
 

  

Completeness of Conceptual Models Developed 
using the Integrated System Conceptual Model 

(ISCM) Development Process 

Regina M. Gonzales  
Technology, Management and Analysis Corporation 

201 Church Street, Suite 200 
Las Cruces, New Mexico 88001 USA 

regonzal@nmsu.edu 
 

Abstract.  There exists a semantic gap between 
developers and users of systems.  Requirements 
engineering is addressing this gap by introducing 
requirements methods, techniques, and processes that 
facilitate greater understanding of the customers and 
users needs.  Many of these methods and techniques 
rely on the analyst or developer to model the product 
domain.  With the complexity of systems developed 
today, this can be a formidable task.  These systems 
have multiple users with diverse needs and require 
the integration of multiple domains in order to 
develop them. 

Customers, users and developers are the stakeholders 
for a system.  Increasing the communication and 
decreasing the semantic gap between diverse 
stakeholders are the aims of the Integrated System 
Conceptual Model (ISCM) Development Process.  
This process uses a combination of elicitation 
methods and techniques.  However, the stakeholders 
create the initial models for the system based on their 
own mental models of a proposed system.  This paper 
focuses on completeness indicators proposed in order 
to regulate the ISCM process. 

CAPTURING REQUIREMENTS 

Defining a requirements elicitation process is key 
to developing a complete and consistent requirements 
specification for systems.  Most concurrent 
engineering efforts begin early while the product 
concept is still fluid and a requirements elicitation 
process is not defined.  This scenario is detrimental to 
a good project process.  If an engineer proceeds to 
design with a fluid product concept, the uncertainty 
practically ensures that the product developed does 
not meet stakeholder expectations.  The goal of a 
requirements elicitation and analysis process should 
be to develop a shared vision or concept of the system 
to be specified before a concurrent engineering 
design effort begins in earnest. 

This shared vision is often called a conceptual model 
and is an extremely useful communication tool at the 
onset of a project.  The system conceptual model 
becomes the initial mapping of the intangibly abstract 
into something more concrete.  The author refers to 

the system conceptual model as the Integrated System 
Conceptual Model (ISCM) because she wants to 
emphasize that it is an integration of multiple 
stakeholder conceptual models. 

Mental models are models belonging to individuals 
and are used to form conceptual models, which can 
evolve into a group representation of a system.  These 
conceptual models are used as a way to elicit 
complete requirements for a developing system.  
Concept of Operation (ConOp) documents use system 
conceptual models formally as a way to evaluate 
alternative development approaches and as a way to 
articulate the goals and objectives of a development 
activity. 

In order for the ISCM to be useful, it must integrate 
viewpoints of multiple system stakeholders.  As 
Wieringa (1997) states, ‘‘The hallmark of conceptual 
models is that they are conceptual structures used as a 
framework for communication between people.’’  
Once the ISCM solidifies, a further mapping to the 
requirements specification for a system is possible.  
Figure 1 illustrates the mapping of the stakeholder 
conceptual models into a single ISCM from which 
requirements analysis and specification can begin.  
Once the ISCM is created it must be iterated with the 
stakeholders until it represents a consensus system 
conceptual model and all the issues and questions are 
addressed.  This mapping represents a stepwise 
approach to capturing requirements. 

INFORMATION TRANSFORMATIONS IN 
THE ISCM DEVELOPMENT PROCESS 

Developing an ISCM requires three 
transformations as illustrated in Figure 2.  The first is 
from the stakeholders mental models into a 
stakeholder conceptual model on a piece of paper.  
There is significant research on mental models as 
they apply to existing systems including natural 
systems, e.g. physics.  To the author’s knowledge, 
there is no research on using mental models to 
generate new systems based on experience with 
multiple existing systems. 

The second transformation is from each informal 
stakeholder conceptual model to a Unified Modeling 



  

Language (UML) stakeholder model.  UML is 
considered a semi-formal representation of 
information (Darke and Shanks, 1996).  This 
transformation requires knowledge of UML.  UML is 
a language with syntax and semantics expressed 
using formal techniques (Object Management Group, 
1999).  The third transformation is from multiple 
UML stakeholder models to an ISCM.  Completeness 
indicators are proposed in this paper for a UML 
model.  These indicators can be applied to individual 
stakeholder UML models and to the ISCM. 

