
Model-based SoS Engineering

Jeremy Bryans and Claire Ingram
Newcastle University

MBSE workshop, Torrance, CA

January 2015

www.compass-research.eu

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

Systems of systems

Defining SoSs:
– Operationally and managerially independent

– Geographically distributed

– Continuously evolving

– Exhibiting emergent behaviour

Degree of central control & CS awareness are often used to
“categorise” the SoS
– Directed

– Acknowledged

– Collaborative

– Virtual

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

SoS Engineering? Vision ...

Methods & Tools for:
– Selecting constituent systems on limited evidence

– Allocating responsibilities

– Managing dependability assumptions

– Providing support for trade-off analysis

– Managing testing of implementations

Challenged by:
– Managing complexity of the constituent systems and the SoS;

– Understanding behaviours and interactions between constituent
systems;

– Communicating effectively between diverse stakeholders and
constituent systems; and

– Evidence on which to base reliance on global end-to-end behaviours.

Model-based SoS Engineering

Potential:
– Effectiveness at addressing complexity e.g. by architectural modelling

– Some industrial support already

– Support for communication between stakeholders & disciplines

Challenged by:
– Operational Independence: black boxes & wrapper derivation

– Managerial Independence: can only bound behaviours by contracts

– Evolutionary Development: need basis for re-appraisal

– Emergence: reasoning from compositions

Formally-based SoS Engineering

Potential:

– High level of rigour in analysis

– Wide range of analytic techniques: testing, model-checking, proof

– Cost-effective if well supported by tools and applied carefully to
important/risky features and if integrated

Challenged by:

– SoS need to manage imprecise and uncertain information about
constituent systems

• We can draw up contracts between constituents (and
infrastructure)

– SoS include functionality, concurrency, communication, inheritance,
time, sharing, mobility

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

COMPASS

• Comprehensive Modelling for Advanced Systems
of Systems

• EU Framework 7; October 2011 - October 2014

Traffic Management:
• Wide variety of constituent systems: some

legacy, some new
• Harsh physical environment
• Complex integration of new systems and

architectures
• Faults & Fault Tolerance
West Consulting: How can we add new/evolved
constituent systems, and be sure that they will
integrate seamlessly?

A/V/Home Automation:
• Multiple content sources, DRMs,
• Multiple devices
• Mobile and concurrent systems
Bang & Olufsen: Can we ensure
consistent “user experience” as
devices, content, DRM, etc.,
change?

Smart Grid:
• Many stakeholders with

different needs
• Frequent changes to equipment

and stakeholder needs.
• Safety cannot be guaranteed

centrally
Service Provider: Can we ensure
continuity of service and safety in
the presence of change and faults?

Emergency Response:
• Stakeholders (patients to gov’t departments)
• Human intervention required for many

interactions
• Assurance of global performance and security

properties
Insiel: Can we manage evolution to a
decentralised SoS while gaining assurance of
global properties?

Case studies

COMPASS SoS Engineering Challenges

• Independence and autonomy of constituent systems

– Constituent systems evolve at the behest of their owners

– Response: Collaborative SoS modelling by contractual (rely, guarantee)
interface specification

• Complexity of confirming/refuting SoS-level properties

– Verification of emergence

– Response: verified refinement for engineering of emergent properties;
simulation tools allow exploration for unanticipated behaviours

• Semantic heterogeneity (integrating models)

– Wide range of interacting features in models (e.g. location, time,
concurrency, data, communication)

– Response: extensible semantic basis

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

COMPASS Technology

Formal Modelling
• CML allows representation of
behavioural semantics of the SoS
• Supports contract specification
• Describes functionality, object-
orientation, concurrency, real-time,
mobility.
• Can be extended to new paradigms

process CallCentreProc = begin
…
actions
MERGE1(r) =
(dcl e: set of ERUId @ e := findIdleERUs();
(do

e = {} -> DECISION2(r)
|
e <> {} ->
(dcl e1: ERUId @ e1 :=

allocateIdleERU(e, r); MERGE2(e1, r))
end)) …

process InitiateRescue = CallCentreProc
[| SEND_CHANNELS |] RadioSystemProc
[| RCV_CHANNELS |] ERUsProc

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate

idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue

info to ERU

: Radio System

: Process

message

«Fault Activation»

: Fault 1 activation

«erroneous»

: Drop message
«Error Detection»

: Error 1 detection

«Failure Event»

: Target not attended

«Start Recovery»

: Start Recovery 1

ERU1 : ERU

: Service

rescue

: Receive

message

«End Recovery»

: End Recovery 1

Initiate Rescue Fault Activation [Fault 1]

«Fault Activation View» {faultsOfInterest = Complete Failure of the Radio System}

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate

idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue

info to ERU

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate

idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue

info to ERU

: Radio System

: Process

message

«Fault Activation»

: Fault 1 activation

«erroneous»

: Drop message
«Error Detection»

: Error 1 detection

«Failure Event»

: Target not attended

«Start Recovery»

: Start Recovery 1

: Radio System

: Process

message

«Fault Activation»

: Fault 1 activation

: Process

message

«Fault Activation»

