MBSE Maturity Assessment: Related INCOSE & ASME Efforts, and ISO 15288

Bill Schindel
ICTT System Sciences
schindel@ictt.com
Abstract

• Model-based methods have multiple connections to ISO15288 system life cycle management practices:
 – The INCOSE Model-Based Transformation project provides means for assessing and planning the migration of ISO15288 practices to model-based approaches.
 – The INCOSE Agile SE Life Cycle Management Discovery Project provides inputs to a future version of ISO15288 including agile SE, and includes the model-based ASELCM Pattern and its representation of the roles of models in innovation.
 – The INCOSE MBSE Patterns Working Group supports improving the leverage of model-based practices using formal S*Patterns, and is partnering with ASME toward standards for the verification and validation of computational models for ISO15288 purposes.
• This talk will summarize how these efforts are being fit together to provide usable practitioner value, and how to get involved.
Maturity in MBSE is not only about our models, methods, and tools--although it includes them:

- What will we use models for (intended purpose)? Who is “we”?
- How do we go about trusting our model?
- Is our learning effectively enhanced?

State of art & practice in some of these areas still low:

- So, expect significant continuing change.
- Measuring against current base may not reflect “maturity”.

There are overall requirements we can use to measure our MBSE maturity:

- Based on, but enlarging, the interpretation of ISO 15288, existing maturity models, and computational models.
- Providing a foundation for future maturity assessment, planning.

The emerging foundation opens up thinking about scope of impacts, and therefore scope of maturity assessment.
Contents

- Enthusiasm for models
- Models for what purposes?
- Sufficiency and minimality for purposes
- Models of more than our engineered systems
- Requirements for trustable, impactful models, as a basis for MBSE maturity
- Community activities
- What you can do

- References
Enthusiasm for Models

The INCOSE systems community has shown growing enthusiasm for “engineering with models” of all sorts:

– Historical tradition of math-physics engineering models
– A World in Motion: INCOSE Vision 2025
– Growth of the INCOSE IW MBSE Workshop
– Growth in systems engineers in modeling classes
– INCOSE Board of Directors’ objective to accelerate transformation of SE to a model-based discipline
– Joint INCOSE activities with NAFEMS
Models for what purposes?

Potentially for any ISO 15288 processes:

- If there is a net benefit . . .
- Some more obvious than others.
- The INCOSE MB Transformation is using ISO 15288 framework as an aid to migration planning and assessment.
Many potential purposes for models
One way to keep “maturity” focused pragmatically is to be very clear about explicit purposes for models.

Because ISO 15288 offers a (relatively) well-known and accessible reference model for the life cycle management of systems, it provides a convenient “menu” listing of potential high level purposes of models in the life cycle of systems.

The INCOSE Model-Based Transformation team is using this as the basis of an MBSE migration and maturation planning and assessment instrument . . .
The INCOSE MBSE Transformation products are based on identification of --

Stakeholders in the MBSE Transformation:

1. Model Consumers (Model Users);
2. Model Creators (including Model Improvers);
3. Complex Idea Communicators (Model "Distributors");
4. Model Infrastructure Providers, Including Tooling, Language and Other Standards, Methods;
5. INCOSE and other Engineering Professional Societies.

Notice that group (1) is by far the largest population of stakeholders, for future MBSE impact potential.
Further analysis of the Transformation Stakeholders (also shows ET2016 Conference ratings of needs, opportunities)

<table>
<thead>
<tr>
<th>Population</th>
<th>Stakeholders in A Successful MBSE Transformation (showing their related roles and parent organizations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Consumers (Model Users):</td>
<td>Non-technical stakeholders in various Systems of Interest, who acquire / make decisions about / make use of those systems, and are informed by models of them. This includes mass market consumers, policy makers, business and other leaders, investors, product users, voters in public or private elections or selection decisions, etc.</td>
</tr>
<tr>
<td></td>
<td>Technical model users, including designers, project leads, production engineers, system installers, maintainers, and users/operators.</td>
</tr>
<tr>
<td></td>
<td>Leaders responsible to building their organization’s MBSE capabilities and enabling MBSE on their projects</td>
</tr>
</tbody>
</table>

Model Creators (including Model Improvers):	Product visionaries, marketers, and other non-technical leaders of thought and organizations
	System technical specifiers, designers, testers, theoreticians, analysts, scientists
	Students (in school and otherwise) learning to describe and understand systems
	Educators, teaching the next generation how to create with models
	Researchers who advance the practice
	Those who translate information originated by others into models
	Those who manage the life cycle of models