The ISCM development process emphasizes that the 
engineer-analyst is playing more of a facilitator role 
in developing the ISCM by integrating stakeholder 
viewpoints.  They provide structure and process but 
the content comes directly from the stakeholders.  
The ISCM development process does not rely on 
hours spent attending group meetings but rather on 
the models developed by the stakeholders and 
integrated by the analyst.  In fact, an older approach 
called the Delphi Process (Delbecq, A. L., 1975) is 
often advocated especially for high-technology 

systems.  The Delphi Process is one in 
which the model can be reviewed 
individually and contributions given to the 
facilitator.  When conflict or questions 
occur, the facilitator can decide if it is best 
addressed individually or as a group. 

Darke and Shanks (1996) present a 
framework for understanding and 
comparing viewpoint approaches.  They 
outline six components regarding viewpoint 
development, viewpoint agent, viewpoint 
representation, process model, management 
of conflicts, viewpoint integration, and the 
role of viewpoint development.  Viewpoint 
agents can be any stakeholder or non-
human agent, such as an existing database, 
that maintains and accepts responsibility for 
a viewpoint.  A single stakeholder could 
play multiple organizational roles and thus 
have multiple viewpoints. 

Viewpoints can be represented using 
informal, formal or semi-formal 
representation techniques.  The 
suitability of a particular technique 
depends in part on the role of the 
viewpoint development, i.e. 
requirements acquisition versus 
requirements modeling.  Different 
techniques also reflect different 
perspectives, i.e. data, process or 
behavior.  Informal representations allow 
requirements freedom and allow for 
incompleteness, inconsistency, 
complexities and ambiguities, but do not 
provide support for reasoning about 
requirements specifications.  Informal 
approaches do not facilitate analysis and 
comparison of viewpoints.  Darke and 

Shanks (1996) indicate that there may be a spectrum 
from informal to more formal techniques applied as a 
greater understanding of the system and its 
organizational context develop.  They assert that 
semi-formal and formal representation schemes tend 
to focus on the syntax of representations at the 
expense of their meaning and socio-organizational 
interpretation.  This balance is addressed in the ISCM 
development process by allowing the stakeholders to 
introduce the model in an informal way.  The 
facilitator then brings the stakeholders to a common 
representation by championing the semi-formal 
representation.  There is no expectation that the 
stakeholders ever master the semi-formal 
representation, but simply that they grow to 
understand the syntax. 

SYSTEM REQUIREMENTS 
CHARACTERISTICS 

Each industry specifies characteristics that a 
good requirements specification should have.  These 
characteristics are important to understand because a 

Project/
Organizational 
Forces
- cost
- resources
- politics

User Needs
- perceived
- real

Customer/
Market Forces

- cost

- features
- delivery date

Technical Reality
- competitive
- feasible
- proven
- recognized

Many Possible Technical Solutions

Integrated System Conceptual 
Model (ISCM)

Many Possible
Conceptual 
Models

Stakeholder
Experience and
Training Stakeholders

Conceptual Models

Concept /Vision Document or 
Overall Description of Requirements

Complete Requirements
Specification

Figure 1 Role of Conceptual Models in Requirements 

Stakeholder Domain
(informal)

Engineering Domain
(semi-formal)

Stakeholder
Mental Models

Stakeholder
Conceptual 

Models

Stakeholder-based
UML Models

Entity Relationship 
(ER) Models used as 
intermediate models

UML Integrated 
System 

Conceptual 
Model (ISCM)

Transformation of 
Natural Language

Figure 2 Transformations in the ISCM Development Process 



 

  

requirements specification is the goal of the 
requirements elicitation process.  In the IEEE and 
ANSI 830 Standard for Software Requirements 
Specification (SRS) (IEEE, 1994), they list the 
following as characteristics of a good SRS: Correct, 
Unambiguous, Complete, Consistent, Ranked for 
importance and/or stability, Verifiable, Modifiable, 
and Traceable. 

