheets	Managed spreadsheets	Parameter library	Integrated with functions	Reusable parameter library with traceability

MBSE Process Maturity Level 2					
Feature/Functional Modeling	Functional description docs	Function hierarchy	Isolated functional behavior models	Integrated functional modeling	Functional arch with allocations & Traceability
Characteristic/Target Mgmt	None	Uncontrolled Excel/Docs	Controlled targets	Distributed targets/constraints	Integrated targets, budgets, with compliance reports
Change Management	Document-based change process	Isolated models included in change	Impact analysis & suspicion mgmt	Metrics with History for improvement	Project level reuse, starting point for next project

MBSE Process Maturity Level 1					
Requirement Management	Uncontrolled spreadsheets & docs	Managed Docs	Standalone solutions (disconnected)	RM/traceability exchange	Connected, configured, cross-domain traceability with reuse
Model Management	Uncontrolled, rules-of-thumb, hierarchies	Uncontrolled, behavior models	Shared model repository	Integrated, component library	Model reuse with controlled parameters
Verification & Validation	Minimum to no planning	Manually testing everything	Isolated validation simulations	Integrated simulation (HIL, SIL)	Focused testing, reuse results, swap out models
Design Management	Unmanaged CAX/SW models	Locally Managed CAX/SW	Enterprise repositories	Integrated models (MIL, SIL, etc.)	Cross-domain design/optimization
Where are we?

Best Aero (best case)

Best Auto (best case)
...by industry
Integrated MBDC Journey

Example: OEM electronics mfg & Semiconductor supplier

- Power of shared Product Architecture
- Identify supply chain disconnects
- Shift to right together
- Slash system integration effort

…realize total value of Product Architecture driving supply chain
Dishonesty/Meta-Dishonesty

“Semmelweis Reflex”
“…to dismiss/reject out of hand any information, automatically, without thought, inspection, or experiment”

Fore-ordained answers
…will the answer provided by SE tools be accepted

Don’t waste your time on the wrong answers, unless…

Dr. Ignaz Semmelweis
(1818-1865)

Early Germ Theory

Wash Your Damn Hands
Organization SDB’s (Self-Defeating Behaviors)…

- No process for the tools to work within
- No time/money to use tools
- No backing for resources
- No training on tools
- Expecting tools to run themselves
- Thinking tools are static
- Not convincing the customer of the tool benefits
- No mechanism for using tool results
- Applying the tool to everything
- Funneling everything through a gate keeper
- Expecting “paper” results from tools
- “where’s the hardware?”
- Rewarding fire-fighters vs. fire-preventers
- Blockading support organizations (…they cost too much, etc.)

...next year you will have a 90% probability of this failure…but you will do nothing about it!

Dr. Stephen Wheelwright
(Harvard Business School)

[Covey 1995, Sampson 2000]
Organizational SDB’s continued…

How prepared is your organization?

Culture change vs. getting lucky…

Buckminster Fuller’s Magic Log
Thank you