Complex Idea Communicators (Model "Distributors"):	Marketing professionals
	Educators, especially in complex systems areas of engineering and science, public policy, other domains, and including curriculum developers as well as teachers
	Leaders of all kinds

Model Infrastructure Providers, Including Tooling, Language and Other Standards, Methods:	Suppliers of modeling tools and other information systems and technologies that house or make use of model-based information
	Methodologists, consultants, others who assist individuals and organizations in being more successful through model-based methods
	Standards bodies (including those who establish modeling standards as well as others who apply them within other standards)

INCOSE and other Engineering Professional Societies	As a deliverer of value to its membership
	As seen by other technical societies and by potential members
	As a great organization to be a part of
	As promoter of advance and practice of systems engineering and MBSE
Each 15288 process definition suggests potentially assessable model impacts

- Stakeholders of the system are identified.
- Required characteristics and context of use of capabilities and concepts in the life cycle stages, including operational concepts, are defined.
- Constraints on a system are identified.
- Stakeholder needs are defined.
- Stakeholder needs are prioritized and transformed into clearly defined stakeholder requirements.
- Critical performance measures are defined.
- Stakeholder agreement that their needs and expectations are reflected adequately in the requirements is achieved.
- Any enabling systems or services needed for stakeholder needs and requirements are available.
- Traceability of stakeholder requirements to stakeholders and their needs is established.
Each ISO15288 process offers higher level targeting, assessment (Below: Energy Tech 2016 Feedback on MBSE in ISO15288)
Sufficiency for Purposes; Minimality

- Systems of Modeling, practiced, must be sufficient for their intended purposes, and preferably minimal / not overly complex, proliferated:
 - A lot of (continuing) effort by the modeling community being invested in sufficiency.
 - Understanding of what is needed improving, but lists of future capabilities are long.
- More is involved than modeling languages, tools, methods, alone; for example:
 - Fitness to non-technical users and uses
 - Strong enough conceptual foundation, based on STEM, not just information models.
 - Credibility of model content (trust in the model)

What Is the Smallest Model of a System?

William D. Schindel
ICTT System Sciences
schindel@ictt.com

Copyright © 2014 by William D. Schindel. Published and used by INCOSE with permission.

Abstract. How we represent systems is fundamental to the history of mathematics, science, and engineering. Model-based engineering methods shift the focus of representation of systems from mathematical proof to explicit design structures more directly comparable to those of science and mathematics. However, using models does not guarantee simpler representations—indeed a typical feature voiced about models is that they may be too complex. Minimality of system representations is of both theoretical and practical interest. The mathematical and scientific interest is that the size of a system's 'minimal representation' is one definition of its complexity. The practical engineering interest is that the size and redundancy of engineering specifications challenge the effectiveness of systems engineering processes. INCOSE thought leaders have asked how systems work can be made 10 times smaller to attract a 10 times larger global community of practitioners. And so, we ask: What is the smallest model of a system?
Scientific heritage (~300 years)

- The eventual flowering of the physical sciences depended upon the emergence of strong enough underlying model constructs (of math, physics) to better represent Nature.
- Specifically, the System Phenomenon (Newton, Lagrange, Hamilton):

A traditional view of systems engineering

- Systems Engineering
- Traditional Engineering Disciplines
- Traditional Physical Phenomena

Our view of systems engineering

- Emerging Engineering Disciplines
- Traditional Engineering Disciplines
- Systems Engineering Discipline
- The System Phenomenon

• The eventual flowering of the physical sciences depended upon the emergence of strong enough underlying model constructs (of math, physics) to better represent Nature.
• Specifically, the System Phenomenon (Newton, Lagrange, Hamilton):
Sufficiency for Purposes; Minimality

• Example: Fitness of model to use
 – Includes fitness of model views to intended uses, users.

• See discussions by E. Tufte, N Levinson, concerning NASA shuttle model views

• Culture plays a key part in this.

• So, measuring maturity of MBSE will take us across more subjects than technical practitioners might expect.

• Modeling more than just the “engineered” System 1

• Intended model uses and users, along with culture, are “System 2” issues
The System of Innovation (SOI) MBSE Pattern

(Used for INCOSE Agile SE Project, INCOSE CIPR WG, etc. Innovation reference model: Not prescriptive, but descriptive.)

