INCOSE IW 2014
MBSE track, Model Management WG

Amit Fisher
Program Director, Systems Technical Client Relationship Manager,
IBM Software Group, Rational
 Agenda

- **Linked Lifecycle Data and OSLC**
- **Rhapsody and Rhapsody Design manager**
- **Model Management in the context of Product Line Engineering**
Linked Data

Four simple principals:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names
3. When someone looks up a URI, provide useful information, using standards (e.g. RDF*, SPARQL**, REST)**
4. Include links to other URIs, so that they can discover more things

http://www.w3.org/DesignIssues/LinkedData

* RDF, the Resource Description Framework provides a generic graph-based data model for describing things, including their relationships with other things.
** SPARQL is a query language able to retrieve and manipulate data stored in RDF format
***REST, REpresentational State Transfer (REST) is a style of software architecture for distributed systems where requests and responses are built around the transfer of representations of addressable resources
Leveraging Linked Data concepts in engineering

http://acme.com/Requirement
http://acme.com/MechanicalPart

HTTP/REST

Requirements System Architecture Electrical Design Mechanical Design / PDM Embedded Software Design Test
Linking Lifecycle Data via OSLC

Resources from different domain tools are linked together using OSLC
OSLC website at http://open-services.net
Agenda

- Linked Lifecycle Data and OSLC
- Rhapsody and Rhapsody Design manager
- Model Management in the context of Product Line Engineering
Model-Driven Development for Systems & Software

Rational Rhapsody®

Capabilities

- Specify, design and develop systems and software for technical, embedded and real-time solutions, including those based on multi-core architectures
- Validate and verify designs with model based simulation and test throughout the product lifecycle
- Develop complete C, C++, Java and Ada applications, working in either the code or model while ensuring the two remain in sync

Benefits

- Build the right product through optimized communication and collaboration
- Eliminate defects early and increase quality by continually testing the design
- Reduce development time by automatically generating applications and documentation
Collaborative Design Management

Enhance cross-team collaboration on software and systems design

Central Design Hub

- Enterprise-wide design storage for search, review, analysis, and reuse
- Links design elements to lifecycle artifacts
- Navigate and visualize relationships
- Simplify design collaboration through Jazz-based model management

Stakeholder Collaboration

- Automated design reviews at all stages of development
- Intuitive extended team web client for broader access to designs
- Unify requirements and design with single-source of truth workflow utilizing OSLC

Document Generation and Reporting

- Create documents directly from the development lifecycle
- Draw from information and assets linked through OSLC

“The ability to review and comment on models from the Web client encourages feedback from a wide array of stakeholders... leading to faster consensus and improved quality of solution designs.”

– Lars Tufvesson, Sellegi

Rational Rhapsody
Design Manager
Design Reviewer
Server Based Model Management

Benefits

- Direct editing of designs and change control on server providing a more simplified environment
- Change control (locking, history) at the model resource level providing more granularity
- No duplication or design synchronization issues
Rational Rhapsody Design Manager Web Client

- View design over web
- Collaborate with stakeholders with commenting
- Mark-up diagrams to elaborate comments
- Browse design information

© 2014 IBM Corporation
Model Integration: Rhapsody and The Mathworks Simulink

- Collaborate on multiple IBM Rational Rhapsody and/or The Mathworks Simulink projects using the Jazz platform
- Breakthrough combination of domain-specific design solutions enabling
 - Look at the system as a whole and not individual parts across the architecture, algorithms and environment
 - View Simulink design information with a web browser or Rational Rhapsody desktop client providing easy access for project stakeholders
 - Search and navigate across projects and lifecycle artifacts to help find key information from multiple sources quickly
 - Trace, via Open Services for Lifecycle Collaboration (OSLC), from designs to other lifecycle artifacts such as requirements, test cases, work items or other aspects of the engineering process

Simulink design information can be viewed, shared, marked up, reviewed and linked using a web client through Rhapsody Design Manager
From the INCOSE IS 2014 Model Management paper
Example: Impact of (physical) component replacement
Agenda

- Linked Lifecycle Data and OSLC
- Rhapsody and Rhapsody Design manager
- Model Management in the context of Product Line Engineering
Models are part of a web of related engineering artifacts
These artifacts may not live in the same tool or database

In fact, in faithfulness to the real world, we should assume they do not
These sets of engineering artifacts can be constructed as reusable components in a product line catalog

Where products consist of …

Different combinations of components

Components at different versions
What do we mean by Product Line Engineering?

Maximizing reuse of engineering assets across product variants
- Reuse architecture based on configurable components
- Avoid duplication -> maintenance nightmares across hundreds of product variants

Specifying a product definition
- The product consists of which components [sets of versioned engineering artifacts]?

Consistently manage artifact versions and product variants across all lifecycle disciplines
- Create cross-component, cross-tool baselines
- Query and do analysis in multi-version/multi-variant environments

Effectively handling change propagation to a multitude of variants
- “Where does this change need to go?”

Effectively creating new product variant based on functional parameters (“features”)

More automation – less manual bookkeeping
- Tools manage the product definition – not spreadsheets that you manually maintain
- Tools present to the engineers the right artifacts at the right versions – and the right links between artifacts
From “single system” to “multi-variant system”

Some key capabilities

1. **Configuration management** of requirements and across engineering domains

2. **Parallel development** of more than code

3. Hierarchical, global baselines

4. **Definition of products** as sets of reusable “components” containing the respective engineering artifacts

5. **Automation** to select product variant’s components via parameters or feature model

6. Automation to enable parameters defined in product definition to be **used in component’s engineering artifacts** (requirements, designs, tests, software, …)
The multi-dimensions of product line development: temporal and functional dimensions

- Releases
 - Baseline 1
 - Baseline 2
 - Baseline 3

- Temporal Management

- Product (functional) Variants
 - Base
 - E Model
 - S Model
 - CLX Model

- Labeling a configuration using temporal and variant dimensions
 - [E model, 2015, baseline 2]
 - [S model, 2014, baseline 3]