Model based Systems Engineering (MBSE)
Missing Link in the digital Enterprise Strategy?

Keynote to the MBSE Workshop
at the INCOSE Los Angeles International Workshop
January 25, 2014

Prof. Dipl.-Ing. Heinz Stoewer, M.Sc.
President Space Associates GmbH, Germany
Past President and Fellow INCOSE
Emeritus Professor Space Systems Engineering, Delft University of Technology
Former Head Systems Engineering and Programatics, ESA - ESTEC
Former Managing Director German Space Agency, DARA GmbH
Distinguished Visiting Scientist NASA JPL
heinzstoewer@spaceassociates.net

Welcome in a partially digital World

Google Earth animation flowing from Europe to North America, on to California, Los Angeles and finally to the Marriott Conference Hotel

Google Earth - Model and Benchmark for MBSE?

- Holistic System
- System Element
- Subsystem
- Equipment
- Piece Part
- + Wiring Diagram. Etc

Note: Mark Sampson’s famous car diagramme sends a similar message

Outline

- A bit of History
- The emerging digital World
- The Systems Engineering World – in Context
- MBSE – Status and Future
- Summary and „Take Aways“
Systems Engineering Roots

- SE has been practiced for centuries – so has Project Mgt
- From simple constructions to complex operations involving hundreds and thousands of specialists
- Architects, ship builders, water managers were early SEs/PMs

SE Computing Support Steps since the 1930s

- Only today we are ready for MBSE

- First freely programmable computer by “Zuse” 1938
- Slide Rules and Pocket Computers - Engineers working Tools since 50s
- Early 1960s computer
- Early 1980s IBM PC
- Modern PCs & laptops with enormous capabilities
- Networks of interlinked computers with seemingly infinite capabilities
Outline

• A bit of History

• The emerging digital World

• The Systems Engineering World – in Context

• MBSE – Status and Future

• Summary and „Take Aways“

Emerging Digital World

• Remember the paperless office idea?

• Some real examples from our emerging “Digital World”
 – Engineering Analysis and Design
 – Concurrent Engineering in Space
 – Manufacturing & Automation
 – Transport Logistics
 – Germany’s “Industrie 4.0”
 – The Earth
Revolutions and Transformations take Time
Example CAD History

• Idea goes back to 1957; solid modeling/wireframes and first vendor tools offered 1980s

• Unmet expectations and frustrations all along!

• Initial focus on aircraft and automobiles, today most all industry sectors

• Real breakthrough only late 1990s

Note: Ambitions of CAD vendors are to evolve towards more encompassing SE capabilities

Example Space: Early System Level Modeling
Concurrent Conceptual Design Facilities in JPL, Industry, ESA
From Paper to interlinked PCs - a big Improvement in Process Technology

Is this MBSE? Yes, the first „integrated“ step of MBSE
Example “Automated” Manufacturing and Process Control - “Digitization” in Transition

Example: Todays Logistics World
From Mules to Global Digital Networks and Supply Chains

Ref: German Industry 4.0, Fraunhofer Gesellschaft
Example: German Industry 4.0

Industry, Government and Research Institutes cooperation to create a Nationwide digital Business Base

Premise: “Not every enterprise has a digital business model, but every enterprise will have to become digital”

The four Stages of the Industrial Revolution

1. Industrielle Revolution
durch Einführung mechanischer Produktionsanlagen mithilfe von Wasser- und Dampfkraft

End 18th Cent Early 20th Cent Early 70s Today ++

4. Industrielle Revolution
auf Basis von Cyber-Physical Systems

3. Industrielle Revolution
durch Einsatz von Elektronik und IT zur weiteren Automatisierung der Produktion

2. Industrielle Revolution
durch Einführung arbeitsteiliger Massenproduktion mithilfe von elektrischer Energie

Erste Speicherprogrammierbare Steuerung (GPS), Madison 084 1980

Erster mechanischer Webstuhl 1784

Erste Flechtmaschine, Schacht- und Hütten: Cincinnati 1870

Internet of Things and Services – The Buzzword is “smart”

Which Enterprise Functions will be affected by the “digital Transformation”? (An incidental Organigramme)

The better question is: which are not affected? ... and what degree of transformation have they achieved?

