
The Behavior Analysis Engine

Context

AUI
Analysis User

Interface

AE
Analysis Engine

EMIR
Engineering Models

Information Repository

Context

AE and

AE Implementation

XML

jython

Dynamic
Plotter socket

AUI = MagicDraw

plugins

SysML to AE
Translator

Diagram
Animator

Simulator

SysML
models

Behavior
Models

EMIR = model
repository (SVN)

Java

Java

invocation

file
system

XML

SysML

logs

logs

logs

Runner
jython

invocation

file

AE

Translator

solution/
execution

Solver

Executor/
Simulator

movie

user interface

csv

Comparing what we have and
what we planned with related work

Features/Criteria execution adaptability/learning V&V distributed

Approaches

time

continuous

variables

continuous

change

specifies

problems

non-linear

problems object-oriented high-fidelity uncertainty visual

graphic

representations multi-view

multi-view of

same model

modeling and

analysis integrated

application specific

support simulation detection diagnosis remediation other plotting analysis animation fidelity model size

time

horizon memory responsiveness for analysis

MagicDraw and plugins ordering and simple DE yes no no no yes no no yes UML/SysML yes yes yes no yes no no no ? ok no ok yes no no no no yes yes yes not bad no

Current AE + MagicDraw

supports integrated DE

and CT with temporal

constraints yes

user must

code yes yes yes yes statistical sampling yes

activity

diagrams yes yes yes no yes

user must

code

user must

code

yes, but

simple user must code ok no ok

yes, but without

feedback no verification no yes yes not bad not bad not bad no

CS modeling as designed:

EMIR/SysML + AE +

AUI/MagicDraw

supports integrated DE

and CT with temporal

constraints yes yes yes yes yes yes

uncertain variables

(including time) for

probabilistic analysis yes UML/SysML yes yes yes smart grid yes yes yes yes yes no

GUI query &

answer ok yes yes

verification &

validation yes yes yes yes

depends on

problem

and solver yes

integrated solvers

are not bad

summary DE and CT support yes yes yes yes some yes statistical sampling yes open

user must

code no yes some yes

user must

code

user must

code

user must

code

general math and

specialized control some

ModelCente

r is good good? yes no no few yes ? yes ? ?

integrated solvers

are not bad

Phoenix Technologies

ModelCenter +

MagicDraw + solvers ? yes ? yes yes ? ? ? yes UML/SysML

user must

code yes, via SysML yes no yes?

user must

code

user must

code

user must

code trade space analysis good good ok? no no verification no ? ? no ? ?

integrated solvers

are not bad

Wolfram SystemModeler

(Mathematica + Modelica

+ visual modeling) DE and CT support yes yes yes yes yes yes statistical sampling yes open

user must

code no yes

partial support for

many yes

user must

code

user must

code

user must

code

mathematical

problem solving

user must

code? no? good? yes user must code verification no yes ? yes ? not bad not well?

Ptolemy II + PTIDES DE and CT support yes yes

in some

cases? ? yes yes statistical sampling? yes open

user must

code no yes

different

applications? yes

user must

code

user must

code

user must

code

several "models of

computation"

user must

code no? good? yes

in some cases;

otherwise, user code yes yes ? yes ? ? ?

AADL ? ? ? ? ? ? ? ? ? graph ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? yes? ? ? ? ? ? ?

Simulators

DE and CT support yes yes no no some yes statistical sampling yes open

user must

code no no

yes, many

applications for

some yes no no no

user may add code for

math/control problem

solving with other

tools (e.g. matlab)

user must

code no good yes no validation some yes yes yes yes yes no (Monte Carlo)

Govt/industry analysis

tools
e.g., ASPEN, EUROPA,

SIPE, SHINE, BEAM, SCL

supports DE with

temporal constraints and

limited CT some some yes rare rare no limited some

varied but

limited no N/A yes somewhat yes no? some some user must code some ?

some but

limited some some verification some no few

not bad for

some some some not bad

COTS security tools anti-virus, snort, host-

based, penetration

testing N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A no yes limited static risk assessment N/A N/A N/A yes no? verification no? yes N/A

in some

ways yes yes in some ways

Research

modeling, analysis

some support DE with

temporal constraints and

some also support CT some some yes some few few some few none or varied no no yes

yes, usually for one

application yes some some some some rare rare rare some some

some

verification some no no no some some no

MILP (Mixed Integer

Linear Problem) solvers

like CPLEX no yes no yes yes no? no user must encode no

constraint

equations N/A N/A N/A no?