1. Target System
 - LC Manager of Target System
 - Learning & Knowledge Manager for Target System

2. Target System (and Component) Life Cycle Domain System
 - Life Cycle Manager of LC Managers
 - Learning & Knowledge Manager for LC Managers
 - LC Manager of Target System

3. System of Innovation (SOI)
 - Learning & Knowledge Manager for LC Managers of Target System

(Substantially all the ISO15288 processes are included in all four Manager roles)

- **System 1**: Target system of interest, to be engineered or improved.
- **System 2**: The environment of (interacting with) S1, including all the life cycle management systems of S1, including learning about S1.
- **System 3**: The life cycle management systems for S2, including learning about S2.
ISO 15288 processes appear 4 times, whether we recognize or not.
• System 1: Target system of interest, to be engineered or improved.
• System 2: The environment of (interacting with) S1, including all the life cycle management systems of S1, including learning about S1.
• System 3: The life cycle management systems for S2, including learning about S2.
- System 1: Target system of interest, to be engineered or improved.
- System 2: The environment of (interacting with) S1, including all the life cycle management systems of S1, including learning about S1.
- System 3: The life cycle management systems for S2, including learning about S2.

Note connection to “Defined” status in capability maturity.

Model of System 1, for any life cycle management purposes.

Model of System 2, for any life cycle management purposes.

(Substantially all the ISO15288 processes are included in all four Manager roles)
When is immaturity valued?

- The progressive “S Curves” of waves of new technologies, paradigms, product families, scientific, and other discoveries represent learning.
- In this context, “maturity” is the flat part at the top of each generation of learning.
- The earlier, “steep” part of the curve represents higher rates of change, as we learn more rapidly and exploit discovery.

So, where do we want to be on this curve?

Notice the challenging trade-off!

Applies to learning about System 2 (e.g., methodology) as well as Learning about System 1 (engineered system).
Lessons Learned: Effective Learning?

- In many enterprises, recording “lessons learned” is institutionalized as good practice:
 - At least, at the end of a project;
 - Often, in the form of a report or memorandum to file.
- Likewise, “Knowledge Management” efforts are noted, focusing on encoding what is deemed important for future work of others.
- Measuring effectiveness of such practices:
 - Instead of how often the data is referred to, how about . . .
 - How frequently related future work that could be impacted is effectively impacted, versus repeating similar work or problem consequences.
Lessons Learned?

Lessons Learned Report

"We should write that spot down."
Lessons Effectively Learned?

Lessons Learned Report

"Well, what the? ... I thought I smelled something."
Learning & Knowledge Manager for Target System

LC Manager of Target System

Target System

Target Environment

(Substantially all the ISO 15288 processes are included in all four Manager roles)

3. System of Innovation (SOI)
 2. Target System (and Component) Life Cycle Domain System
 1. Target System

Learning & Knowledge Manager for LC Managers of Target System

Life Cycle Manager of LC Managers

Learning & Knowledge Manager for Target System

Executing
Lessons Learned: Effective Learning?

• Where are the “lessons learned” encoded? What would cause them to be accessed?

• Compare to biology:
 – “Muscle Memory” builds “motor” learning directly into a future situation, for future unconscious use, vs. syllogistic reasoning that may not be remembered fast enough, or at all
 – This is about “effective learning” for future agile use
 – Just having a growing file of “lessons learned”, even if text searchable, is not the same as building what we learn directly in line with the path of future related work that will have to access it in order to be executed.

• Just because we label a report “lessons learned” does not mean that those who will need this information in the future will have access to it.
Learned models from STEM (~300 years) offer the most dramatic example of positive collaborative impact of effectively shared and validated models

- **Effective Model Sharing:**
 - We cannot view MBSE as mature if we perform modeling “from scratch”, instead of building on what we *(including others)* already know.
 - This is the basis of MBSE Patterns, Pattern-Based Systems Engineering (PBSE), and the work of the INCOSE MBSE Patterns Working Group.
 - S1 Patterns are built directly into future S2 project work of other people—effective sharing only occurs to extent it impacts future tasks performed by others.
 - This sharing may occur across individuals, departments, enterprises, domains, markets, society.
 - It applies not only to models of S1 (by S2), but also models of S2 (by S3).