Does SE play any Role in this Transformation?

Today: elaborate interfaces between supporting IT systems

Tomorrow: seamless Systems Engineering across the entire value chain

"digitization" is affecting most all parameters of day to day business operations

Enterprise functions will become digital almost all the way!

Source: "Industrie 4.0" – Siemens Corporation

The digital Transformation is all encompassing

150 Million m² landmass will be completely digitized in only a few years with vertical resolution in the order of 10 meters; ocean topology may take a bit longer.
Outline

• A bit of History
• The emerging digital World
• The Systems Engineering World – in Context
• MBSE – Status and Future
• Summary and „Take Aways“
SE in Reality – far behind Programme/Project Management in Recognition (incidental Organigrams)

The lonely SE

There are many PM – SE Overlaps

How well are they aligned?

Examples
- Stakeholder Needs/Requirements
- Project Scope/Interfaces
- Cost & Schedule (lean)
- Technology Selection
- Risk Assessment/Mitigat
- Project Processes applic/tailoring
- Team Motivation
End-to-End SE deals with many Variables

- Performance & scope
- Cost and Schedules
- Procurement and subcontracting
- Technology assessments
- Human factors
- Risk evaluations and mitigation
- Environment and other regulations
- etc, etc

Above variables contain a mix of “hard” engineering and “soft” social and economics based parameters, all of which imply “gut-feel” judgments and decisions; can they be “calculated” and hence be modeled accurately?

But these “variables” make up day-to-day life of senior SEs (and PMs) in a challenging mix of “science and art”

Example Requirements Engineering

- requirements are derived from expressed & assumed customer or market demands
- need be traded against stakeholder needs & tech, economic, social, environmnt, feel, touch, looks, etc. criteria
- All need analysis of different verification and validation means
- and be subjected to risk evaluations, markets cultural differences, time to market, cost, cash flow, etc, etc

→ deriving requirements and freezing them along the life-cycle is subject to large differences in industry! Freezing them too early or too late can make big differences in time, quality and cost

→ Implies both science and art!
Example Cost Engineering

- Cost estimates are based upon technical and programmatic descriptions at any given moment – they can never be better than the prevailing technical and programmatic project baselines.
- Data bases with archived cost of past projects, cost per kg of hardware, or lines of software code are helpful, but need SE and PM judgements and project tailored adaptations for validation.
- Reducing or de-risking cost takes many system analyses, design and/or process changes, technology assessments, discussions with stakeholders etc etc.

More art than science

Example Schedule Engineering

Can you “calculate” how long a specific test will take? Which problems will occur and how long it will take to fix them?

Can you “calculate” how long the qualification of a new technology might take?

Can you “calculate” how long it will take to “integrate” a complex R&D project containing multiple suppliers and process variables?

More art than science
Can you “calculate” the many steps it can take to convert an early risk matrix into a “all under control” type of solution?

→ Lots of art and science

Example: How much upfront Investment?

Who can “calculate” the needed spend rate and schedule achievement?

→ Lots of science and art
...or “calculate” the Human Failures that can occur during any Project at any Time?

→ Lots of art with some science

Lessons and Implications for MBSE

• SE deals with many variables and specialized disciplines. Some are physics based hard engineering, others are soft and economics, social, human or environmental based

• Much of SE is about leadership and decision making and combines “science and art”

• SE is akin to and strongly interdependent with PM

→ MBSE must eventually find solutions to cope with above while interacting with many other models in the digital enterprise network
Outline

• A bit of History
• The emerging digital World
• The Systems Engineering World – in Context
• MBSE – Status and Future
• Summary and „Take Aways“

MBSE – Definition Attempts

“Model-based systems engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.”

INCOSE SE Vision 2020

More pragmatic:
“MBSE translates physics, functional, economics and social based (project) data into interrelated digital model representations”

Beware:
• The product of an arithmetical computation is the answer to an equation; it is not the solution to a problem
• Confusing the model with reality is like sitting in a restaurant and proceeding to eat the menu
Where is MBSE on the Hype Curve?
Ref: K. Hjortnaes, ESA/ESTEC

Can two examples from automotive and space answer the question?