Similar criteria are called properties in the IEEE 1233 
Guide for Developing System Requirements 
Specification (IEEE, 1996) they include the 
following. 
• Unique Set: Each requirement should be stated 

only once 
• Normalized: Requirements should not overlap 
• Linked Set: Explicit relationships should be 

defined among individual requirements 
• Complete: Should include all the requirements 

identified by the customer, as well as those 
needed for the definition of the system 

• Consistent: Should be consistent and non 
contradictory in the level of detail, style of 
requirement statements, and in the presentation 
material 

• Bounded: The boundaries, scope, and context for 
the set of requirements should be identified 

• Modifiable: Should be modifiable 
• Configurable: Versions should be maintained 
• Granular: This should be the level of abstraction 

for the system being defined 

Kar and Bailey (1996) discuss the characteristics of 
individual requirements versus characteristics of the 
aggregate requirements set.  The characteristics they 
assign to the individual requirements include: 
Necessary, Concise, Implementation free, Attainable, 
Complete, Consistent, Unambiguous, Standard 
Constructs and Verifiable.  The characteristics they 
assign to the aggregate requirements include, 
Complete and Consistent. 

There are many other books (Davis, 1993; Pfleeger, 
1998) on requirements that enumerate similar 
characteristics.  It is widely accepted within the 
requirements engineering community that if all of the 
key stakeholders are not considered in the elicitation 
effort, the requirements are likely incomplete.  If the 
requirements specification is developed from an 
ISCM based on stakeholder input, it aids in achieving 
the other characteristics, such as Understandable, 
Consistent and Modifiable.  Developing the 
requirements specification based on a model, in 
essence a conceptual model, is the recommended 
approach of the Software Engineering community as 
discussed in the IEEE and ANSI 830 Standard for 
Software Requirements Specification (SRS) (IEEE, 
1994).  How to go about developing the model is not 
discussed in that standard.  The primary 
characteristics of complete and consistent are the 
measure for the quality of the ISCM.  The other 
characteristics, primarily understandability, are 
byproducts of the ISCM Development Process. 

UNDERSTANDING COMPLETENESS 

Each standard for requirements specifications 
(IEEE, 1993; IEEE, 1996; Kar and Bailey, 1997) 
maintain that a set of requirements should be 
complete.  Some, including the IEEE Std 1233, 
recommend ways to achieve completeness that 
amount to requirements elicitation techniques.  
However, none give a way to evaluate completeness 
or even assess relative completeness.  There is 
research under way to formalize many terms used in 
software and systems engineering.  Briand et al. 
(1996) formally define cohesion and coupling using 
graph theory.  However, there is little information on 
quantifying completeness of models, especially at the 
early conceptual phase. 

Completeness refers to wholeness or entirety of an 
object.  In this paper, completeness refers to the 
entirety of a conceptual model.  A conceptual model 
represents concepts in the real-world problem domain 
(Larman, 1998).  When referring to software 
requirements, specification completeness is also 
described as external consistency.  External 
consistency of a software specification means that it 
is consistent and meets the requirements written in 
the system specification.  However, for completeness 
of a system specification or model, external 
consistency is based on the needs of the people who 
will be using the system and the constraint envelope 
introduced by the environments in which the system 
will operate or be exposed to. 

Stakeholders are inherently inconsistent.  There are 
also problems with identifying all the right 
stakeholders and of getting adequate information 
from each of them.  Therefore, in the strictest sense, 
completeness of a conceptual model is practically 
unattainable.  However, proposed in this paper are 
operational indicators of completeness of an ISCM in 
terms of the incremental completeness of each 
stakeholder conceptual model.  Equation 1 and 2 
represent a way to think about completeness in terms 
of error associated with getting complete information 
from the stakeholders. 

Χ •represents the desired ISCM and χ represents the 
contributions of the individual stakeholder conceptual 
models.  The error (ε) is the incompleteness of the 
individual models and is a function of the modeling 
accuracy and the ability of the stakeholder to 
represent the knowledge they possess.  The error or 
incompleteness of the ISCM (Ε) is a function of the 
compromise factor (Κ) and the information missing 
(Μ) because an entire set of stakeholders is not 
included in the summation.  This equation does not 
take into account that the problem or requirements 
may change over time. 