- **Effective Model Validation:**
 - Especially when shared, models demand that we trust them.
 - This is the motivation for Model Validation, Verification, and Uncertainty Quantification (Model VVUQ) being pursued with ASME standards committees.
 - Effectiveness of Model VVUQ is essential to MBSE Maturity.
 - Because Model VVUQ adds significantly to the cost of a trusted model, MBSE Patterns are all the more important—they IP of enterprises, industries.
An emerging special case: Regulated markets

- Increasing use of computational models in safety-critical, other regulated markets is driving development of methodology for Model VVUQ:
 - See, for example, ASME V&V 10, 20, 30, 40, 50, 60.
- Models have economic advantages, but the above can add new costs to development of models for regulatory submission of credible evidence:
 - Cost of evidentiary submissions to FDA, FAA, NRC, NTSB, EPA, OSHA, when supported by models—includes VVUQ of those models.
- This suggests a vision of collaborative roles for engineering professional societies, along with regulators, and enterprises:
 - Trusted shared MBSE Patterns for classes of systems
 - Configurable for vendor-specific products
 - With Model VVUQ frameworks lowering the cost of model trust for regulatory submissions
- Further emphasizes the issue of trust in models...
An emerging special case: Regulated markets

- Trusted shared MBSE Patterns for classes of systems
- Configurable for vendor-specific products
- With Model VVUQ frameworks lowering the cost of model trust for regulatory submissions
Requirements for **trustable** models

We cannot discuss maturity in development or use of models without discussing whether we can **trust** those models . . .

\[T = \omega_p \times I \omega \]
If we expect to use models to support critical decisions, then we are placing *increased trust in models*:

– Critical financial, other business decisions
– Human life safety
– Societal impacts
– Extending human capability

• MBSE Maturity requires that we characterize the structure of that trust and manage it:
 – The Validation, Verification, and Uncertainty Quantification (VVUQ) of the models themselves.
V&V of Models, Per Emerging ASME Model V&V Standards

Does the Model adequately describe what it is intended to describe?

- Model Validation
- Model validated?
- Model Verification

Does the Model implementation adequately represent what the Model says?

Does the System Requirements describe what stakeholders need?

- System Validation
- Requirements validated?
- System Verification

V&V of Systems, Per ISO 15288 & INCOSE Handbook

- System of Interest
- Design verified?

Does the System Design define a solution meeting the System Requirements?

- Design verified?
Quantitative Fidelity, including Uncertainty Quantification (UQ)

- There is a large body of literature on a mathematical subset of the UQ problem, in ways viewed as the heart of this work.
- But, some additional systems work is needed, and in progress, as to the more general VVUQ framework, suitable for general standards or guidelines.

General structure of uncertainty / confidence tracing:
- Do the modeled external Interactions qualitatively cover the modeled Stakeholder Features over the range of intended S1 situations of interest?
- Quantify confidence / uncertainty that the modeled Stakeholder Feature Attributes quantitatively represent the real system concerns of the S1 Stakeholders with sufficient accuracy over the range of intended situation envelopes.
- Quantify confidence / uncertainty that the modeled Technical Performance Attributes quantitatively represent the real system external behavior of the S1 system with sufficient accuracy over the range of intended situation envelopes.
Related ASME activities and resources

- ASME, has an active set of teams writing guidelines and standards on the Verification and Validation of Computational Models.
 - Inspired by the proliferation of computational models (FEA, CFD, Thermal, Stress/Strain, etc.)
 - It could fairly be said that this historical background means that effort was not focused on what most systems engineers would call “system models”
- Also conducts annual Symposium on Validation and Verification of Computational Models, in May.
- To participate in this work, in 2016 the speaker joined the ASME VV50 Committee:
 - With the idea that the framework ASME set as foundation could apply well to systems level models; and . . .
 - with a pre-existing belief that system level models are not as different from discipline-specific physics models as believed by systems community.
- Also invited sub-team leader Joe Hightower (Boeing) to address the INCOSE IW2017 MBSE Workshop, on our related ASME activity.
ASME Verification & Validation Standards Committee

- V&V 10: Verification & Validation in Computational Solid Dynamics
- V&V20: Verification & Validation in Computational Fluid Dynamics and Heat Transfer
- V&V 30: Verification and Validation in Computational Simulation of Nuclear System Thermal Fluids Behavior
- V&V 40: Verification and Validation in Computational Modeling of Medical Devices
- V&V 50: Verification & Validation of Computational Modeling for Advanced Manufacturing
- V&V 60: Verification and Validation in Modeling and Simulation in Energy Systems and Applications

https://cstools.asme.org/csconnect/CommitteePages.cfm?Committee=100003367
Requirements for trustable, impactful models, as a basis for MBSE maturity