Example Automotive Industry
Ref: BMW Group, Dr. M. Tietze and Autosar Consortium

→ Is this MBSE or subsystem engineering? Architecting & modeling highly complex avionics for two million + automobiles is MBSE!
Example JPL Europa Clipper Mission

Ref: Todd Bayer and Brian Cooke, NASA JPL

Chemistry: Do red surface deposits contain organics from below?

Energy: Can surface oxidants provide energy for metabolism?

Water: Are a global ocean and lakes hidden by Europa’s shell of ice?

Example JPL Europa Clipper - MBSE Benefits so far

Ref: Todd Bayer and Brian Cooke, NASA JPL

- More efficient and accurate communication of technical information within project and among disciplines
 - Not limited by foreseeable levels of increasing system complexity
 - Easily integrated with existing discipline tools (MBSE is the keystone for full Model Based Engineering)

- Greater re-use and evolution of our system designs
 - 3 full mission studies in the time it usually takes for 1 or 2
 - 5 parallel configurations maintained

- More consistent, controllable generation of system metrics and normalization of risk assessment
 - Identical automated analyses are applied to all configurations and versions

- More efficient generation of project documentation
 - Ensuring consistency of documentation by drawing from same system model

- A better bridge from college education to project best practices
 - Recent graduates are arriving with knowledge of and expectation of using MBSE methods

- More complete capture of expert knowledge, lessons learned, principles
 - These things can be "baked in" to the system model

→ a more detached view on MBSE status follows
A Functions oriented View of the Vee - Example
Ref: Airbus Defence and Space Company, S. Ackva

We need many different models to characterize a system during the life-cycle. How can we make these fit together seamlessly?

A Tools oriented View of the Vee - Example
Ref: Airbus Defense and Space Company, F Autran

We have many tools in our inventory already. Do they fit together, seamlessly? Does anyone have tools to seamlessly cover the entire Vee?
MBSE is: Connections and Interdependencies
Ref.: Airbus Defense and Space Company, H. Klenk, with modifications

Interaction with other Enterprise Functions and Models

Connection of discipline specific models

Today’s MBSE Status in Summary

- Lots of pilot studies with mostly promising results
- Potentially replacing docs and enhancing continuity during life-cycle phase transitions
- Growing executives recognition of MBSE potential
- Limited MBSE trained workforces
- Many specialized and non seamless, non plug and play SE tools confuse not only executives
- Little recognition that MBSE is a key element of future “digital enterprises”

As summed up by the INCOSE Vision 2025:

Model-based systems engineering has grown in popularity as a way to deal with the limitations of document-based approaches, but is still in an early stage of maturity similar to the early days of CAD/CAE.

... and the future of MBSE?
MBSE must blend & interact with many Things

- Blend different stakeholder views (engineering, production, maintenance/servicing, cost/profitability, market needs & opportunities, time-to-market, product launch, management, etc)

- Interact with other enterprise tools and databases (eg business, design, production, logistics, supply chain, PLM) in a seamless plug and play manner

- Ensure match to different use cases, sustainability, et al

→ deal with science and art components of complex systems by also providing decision analysis support to PMs and other policy/decision makers

Example: MBSE/MBE Vision
Ref: Airbus Defense and Space, H. Klenk

Today: Document driven & standalone models

Future: Reusable, model-based engineering with virtual product development & simulation capability

MBE To-Be State
Source: NDIA MBE Final Report dated February 2011

Virtual Engineering and MBSE – Symbiosis awaiting Realization in many Fields
MBSE Long-Term Objectives

- Integration/correlation of many different insular solutions from related fields into coherent plug and play SE capability interacting with other digital enterprise functions and models.

- Supporting IT infrastructure advancements, together with PLM and others, as seamless elements - a la Google Earth!

 → A thorny path with incremental steps for years to come!

INCOSE Vision 2025 – SE Grand Challenges

MBSE is a Centerpiece

- A core body of systems engineering foundations is defined and taught consistently across academia.

- System complexity and associated risk is understood, characterized and controlled.

- Systems engineering provides the analytical framework for designing and predicting the behavior for trusted, resilient systems.

- Model-based systems engineering is a standard practice and is integrated with other modeling and simulation as well as digital enterprise functions.

- Systems engineering is recognized across industries, governments, and academia as providing significant value for innovation and competitiveness.