( )[ ] Ε+±=Χ ∑n

1
εχ Eq – 1 

Μ+Κ=Ε Eq – 2 



  

S1 Σ dc
p(n)

TA

S1

m1(n)

S2 Σ dcTA

S2

m2(n)

Σ dcTA

S

MI(n) MIF(n)

β2

β1

Figure 3 Systems Model of ISCM Development Process 

The completeness indicators proposed in this paper 
become a way to gauge if the error ε for an individual 
model has leveled off.  At this point, the 
completeness indicators are not changing.  These 
indicators can also be used in the same way for the 
ISCM error Ε to know when it is time to move on in 
the requirements elicitation process with an ISCM 
that is as representative as possible given the set of 
stakeholders. 

THE ISCM DEVELOPMENT PROCESS 
SYSTEMS MODEL 

Figure 3 is a control systems diagram illustrating 
the ISCM development process.  There is a problem, 
p(n), that is introduced to various stakeholders, S1 and 
S2, and they produce a model of the problem, m1(n) 
and m2(n), with help from the analyst (A) and an 
analysis method embodied in a tool (T).  The model 
is iterated via a feedback loop with the stakeholder 
until the completeness indicators introduced in this 
research remain relatively unchanged.  There is an 
optional multiplier, β1 and β2, for weighting the 
contribution of each stakeholder.  Discrete time is 
used because it indicates that the stakeholders are in 
essence sampled at intervals instead of continuously, 
i.e. a brainstorming session with all stakeholders 
present.   

Preconditions and Distortion.  The goal of the 
ISCM Development Process described in this paper is 
to faithfully model (m) the bounds that the 
stakeholder (S) places on the problem (p).  No 
judgment is made about the correctness of these 
bounds at an early conceptual stage.  Completeness at 

this conceptual level represents a measure of the 
structure, clarity and consistency of information as 
related by the stakeholder.  There are certain 
preconditions that are assumed true at the onset of the 
process as shown in Table 1. 

The stakeholders have a relevant contribution to 
solving the problem.  However not necessarily the 
entire solution. 
The stakeholders have a unique perspective and 
bind the problem from his or her perspective. 
The analyst has reasonable training in requirements 
and in using modeling methods and tools. 
The tool and the embodied method are adequate to 
represent the problem domain. 

Table 1 Preconditions to System Modeling 
Each of these preconditions represents a body of 
research that is not addressed in this paper.  Given 
these preconditions, Table 2 illustrates further 
analysis of the elements for the error (ε) for 
individual stakeholder models.  Both address the 
noise and distortion components introduced by the 
ISCM development process. 

x(n) is the transmission error and represents the 
stakeholders’ inability to express his or her 
conceptual model (problem bounds). 
r(n) is the reception error and represents the 
analysts’ inability to receive and model what the 
stakeholder is expressing. 
f(n) is the filtering error because the tool/method is 
based on a paradigm.  Tools/methods are like off-
the-shelf filters with some ability to customize.  As 
with all filters, distortion is introduced. 
u(n) is the understanding error and represents the 
stakeholders’ ability to relate to the model as 
portrayed using the modeling tool/method when the 
model is fed back to the stakeholder. 

Table 2 Noise and Distortion Components 

Externalizing a model that embodies the knowledge 
that a stakeholder possesses requires iteration.  In the 
ISCM Development Process, the assertion that when 
prompted, stakeholders are able to formulate 
conceptual models of yet to be systems, even if they 
are incomplete, is the basis for the iteration process.  
As illustrated in Figure 3, once the initial models 



 

  

provided by the stakeholders are iterated to a point 
where the completeness of the model is at an 
acceptable threshold level, the individual models are 
integrated and the ISCM is iterated with the entire set 
of stakeholders.  Since it is difficult to precisely 
determine completeness, this paper proposes 
completeness indicators that can be used to determine 
when the iteration process has reached diminishing 
returns. 

DETERMINING COMPLETENESS 

The models are derived in the context of the 
UML translation mentioned previously, and the 
completeness indicators are evaluated in this context 
as well.  Figure 4 is an activity diagram that details 
the translation method.  Classes, packages and 
attributes are rigorously identified based on input 
from the stakeholder.  The analyst introduces 
structure, and to some degree, distortion as part of the 
method of deriving the UML class diagrams.  
Abstract classes are created to group logically 
connected entities.  The operations are not defined 
until the behavior of the system is realized with 
sequence diagrams.  At this time, the operations are 
identified based on the stakeholder scenario 
information in their conceputal model and added to 
the classes. 

