Modelica Association
System Structure and Parameterization (SSP) Project Overview

SMSWG Meeting November 29, 2016
Hubertus Tummescheit
CEO Modelon Inc. & Board member Modelica Association
Acknowledgements: Members of the Modelica Association SSP working group
Motivation for initiating MAP “System Structure and Parameterization” (SSP) – Using FMI as Basis

• FMI is basically a great technology to make exchanging models inside and among companies much easier
• Typical use-case is a network of FMUs (System structure) ...

... Therefore, some features are missing ...
Motivation for initiating SSP – Missing features

• Collected on a meeting with BMW, Bosch, ZF, PMSF (2014):
 ▪ No possibility to separate parameter data from the FMUs
 ▪ No possibility to change parameters in a consistent way independently from the integration environment for single FMUs.
 ▪ No possibility to handle intellectual property of parameters
 ▪ No possibility of mapping parameters in a network of FMUS
 ▪ No possibility to store a network of FMUs tool independently
Main Purposes of SSP

• Define a standardized format for the **connection structure of a network of components**.
• Define a to these components **standardized way to store and apply parameters**.
• The developed standard / APIs should be usable in all stages of development process (architecture definition, integration, simulation, test in MiL, SiL, HiL).
• The work in this project shall be coordinated with other standards and organizations (FMI, ASAM, OMG).
Overview of XML Schema Definitions

MA-Project “System Structure and Parameterization” – Early Insights
XML Schema Description - System Structure Package

Use case
- Exchange of Complete Systems with Variants

Features
- All information (FMUs, system structure definition, parameters) can be stored in one archive (zip-file)
- Multiple SSDs in one SSP allows for variant modeling
Use case
• Defining a Network of FMUs

Features
• Hierarchical sub-systems
• Empty components/FMUs as interface templates
• External resources via URIs: Both relative to SSD/SSP or absolute, e.g. via HTTP(S).
• Connections with unit conversions and optional linear/map transformations
• Optional: Diagram geometry
XML Schema Description - System Structure Definition
Use cases
- Collecting Control Signals in a Central Location

Features
- Causality is checked by tool automatically
- Crosses hierarchies without need for downward passing
- Well-suited for e.g. ECU control busses
Use case

- Tool-independent Exchange of Parameter Data

Features

- Neutral exchange format between parameter sources
- Compatible to FMI standard
- Provides some meta data
- Access to param DBs via HTTP (→ Parameter API)
Use case
- Mapping Parameters to FMUs when the Parameter Names differ or Parameter Values require Transformations

Features
- Can be stored separately from System Structure and Parameter Data
- Can be inlined into SSD
- Optional manual linear and mapping transformations
Parameter API Get Mechanisms

• General Idea:
 ▪ Access to external parameter sources via HTTP(S) GET Requests
 ▪ Request URI is the source attribute
 ▪ Type attribute passed via accept request header
 ▪ Updates handled efficiently via ETag/Conditional GET/HEAD

• Returns Parameter Data in the format requested:
 ▪ application/x-ssp-parameter-set -> SSV file format
 ▪ Sources and tools can support other formats
Integration of FMUs for HIL Testing

- HIL configuration tools are importing FMUs to integrate them with other FMUs, Simulink-based models and real ECUs
- Data Management tools are managing the lifecycle of the FMUs
Reuse of the System Structure for SIL, MIL and HIL

- Integration and Data Management tools share a vendor independent system description (SSP)
- Reuse of tools, configurations, models, tests, layouts and parameters at system level is supported
Commercial Prototypes

- Model.CONNECT™ by AVL: model integration and execution
- FMI Integrator by Modelon: aggregating FMUs to networks of “Super-FMUs”
- FMI Bench by PMSF: Workbench for FMUs
Prototypes – Online Testing Tool

- Scalability of <ssd:Connectors>
 - Ring configuration at a glance
 - 3D Flash UI for <ssd:Component>
- Time integration control master
 - Unit Test with default parameter
 - Synchronized Co-Simulation Test
- Parameter database as FMU
 - FMU of (sqlite.DB + sql.DLL)
 - exported by Optimus®
Future work / Outline

• Further Development of API for parameter handling
• Try to involve providers of simulation data management systems in this project
• Evaluate approaches with „real-world examples“
• Publish first release soon

• Any contribution is very appreciated!