- Systems engineering is established as an indispensable discipline for technology assessment and policy analysis.

- Systems thinking is taught at all levels of education.
Where will MBSE be in some 10 Years?
Reference: INCOSE Vision 2025

Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying systems, and is fully integrated with other engineering models. System models are adapted to the application domain, and include a broad spectrum of models for representing all aspects of systems. The use of internet-driven knowledge representation and immersive technologies enable highly efficient and shared human understanding of systems in a virtual environment that span the full life cycle from concept through development, manufacturing, operations, and support.

But it will also have to be well integrated/related to the digital enterprise environments around it.

Digital Enterprise Hierarchies have many Layers and Stakeholders
Ref: Airbus Defense and Space, H. Klenk, modif.

Pyramid provides overview of the many elements of a MBE/MBSE strategy
Conclusions on MBSE

• MBSE has lots of potential - there is no question about its future, only about the best way forward and the pace

• MBSE needs to be embedded and correlated with other related digital enterprise functions, tools and databases and successively address science and art elements of SE

• MBSE will be helped by rapid IT advances, like cloud computing, query and reasoning technologies, smart visualizations and virtualizations, game industry advances and the “Internet of Things”

→ Near-term MBSE transition objectives:
 1. from software and tools push to SE demand
 2. towards plug & play seamlessly interacting tools and databases, better visualizations and emerging digital enterprise architectures

Outline

• A bit of History

• The emerging digital World

• The Systems Engineering World – in Context

• MBSE – Status and Future

• Summary and „Take Aways“
Conclusions and Take-aways (1 of 3)

- Advances in the transformation of enterprises to become digital are breathtaking – a major revolution driven by IT technology, efficiency and competitiveness goals at global and local scale; transformation will affect all functions, incl. SE & PM

- MBSE will become “integrated/interrelated” with other functions of the digital enterprise, especially engineering, PM/PLM, supply chain management, manufacturing

- SE and PM are crucial and highly interdependent “horizontal” enterprise integration function drivers! Efficiency and competitiveness demands will eventually force them to better align approaches, tools and databases
Conclusions and Take-aways (2 of 3)

- MBSE has made enormous strides during the past 5 years – still, it is only a beginning; years of hard work ahead!

- MBSE will advance first and fast along the “hard” (physics based) engineering elements, but will have to successively face integration/interaction with the more “soft” (human, economics and social/environment based) elements of systems

- MBSE must strive to become seamless plug & play in terms of vertical and horizontal navigation between different system levels and system constituents → Google Earth benchmark!

- Better visualizations are vital for accelerating MBSE acceptance by executives and “established” SEs

Conclusions and Take-aways (3 of 3)

- Final breakthrough for MBSE will come through product quality and efficiency advances enhancing enterprise competitiveness - and by coping with complexity management

- Which path forward will be most successful to create a more integrated seamless plug and play MBSE capability is open
 - the bottoms-up push by vendors enlarging their analysis and design tool capabilities to successively include more SE elements, or
 - the top down approaches by OEMs/Primes who create their own system frameworks and integrate bottoms-up vendor tools as they become available

- MBSE is on an acceleration path and will become the norm for System Engineers in complex product enterprises by the turn of the decade

Without doubt: “The Future of SE is Model-based” embedded in digital Enterprises
Let’s come back to our Google Model of MBSE
Two final Questions

• When someone would have told you some 20 years ago that you can have the digital Earth on your laptop and that you can navigate seamless from the holistic system Earth to your own house and onwards to your neighbors garden, your local theater, or your cottage in Alaska
What would you have replied?

• Can you in turn believe that MBSE will enable you in some 10 years to navigate from your system, (e.g. automobile, spacecraft, SoS) seamlessly down to brakes, switches, thrusters or valves and back giving you all relevant technical, functional, economics, environmental and social information to review or modify?
What will you reply today?

Is MBSE indeed the missing link in the digital Enterprise Strategy?

May be not the missing one, but certainly an important link in the digital chain of future Enterprises!
Remember SE is all about Teamwork and Leadership

Genuine Compliments to Mark and Sandy for pushing so hard on this MBSE front

Without the Insights and Initiatives of the two of you MBSE would not have come this far

Many Thanks

2/3/2014