Derive Class
Diagrams

Derive Use Case
Diagram

Realize Use Cases w/
Sequence Diagram

Derive State
Diagram for Classes

operations

classes

attributes

packages

use cases

extended
operations

refined
classes

refined
classes  

Figure 4 Activity Diagram of UML 
Stakeholder Model Development Method 

Based on these operations and the stakeholder 
conceptual model data the state diagrams are derived 
for the behavior of the classes.  At this stage, there 
are certain, minimal operations (events) that are 
added as demanded by the state diagram for closure 
and sequencing of states.  These operations do not 

correspond to a sequence diagram.  In summary, there 
are two places where information is added. 
• Abstract classes and packages are added to 

organize and structure the information given by 
the stakeholder 

• Event operations are added at the time the state 
diagrams are derived for closure and sequencing. 

Developing Completeness Indicators.  Four areas 
have been researched in order to derive a basis for 
evaluating the completeness of a model. 
• The things that the analyst would normally ask 

the stakeholder when evaluating a stakeholder 
conceptual model and performing the iteration on 
the models. 

• The goodness criteria or heuristics for models 
expressed in the literature that is related to 
completeness and can be quantified. 

• Other completeness or consistency indicators 
discussed in the literature pertaining to 
requirements specifications or models. 

• The model checking done by the tool used 
(iLogix Rhapsody). 

Analysts Evaluation of the UML Stakeholder 
Models.  Analysts heuristically evaluate the 
completeness of models based on their experience 
and knowledge base.  Some of the questions that an 
analyst would go back and ask of the stakeholder in 
order to derive a better model are a basis for 
formulating completeness indicators for a stakeholder 
conceptual model.  For this research using OO 
analysis as expressed using UML, some of these 
concerns include: 
• abstract classes where only one or no children 

exist; more children may be identified since 
abstract class behavior is implemented by 
children classes 

• abstract classes that are represented at the highest 
level of abstraction (i.e. not contained in a 
package) and therefore seem to need further 
structural elaboration because the model seems 
unbalanced 

• isolated parent classes for which all the 
connections are made to the child class; it may be 
possible to generalize the relationship to the 
parent 

• abstract operations that are represented by vague 
words like ‘‘involve’’ or ‘‘interact’’ require 
further elaboration 

• cases where a verb is made into a noun and 
represents a class, such as ‘‘checks performed’’ 

Goodness Indicators or Heuristics in the 
Literature.  In the user guide for UML (Booch et al. 
1999), the chapters end with a section that provides 
characteristics of a well-structured model.  There are 
other heuristics set forth in the literature as well about 
the goodness of a requirements specification 
(Kotonya & Sommerville, 1998).  There are many 
‘‘how to’’ books for modeling, but few specify 
criteria for determining goodness.  In most cases, the 



  

criteria that is set forth are difficult to measure, some 
are taken care of with good modeling practices, and a 
few pertain to completeness indicators.  An excerpt 
from Booch et al. (1999) is given below: 

“A well-structured classifier 
• Have both structural and behavioral aspects 
• Is tightly cohesive and loosely coupled 
A well-structured package 
• Is cohesive, providing a crisp boundary around 

a set of related elements 
• Is loosely coupled, exporting only those 

elements other packages really need to see, 
and importing only those elements necessary 
and sufficient for the elements in the package 
to do their job. 

• Is not deeply nested, because there are limits 
to the human understanding of deeply nested 
structures  

• Owns a balanced set of contents; relative to 
one another in a system, packages should not 
be too large or too small.” 

From these guidelines, the measure of nesting and of 
balance would contribute to indicators of 
completeness.  While nesting and balance are a 
function of both the system being modeled and the 
modeling techniques, they are useful as indicators of 
where more elaboration may be needed. 

Other Completeness Indicators in the Literature.  
Gunnar Overgaard (1999) correlates collaborations 
(sequence diagrams) to object diagrams and use 
cases.  He defines consistency by saying that all 
action sequences contained within a collaboration that 
realizes a use case should also be contained in the 
operations for a class.  In this research, the author 
uses this assertion to address the issue of operations 
that are introduced by state diagrams. 