user must

encode

user must

encode

user must

encode

user must

encode user must encode N/A? N/A N/A N/A no verification no no not bad N/A no? not bad not bad

Learning tools (e.g.,

Weka) no yes no yes yes no N/A implicit ? ? ? ? yes ? no yes no no yes ? ? no? N/A yes validation? some yes yes yes yes not bad not bad

scalablevisualization

Problem solvers

System modeling &

analysis tools

modeling analysis

CS Modeling

language expressivity

How is the AE approach different?
1. More expressive modeling language

– simulators (e.g. Simulink) don’t solve problems
– problem solver models often lack fidelity from lack of the language features

• object-oriented class structures
• continuous variables, time, state change
• a variety of operators/functions (some just support logic)
• quantification (“all computers connected to the public wireless network”)

– The current AE supports these (and uncertainty to a limited degree)
– Language enables dynamic creation of constraints

(others that do this: MDS, some automated planners, APGEN?)

2. Poses a wider variety of questions on the same behavior model
– For DR scenario, simulation and scheduling:

• What-if: What events will occur and what happens to load and generation if responses are
intercepted?

• When: When do each of the events of the DR process take place?

– Also capable of planning and model checking:
• What to do: What events must execute to satisfy the constraints/achieve goals?
• Is possible: Is it possible for an execution to cause a failure?
• Is impossible: Is it impossible for an execution to cause a failure?

3. Scales well for problem size, ignoring problem complexity:
– 10K+ events
– 10K+ state variables (timelines)
– 300K+ constraints
– similar to ASPEN
– CPLEX > million constraints—we plan to integrate solvers like CPLEX

4. Integrates with multi-view modeling (SysML) with access to ontologies.

Why is an expressive language important?

We need an expressive behavior modeling language for modeling
information flow, timing, uncertainty, etc.,

Specifying meters for a scenario alternatives:
BAD, but it’s the current state-of-the-art
operator ami_meter_1_sends_last_gasp_message (

pre: meter_1_last_gasp_message = false
post: meter_1_last_gasp_message = true

)
operator ami_meter_2_sends_last_gasp_message (

pre: meter_2_last_gasp_message = false
post: meter_2_last_gasp_message = true

)
. . .
operator ami_meter_50000_sends_last_gasp_message (

pre: meter_50000_last_gasp_message = false
post: meter_50000_last_gasp_message = true

)

GOOD
class AmiMeter inherits from MeshNetworkTransceiver {

Messages messages = { LAST_GASP, READING, . . .}
. . .

}
AmiMeter meters[50000];

AUI: Posing Analysis Questions
Query:
If Load Reduction = 15MW would
grid.instability = true ? maybe

What Load Reduction would
cause grid.instability = true ?
117MW

What Load Reduction
could cause grid.instability
= true ? [9.2MW, infinity]

If Load Reduction = 15MW ,
what DR Area could cause
grid.instability = true ? {7,13,51}

Load execution data for
past 12 hours . . . done

Query: What unexpected events
caused grid.instability = true ?
expected numDrParticipants = 4200
actualNumDrParticipants = [0,12]

=
<

<=
>

>=
<>

How would you pose alternative questions
if using other systems?

• ASPEN – figure out how to change activity and/or state/resource models to ask question

• CPLEX – figure out how to change model as a system of equations and an optimization function

• Simulink – change model and write MATLAB code

• Mathematica – figure out Mathematica code

• Wolfram SystemModeler – edit model (either graphically or in Modelica) and pose question in
Mathematica.

• In our approach,

– For the AUI, a new query statement template is added to others in a text file or GUI form:

query HowMany:

parameters = // format: [<type> variable|expression <parameter name>]*

Number variable numVarParam1

Boolean expression boolExprParam2

statement = “How many ” + numVarParam1 + “ could cause ” + boolExprParam2 + “?”

statement = “For how many ” + numVarParam1 + “ is ” + boolExprParam2 + “ possible?”

– In AE, add code (2 lines for this example) to an auto-generated Java class to change the model (in
memory, not the original).

• code on next slide

– Now, this “HowMany” question can be asked of any model, for any variable in the model, and for any
expression involving those variables.