MBSE Maturity in general, and VVUQ for Models in particular, mean we have to understand:

– Stakeholders for Models
– Stakeholder Features of Models
– Technical Requirements for Models
– We are capturing these in an MBSE Pattern

(Substantially all the ISO15288 processes are included in all four Manager roles)
Stakeholders for Models

<table>
<thead>
<tr>
<th>Model Stakeholder Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model User</td>
<td>A person, group, or organization that directly uses a model for its agreed upon purpose. May include technical specialists, non-technical decision-makers, customers, supply chain members, regulatory authorities, or others.</td>
</tr>
<tr>
<td>Model Developer</td>
<td>A person who initially creates a model, from conceptualization through implementation, validation, and verification, including any related model documentation. Such a person may or may not be the same as one who subsequently maintains the model.</td>
</tr>
<tr>
<td>Model Maintainer</td>
<td>A person who maintains and updates a model after its initial development. In effect, the model maintainer is a model developer after the initial release of a model.</td>
</tr>
<tr>
<td>Model Deployer-Distributor</td>
<td>A person or organization that distributes and deploys a model into its intended usage environment, including transport and installation, through readiness for use.</td>
</tr>
<tr>
<td>Model Use Supporter</td>
<td>A person who supports or assists a Model User in applying a model for its intended use. This may include answering questions, providing advice, addressing problems, or other forms of support.</td>
</tr>
<tr>
<td>Regulatory Authority</td>
<td>An organization that is responsible for generating or enforcing regulations governing a domain.</td>
</tr>
<tr>
<td>Model Investor-Owner</td>
<td>A person or organization that invests in a model, whether through development, purchase, licenses, or otherwise, expecting a benefit from that investment.</td>
</tr>
</tbody>
</table>
INCOSE MBSE Assessment and Planning Pattern: Model Stakeholder Features Overview

Model Identity and Focus
- Modeled System of Interest
- Modeled Environmental Domain

Model Scope and Content
- Modeled Stakeholder Value
- Modeled System External (Black Box) Behavior
- Explanatory Decomposition
- Parametric Couplings -- Fitness
- Trusted Configurable Pattern
- Physical Architecture
- Managed Model Datasets

Model Life Cycle Management
- Model Versioning and Configuration Management
- Model Maintainability
- Model Deployability
- Model Cost
- Executable Model Environmental Compatibility
- Model Design Life Cycle and Retirement
- Model Availability

Model Utility
- Model Intended Use
- Perceived Model Value and Use
- Third Party Acceptance
- Model Ease of Use

Model Fidelity
- Model Envelope
- Validated Conceptual Model Fidelity
- Verified Executable Model Fidelity

Model Representation
- Conceptual Model Representation
- Executable Model Representation

Legend:
- MODEL APPLICATION ENVELOPE
- CONFIGURATION ID
- DATASET TYPE
- MODEL CAPABILITY TYPE
- CM CAPABILITY TYPE
- ENVIRONMENTAL COMPONENT
- STAKEHOLDER TYPE
- FEATURE PK ATTRIBUTE
- OTHER FEATURE ATTRIBUTE

Stakeholder Feature Model for Computational Models

- Life Cycle Process Supported (ISO 15288)
- USER GROUP SEGMENT
- Level of Annual Use
- Value Level
- ACCEPTING AUTHORITY
- Perceived Model Complexity

- Quantitative Accuracy Reference
- Function Structure Accuracy Reference
- Uncertainty Quantification (UQ) Reference
- Model Validation Reference
- Quantization
- Stability
- Model Validation Reference

- Operational Cost
- Maintenance Cost
- Deployment Cost
- Retirement Cost
- Life Cycle Financial Risk

- Development Cost
- Operational Cost
- Maintenance Cost
- Deployment Cost
- Retirement Cost
- Life Cycle Financial Risk

- First Availability Data
- First Availability Risk
- Life Cycle Availability Risk

Version: 1.4.15
Date: 30 Apr 2017
Drawn By: B Schindel
The ISO 15288 Processes provide the Model Stakeholder Feature Set for Planning & Assessment

(Other Features on previous slide)