Heimdahl and Leveson (1998) formally address 
completeness with respect to a set of criteria related 
to robustness.  A response is specified for all possible 
input and input sequences.  They also address internal 
consistency, which for their purposes is defined as a 
specification free from conflicting requirements and 
undesired non-determinism.  Their work focuses on 
modeling the requirements using Statecharts (Harel, 
1990), more specifically on the safety behavior of a 
system.  Statecharts are also used in UML to model 
the behavior of classifiers.  However, in order to 
perform the level of completeness and consistency 
checking that is performed in Heimdahl and Leveson 
the specification must be at a more mature stage than 
the requirements discovery stage that is addressed by 
this research.  The analysis they describe is better 
performed once the models are integrated and iterated 
with the stakeholder community. 

Mayr and Kop (1998) describe a technique called 
KCPM that they use for deriving models based on 
natural language requirements by formulating the 
content into structured tables.  They discuss 

incompleteness of a model as where the structured 
table does not have an entry.  This work does not deal 
with the abstract nature of the ‘things’ introduced or 
the need for more elaboration based on an unbalanced 
model.  These drawbacks may be due to the tabular 
formulation of the data.  The areas of incompleteness 
addressed in their work are multiplicity, 
quantification of nouns, and finding synonyms.  
While very structured and systematic in their 
approach, the information sought does not address 
conceptual completeness, i.e. is the entire domain 
body represented to an adequate degree of 
elaboration. 

Model Checking Done by the iLogix Tool.  Much 
of the feedback offered by the iLogix Rhapsody tool, 
as well as others, aides the modeler in constructing 
the model.  An example of this feedback is a warning 
about states with no exit transitions.  Some of the 
warnings refer to things that are nice to have, but not 
necessary, like description annotations for the various 
modeling elements.  At some point, these descriptions 
are added as the model evolves and this provides a 
glossary of the system.  One of the warnings that 
relates to the conceptual completeness and 
consistency addressed in this research, ‘‘Element with 
no relation,’’ is a strong indicator of a class that is not 
in a collaboration.  However, iLogix Rhapsody, as 
well as most other tools, does not check sequence 
diagrams. 

ILogix Rhapsody has a powerful automated code 
generation capability.  The errors and warnings are 
given in the context of animating and providing code 
generation; therefore, it is very rigorous about 
checking the model.  This feature also expects a 
certain level of system resolution that may not be 
possible at the requirements discovery stage, i.e. 
types for all attributes and arguments.  The analyst 
must use the information to define the model as much 
as possible, bearing in mind that a conceptual model 
is what is being built. 

COMPLETENESS INDICATORS 

The completeness that is being addressed by this 
research is a measure of resolution of information.  
This research does not evaluate the correctness of the 
information given by the stakeholders per se.  There 
is also the aspect of internal consistency between the 
static and behavioral views in the model.  This 
internal consistency reflects primarily on the 
completeness of the behavioral view because the 
conceptual model reflects principally the static view, 
which is more complete initially.  The scenarios 
provided by the stakeholders tend to be very sketchy 
initially when using the ISCM Development Process.  
With iterations, the scenarios become more concrete 
because the stakeholder conceptual model is better 
specified. 

Abstract Classes.  Abstract classes represent a 
generalization and have children sub-classes.  If 
abstract classes are identified and no children or only 



 

  

one child is specified then this condition is an 
indication of incompleteness.  The first proposed 
completeness indicator is the ratio of abstract classes, 
where the number of children is greater than or equal 
to two, to the total number of classes contained in the 
class diagrams.  Guidelines for identifying possible 
abstract classes include, 1) classes that are introduced 
in order to structure the class diagram view, 2) classes 
that are mentioned as generalizations by the 
stakeholder, i.e. ‘‘documents like registration 
document, grade report, etc.’’ and 3) classes that 
contain only abstract operations. 

Abstract Operations.  The second indicator of 
completeness is the ratio of all non-abstract 
operations specified in class diagrams to the total 
number of operations specified in the class diagrams.  
There are often operations specified that are clearly 
abstract, like ‘‘interact.’’  The operations for which 
the analyst cannot outline in a method (OO term) for 
realizing an operation are considered abstract.  
Identifying abstract operations is a function of the 
analyst as well as the information provided.  A 
guideline to use is that if the analyst has reservations 
on how an operation might be realized by a method, 
in the context of the problem domain, then the 
operation should be considered abstract.  Given the 
diverse composition of a group of stakeholders and 
the preconditions set in Table 1 regarding the analyst, 
if the analyst is uncertain then at least one of the 
stakeholders will have questions.  Often the details of 
implementation are not clear, but are routine in nature 
and can be elaborated later.  For example, operations 
like printing or generating a document are resolved 
enough at the conceptual level and are not considered 
abstract. 

