Accelerating Innovation Effectiveness: Model-Facilitated Collaboration by Regulators, Technical Societies, Customers, and Suppliers

Federal Aviation Administration

Presented to: INCOSE International Symposium

By: Joseph Pellettiere, Chief Scientific and Technical Advisor for Crash Dynamics, FAA

Date: July 2018
Disclaimer

• Certification approvals are based on federal regulations, official FAA policy, and certification engineers – not research opinions
Certification of Aircraft Articles

• How do you certify an article?
 – Demonstrate compliance with the applicable regulations
 – Sometimes in a single step and can be part of certification at aircraft level
 – Oftentimes, articles approved to an industry standard, then compliance to the applicable regulation is later demonstrated
 • Technical Standard Order (TSO)
 – Generally, compliance is through physical testing!
Certification of Aircraft Articles

• If regulation/policy states testing OR analysis, applicant can use analytical modeling without a deviation

• Example: Advisory Circular 20-146 provides guidance for seats on:
 – How to validate the computer model
 – Under what conditions the model may be used in support of original certification and design changes
 – If proposing to model vs. test, supply data proving model represents testing conditions/environment

• FAA considering development of general M&S guidance
Certification by Analysis

- **AC 20-146a**
 - Completed FAA comments
 - Completed Public comments – awaiting tech writer/legal review

- **New master AC**
 - Include AC 20-146a, but make generally applicable

- **ASME V&V 10**
 - Overarching validation document

- **SAE ARP 5765B**
 - Working on expanding

- **LSDYNA Aerospace Working Group**
 - Data sharing resolved, activities moving forward

- **Industry Processes**
 - Reviewing proposals and working to implement
FAA AC 20-146

- Methodology for Dynamic Seat Certification by Analysis
- Provides high-level guidance on the validation of seat models
- Defines the conditions under which computer modeling can be used in support of certification
- Applicants using for case analysis
- AC 20-146a Revision
 - Completed public comments
 - In Queue for tech writer and legal review before release
The primary objectives are to provide:

- Quantitative method to measure and evaluate the degree of correlation between a model and a physical test.
- Best modeling practices to improve the accuracy and predictability of seat analyses.

Participants

- **Seat Suppliers**
 - Weber / Zodiac
 - IPECO
 - Recaro/Adient
 - Sicma
 - B/E Aerospace
 - Contour

- **A/C Manufacturers**
 - Airbus
 - Cessna
 - Embraer
 - Boeing
 - Gulfstream

- **Software**
 - FTSS
 - TASS
 - ESI
 - Altair

- **Regulatory**
 - FAA
 - EASA

- **Academic**
 - NIAR
 - VT
ASME V&V 10

• ASME committee focused on writing consensus standards on verification and validation (ANSI approved)

• Membership includes multiple national laboratories (LLNL, LANL, SNL), DoD, FAA, GM, Boeing, non-profits (SWRI), universities, and consultants

• 2 documents published, 2 under development
ASME V&V 10-2006

- Guide for Verification and Validation in Computational Solid Mechanics
- High level document that provides a framework for implementing verification and validation of computational models for complex systems in solid mechanics
- Provides a common language and process definition
- ASME V&V 10.1-2012: An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics
M&S Guidance - Process

- FAA AC 20-146: Overarching document describing process to use analysis in seat certification
- ASME V&V 10: Industry document describing V&V process
- SAE ARP 5765: Industry document describing v-ATD calibration (future additional seat details) and best practices
- LSDYNA ASWG CI: Code/Calculation verification and best practices/examples for LSDYNA
Outreach

- Dynamic Impact Analytical Methods training course
 - Training for AC 20-146 and SAE ARP 5765; Combined training with other disciplines
 - Birdstrike/Engine/Structures
 - Goal to work on master AC

- FAA working with academia and NASA to expand publically available information
 - Most industry work is proprietary
Outreach

• Participation in Technical Societies
 – ASME
 – SAE International
 – ASTM

• Suppliers
 – LSTC LS-Dyna Aerospace Working Group
 – Humanetics – v-ATD models

• Industry Support
 – Review of process proposals
Questions?