AE event/behavior/constraint language
• Adds declarative behavior language

elements to procedural Java for problem
solving.

• Classes (OO inheritance, nested classes,
leveraging Java)

• Parameters, a.k.a. variables with value
domains

• TimeVarying – a.k.a. timelines, variables
whose values are functions of time

• Dependencies (e.g., energy <- power *
duration)

• Constraints (e.g., event1.end + 5 min <
event2.start)

• Events – classes with start/end time
variables
– Effects – dependencies on TimeVarying
– Elaborations – a.k.a. conditional

decompositions, AND/OR event trees,
subactivities, subgoals, methods,
hierarchical task networks...

This example is not an actual model.

The syntax is modified to fit the screen.

class Customer:

Parameter int id
Parameter CustomerType type = Residence

Parameter bool participate = false

Parameter Meter meter

TimeVarying float load = new TimeVarying(“kV”+id)

Dependency id <- meter.id

event usePower:

Parameter float power, actualPower

Parameter DRObject drObj

Parameter time lastReport, nextReport

Parameter bool willReport

Parameter string fileName

TimeVarying float projectedLoad

Dependencies

energy <- actualPower * duration

actualPower <- power – if(participate,0,

drObj.shed(power,id))

fileName <- dataFolder + os.sep + “meter” +

id + “_” + startTime.day() + “.csv”

nextReport <- lastReport + drObj.reportPeriod

willReport <- endTime < new TimeVarying(fileName)

projectedLoad <- new TimeVarying(fileName)

Effect

load.add(power, startTime, endTime)

Elaboration

if participate meter.report(load=load)

Constraints

!participate || !willReport ||

(report.startTime >= nextReport - 2min &&

report.startTime <= nextReport + 2min)

TimeVarying (Timelines)

• TimeVaryingMap<T>
– setValue(time, value)
– unsetValue(time, value)
– plus(number, start, end)
– plus(TimeVarying)
– minus, times, dividedBy
– init(csvFileName)

• LinearTimeline<Number>
– initFrom(deltaMap)
– getDeltaMap()

• TimeVaryingMaps<T>
– init(folderName)
– init(map<csvFileName, weight>)

• Consumable<Number>
– plus(number, time)
– getDelta(t1, t2)
– getDeltaMap()
– init (deltaMap)

• TimeVaryingList<T>
– add(time, value)
– add(time, List)
– addIfNotContained(time, value)
– remove(time, value/List)
– contains(time, value)
– nthElement(time, n)

• ObjectFlow<T>
– send(time, value)
– sendIf(time, value, condition)
– receive(time, value)
– gotSomething(time)
– addListener(ObjectFlow)

ok bad good bad goodok

=
+
+

deltas

() (2) (2,1) (2) (2,1)()

(“z”) (”z”, {a:2,c:3}) (”z”, {a:2,c:3},1) (“z”,1)

c=3 p=0 r2d=2

c=3 p=0 r2d=2

c=3 r2d=2

send(t1,c) send(t4,p) send(t7,r2d)c=recv(t2)

t1 t2 t3 t4 t5 t6 t7

c=recv(t6)

step

ramp

aggregate

lists

send/
recv

discrete

Constraint Solver

Solver
1. gather constraints

2. assign new values

3. elaborate or deconstruct events

4. apply (on unapply) effects to
timelines

5. repeat

Logged output

• stats after each loop through
constraints

• all constraints

• violated constraints

• execution/solution
(events, parameter values, timelines)

• simulation – print event start/end
and state transitions in scaled time

• snapshot simulations saved
periodically during solving

logs

Dynamic Plotter
• Enthought Python

– doesn’t integrate well with Jython
(and, thus, MD)

– invoked as standalone from file or
over a socket from Java (and probably
Jython).

• options for scrolling, dynamic
resizing, frames per second, skipping
frames to catch up with simulation,
saving movie (mp4)

• does not (yet) simulate by itself, so
loads from log files are not animated

• supports projected and “live” data
– can update projections

• currently some discrepancies in
rendering from Java vs file because of
sampling and handling of null values

<show plot animation>

Dynamic
Plotter

Activity Diagram Animator

• time-scaled simulators in
Java and Python can drive

• corrects for time error by
monitoring system time

• data from log file or Solver
• max delay between event

steps

show MD animation

Dynamic
Plotter