Package Nesting.  The third indicator of 
completeness is a function of the average nesting 
value where nesting is a function of package 
containment.  A class has a nesting value of one if it 
is within the <<toplevel>> (Object Management 
Group, 1999) package, each subsequent package 
containment increments that nesting value by one.  
The average nesting is taken over all the classes in a 
UML model.  The average is calculated by summing 
the classes at the various nesting levels, multiplying 
each sum by the nesting level, then sum each of these 
values and divide by the total number of classes to get 
the average.  

The third indicator of completeness must be defined 
given the average nesting value and the standard 
deviation of that average.  It is necessary to first 
select a nesting value goal that the analyst wishes to 
achieve at this stage of system definition.  Since an 
initial ISCM definition is at an early stage and 
involves diverse stakeholders, an ideal nesting value 
of two (2) is chosen.  This ideal nesting value reflects 
the experience of the author and other analysts.  It is 
usually the case that in resolving level n in a model, 
that level n-1 is truly resolved and not likely to 
change significantly.  This nesting goal normalizes 

the average nesting value obtained and allows 
establishing a completeness indicator for nesting. 

Balance.  The forth indicator of completeness is the 
balance of a model and is based on the standard 
deviation of the average nesting value. 

Class Consistency.  All classes discussed by the 
stakeholder should be involved in some scenario that 
elaborates the behavior of the class and therefore its 
purpose.  The fifth completeness indicator is the ratio 
of all the classes that are contained in a sequence 
diagram to the number of classes contained in the 
class diagrams.  Abstract classes are included even 
though there are only instances of non-abstract 
classes specified in a collaboration when the system 
is implemented.  During conceptual modeling, the 
stakeholders tend to specify behavior for abstract 
classes using abstract operations.  During the course 
of resolving the conceptual model further, both the 
abstract classes and the abstract operations are better 
specified such that behavior can be attributed only to 
non-abstract classes. 

Operation Consistency.  All operations contained in 
classes should be in a collaboration that realizes a use 
case (Overgaard, 1999).  The sixth indicator of 
completeness is the ratio of the total messages 
specified in the collaboration diagrams to the total 
number of operations in the class diagrams. 

CONCLUSIONS 

A UML stakeholder model can be evaluated for 
conceptual completeness using completeness 
Indicators.  In this paper six indicators of 
completeness are proposed.  Based on the research 
there are aspects of a conceptual model that can be 
further defined formally in UML as quantifiable 
indicators of completeness.  The completeness 
indicators are a necessary part of regulating the ISCM 
Development Process or any process that develops 
conceptual models.  Further validation of these 
indicators is required in order to understand and 
possibly modify them such that they are providing the 
desired regulating effect. 

FUTURE WORK 

The completeness indicators developed in this 
research need to be further analyzed.  The first step 
would be to perform a Monte Carlo analysis of the 
indicators as portions of a model are removed.  This 
would provide further insight into the nature of the 
indicators, their variability, their correlation to 
expected results based on expert experience, etc.  
This would also provide the opportunity to write 
software to help extract the data required to calculate 
these indicators and automate their calculation to the 
extent possible. 

REFERENCES 
Booch, G., Rumbaugh, J., and Jacobson I., The 

Unified Modeling Language User Guide.  
Addison Wesley, 1999 



  

Briand, L. C., Morasca, S., Basilli, V. R., ‘‘Property-
based Software Engineering Measurement,’’ 
IEEE Transactions on Software Engineering, Vol 
22, No. 1, January 1996. 

Darke, P. and Shanks, G., ‘‘Stakeholder Viewpoints 
in Requirements Definition: A Framework for 
Understanding Viewpoint Development 
Approaches.’’  Requirements Engineering (1996) 
1, 88-105, 1996 Springer-Verlag London 
Limited. 

Davis, A. M., Software Requirements: Objects, 
Functions and States.  Prentice Hall, New Jersey, 
1993. 