<table>
<thead>
<tr>
<th>Feature Group</th>
<th>Feature Name</th>
<th>Feature Definition</th>
<th>Feature Attribute</th>
<th>Attribute Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Utility</td>
<td>Model Intended Use</td>
<td>The intended purpose(s) or use(s) of the model.</td>
<td>Life Cycle Process Supported</td>
<td>The intended life cycle management process to be supported by the model, from the ISO15288 process list. More than one value may be listed.</td>
</tr>
<tr>
<td></td>
<td>Perceived Model</td>
<td>The relative level of value ascribed to the model, by those who use it for its stated purpose.</td>
<td>User Group Segment</td>
<td>The identify of using group segment (multiple)</td>
</tr>
<tr>
<td></td>
<td>Value and Use</td>
<td></td>
<td>Level of Annual Use</td>
<td>The relative level of annual use by the segment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Value Level</td>
<td>The value class associated with the model by that segment</td>
</tr>
<tr>
<td></td>
<td>Third Party</td>
<td>The degree to which the model is accepted as authoritative, by third party regulators, customers, supply chains, and other entities, for its stated purpose.</td>
<td>Accepting Authority</td>
<td>The identity (may be multiple) of regulators, agencies, customers, supply chains, accepting the model</td>
</tr>
<tr>
<td></td>
<td>Acceptance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model Ease of Use</td>
<td>The perceived ease with which the model can be used, as experienced by its intended users.</td>
<td>Perceived Model Complexity</td>
<td>High, Medium Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature Stakeholder</th>
<th>Model User</th>
<th>Model Developer</th>
<th>Model Maintainer</th>
<th>Model Deployer-Distributor</th>
<th>Model Use Supporter</th>
<th>Regulatory Authority</th>
<th>Mdl Investor-Owner</th>
<th>Physics Based</th>
<th>Data Driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

Describes the intended use, utility, and value of the model.
Related INCOSE, ASME communities

• **INCOSE:**
 – Model-Based Engineering Transformation Initiative
 – INCOSE-NAFEMS Joint Working Group on Simulation
 – MBSE Patterns Working Group
 – Agile Systems & Systems Engineering Working Group
 – Tools Interoperability and Model Life Cycle Management Group
 – INCOSE-OMG MBSE Initiative: Challenge Teams, Activity Teams

• **ASME Computational Model V&V Committee / Working Groups:**
 – V&V 10: Verification & Validation in Computational Solid Dynamics
 – V&V20: Verification & Validation in Computational Fluid Dynamics and Heat Transfer
 – V&V 30: Verification and Validation in Computational Simulation of Nuclear System Thermal Fluids Behavior
 – V&V 40: Verification and Validation in Computational Modeling of Medical Devices
 – V&V 50: Verification & Validation of Computational Modeling for Advanced Manufacturing
 – V&V 60: Verification and Validation in Modeling and Simulation in Energy Systems and Applications
Opportunities--what you can do

• Think larger about intended uses and users of MBSE, and judge its maturity in that light.
• Include how well MBSE enables group learning.
• Include the full breadth of model types in your thinking.
• Consider why you think a model should be trusted.
• Join the INCOSE MBSE Patterns Working Group, to advance practice.
• Join the ASME Computational VVUQ effort, to advance model trust.
• Exercise the emerging MBSE Planning and Assessment Framework, in your own company and work, and provide feedback.
References

 http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

15. Schindel, W., “Got Phenomena? Science-Based Disciplines for Emerging Systems
 Challenges PBSE methodology summary”, Proc. of INCOSE IS2017 Symposium, Adelaide,

16. Schindel, W., “Requirements Statements Are Transfer Functions: An Insight from MBSE”,

17. INCOSE MBSE Initiative Patterns Working Group web site, at

18. INCOSE Patterns Working Group, “MBSE Methodology Summary: Pattern-Based
 Systems Engineering (PBSE), Based On S*MBSE Models”, V1.5.5A, retrieve from:
Bill Schindel chairs the MBSE Patterns Working Group of the INCOSE/OMG MBSE Initiative. He is president of ICTT System Sciences, and has practiced systems engineering for over thirty years, across multiple industry domains. Bill serves as president of the INCOSE Crossroads of America Chapter, and is an INCOSE Fellow and Certified Systems Engineering Professional. An ASME member, he is part of the ASME VV50 standards team’s effort to describe the verification, validation, and uncertainty quantification of models.