Delbecq, A. L., Van de Van, A. H. and Gustafson, D. 
H., Group Techniques for Program Planning: A 
Guide to Nominal Group and Delphi Processes, 
Scott, Foresman and Company, Glenview, 
Illinois, 1975. 

Gonzales, R.M. and Lovelace, N., ‘‘Using 
Stakeholder Mental Models to Create an 
Integrated System Conceptual Model for 
Systems,’’ Proceedings of the eighth Annual 
International Symposium of the International 
Council on Systems Engineering, Volume 1, July 
26-30, 1998. 

Gonzales, R.M. and Wolf, A.L., ‘‘A Facilitator 
Method for Upstream Design Activities with 
Diverse Stakeholders,’’ Proceedings of the 
Second International Conference on 
Requirements Engineering, April 1996, pp. 190-
197, IEEE Computer Society Press. 

Harel, D., Lachover, H., Naamad, A., Pnueli, A., 
Politi, M., Sherman, R., Shtull-Trauring, A., and 
Trakhtenbrot, M., ‘‘Statemate: A Working 
Environment for the Development of Complex 
Reactive Systems,’’ IEEE Transactions on 
Software Engineering, Vol. 16, No. 4, April 
1990. 

Heimdahl, M. P. E., Leveson, N. G., ‘‘Completeness 
and Consistency in Hierarchical State-Based 
Requirements,’’  IEEE Transactions on Software 
Engineering, Vol. 22, No. 6, June 1996. 

IEEE Standards Board, ‘‘IEEE Std 1233-1996, IEEE 
Guide for Developing System Requirements 
Specifications,’’ IEEE Standards Collection, 
IEEE Inc., New Jersey, 1996. 

IEEE Standards Board, ‘‘IEEE Std 830-1993, 
Recommended Practice for Software 
Requirements Specifications,’’ IEEE Software 
Engineering Standards Collection, IEEE Inc., 
New Jersey, 1994. 

IEEE Standards Board, ‘‘IEEE Std 1362-1998 
(Incorporates IEEE Std 1362a-1998) IEEE Guide 
for Information Technology -- System Definition 
-- Concept of Operations (ConOps) Document,’’ 
IEEE Software Engineering Standards 
Collection, IEEE Inc., New Jersey, 1998 

Kar, P. and Bailey, M., ‘‘Characteristics of Good 
Requirements,’’ Proceedings of the Sixth Annual 
International Council on Systems Engineering, 
Vol 2, July 1996, pp. 284-291. 

Kotonya, G., Sommerville, I., Requirements 

Engineering Processes and Techniques, 1. 
Edition,  John Wiley & Sons, 1998. 

Kop, C., Mayr, H. C., ‘‘Conceptual Predesign 
Bridging the Gap between Requirements and 
Conceptual Design,’’  Proceedings of the Third 
International Conference on Requirements 
Engineering, 1998. 

Larman, C., Applying UML and Patterns: An 
Introduction to Object-Oriented Analysis and 
Design.  Prentice Hall, New Jersey, 1998. 

Object Management Group, Inc., OMG Unified 
Modeling Language Specification, Version 1.3, 
www.rational.com/uml, June 1999. 

Overgaard, G., "A Formal Approach to 
Collaborations in the Unified Modeling 
Language", UML'99 - The Unified Modeling 
Language. Beyond the Standard. Proceedings, 
Second International Conference, Fort Collins, 
CO, USA, pg. 99-115, October 1999. 

Pfleeger, S. L., Software Engineering: Theory and 
Practice, Prentice Hall, March 1998. 

Wieringa, R.J., Requirements Engineering: 
Frameworks for Understanding, John Wiley & 
Sons, New York, 1996. 

BIOGRAPHY 

Dr. Regina M. Gonzales is a Project/Site Manager at 
TMA.  She is also a College Assistant Professor at 
New Mexico State University.  Regina has worked 
and consulted in industry and government in the areas 
of requirements capture/modeling, computer/software 
design, process, project management and training for 
over 16 years.  She is the current chair of the 
Requirements Working Group within INCOSE.  She 
has a Ph.D. in Computer Engineering with a specialty 
in Requirements Engineering from NMSU, an MS in 
Computer Science from University of Colorado, an 
MS in Electrical and Computer Engineering from 
University of Arizona, B.S. in Electrical and 
Computer Engineering from NMSU. 
 


	Close: 