: Fault 1 activation

«erroneous»

: Drop message
«Error Detection»

: Error 1 detection

«Failure Event»

: Target not attended

«erroneous»

: Drop message
«Error Detection»

: Error 1 detection

«Failure Event»

: Target not attended

«Start Recovery»

: Start Recovery 1

ERU1 : ERU

: Service

rescue

: Receive

message

«End Recovery»

: End Recovery 1

ERU1 : ERU

: Service

rescue

: Receive

message

«End Recovery»

: End Recovery 1

[idle ERU]

[no idle

ERU]

[higher

criticality]

[lower

criticality]

Semi-formal Modelling
• SysML used for SoS modelling
• Guidelines for Requirements,
Architecture, Integration
• SoS modelling profiles
• Architectural patterns and
extensible frameworks

Tool-supported Analysis
• Model-checker
• Automated proof
• Static Fault Analysis
• Test generation
• Simulation
• Model-in-Loop Test
• Exploration of design space

COMPASS SoS Technologies

Technology Method
/Tool

SoS-ACRE Requirement Eng. M

COMPASS AF Framework M

Integration Framework M

Refinement Framework M

Interface Pattern M

Test Pattern M

Contract Pattern M

Traceability Pattern M

Fault Modelling Architectural
Framework

M

CML Language M

Formal Refinement M

Compositional Analysis M

Technology Method
/Tool

Compositional Design M

Specialised Test Strategies T

Symphony Interpreter T

Symphony Model Checker T

Symphony Theorem Prover T

Symphony RT-Tester T

Symphony Test Automation T

Symphony Co-Simulation Engine T

Symphony Linkage to Executable T

Fault Analysis Tool T

COMPASS Approach

COMPASS APPROACH

COMPASS
Ontology

COMPASS
Architectural
Framework

COMPASS
Processes

COMPASS Ontology

System of
Systems

Constituent
System

System

COMPASS Architectural Framework

Interface
Definition
Viewpoint

Protocol
Definition
Viewpoint

Interface
Integration
Viewpoint

Context
Definition
Viewpoint

Requirement
Context

Viewpoint

…

COMPASS Processes

Architecture
Guidelines

Requirement
Engineering

Process

Systems
Integration

Process

Architectural
Framework

Process

Competency
Process

…

Viewpoints use modelling elements from ontologyProcesses use viewpoints from architectural framework

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

SoS Engineering Example

• Cross-border traffic corridor
• Incident in one country may require corridor across two

countries
• Need to define contract to which each country adheres
• Driver perceives no difference

Requirements Engineering: SoS-ACRE

• Guidelines for specification & management of
requirements for SoS
– Ontology for model-based reqt. engineering

– Framework containing eight viewpoints

– Processes for reqt. engineering and management

• SoS-ACRE requirements engineering process:
1. Identify source elements of requirements

2. Identify the constituents and stakeholders of the SoS

3. Define the SoS requirements

4. Examine the SoS requirements in context

5. Identify scenarios for validating the requirements

Border#Traffic#Requirements!

!

!

!

!

!

«Requirement Description View»

RDV Border Traffic Requirements
«requirement»

id#
R01

Border Traffic SoS Requirements

«requirement»

id#
R02

txt
The SoS should allow uninterrupted traffic
flow of vehicles across borders, where
roads are present connecting two
countries.

Uninterupted traffic between borders

«requirement»

id#
R03

txt
When an incident occurs close to the country
boundary, a cross-border speed corridor
must be created to ensure traffic speed
decreases at a steady rate.

Allow cross-border traffic corridor

«requirement»

id#
R04

txt
The managment of a given country's traffic system
should be performed by that country.

Allow country to evolve traffic management
independantly

«requirement»

id#
R05

txt
When an incident occurs within a country's border,
it must be able to take measures to ensure traffic
speed reduce approaching the incident.

Individual country must be able to manage traffic
flow

«requirement»

id#
R06

txt
There should be communication
between the Traffic Management
Systems of any two countries.

Cross border communication

«requirement»

id#
R06

txt
A country must respond to a request to
implement traffic speed reductions on roads
entering a neighouring country.

Must respond to request from neighbour

«requirement»

id#
R08

txt
A country should be able to sense road traffic
conditions and detect when measures should be
taken.

Sensing of road traffic conditions

«requirement»

id#
R09

txt
Countrys should be able to influence the speed
of road traffic in its own borders.

Influence road traffic

Requirement Definition

Border#Traffic#Requirements!

!

!

!

!

!

«Requirement Description View»

RDV Border Traffic Requirements
«requirement»

id#
R01

Border Traffic SoS Requirements

«requirement»

id#
R02

txt
The SoS should allow uninterrupted traffic
flow of vehicles across borders, where
roads are present connecting two
countries.

Uninterupted traffic between borders

«requirement»

id#
R03

txt
When an incident occurs close to the country
boundary, a cross-border speed corridor
must be created to ensure traffic speed
decreases at a steady rate.

Allow cross-border traffic corridor

«requirement»

id#
R04

txt
The managment of a given country's traffic system
should be performed by that country.

Allow country to evolve traffic management
independantly

«requirement»

id#
R05

txt
When an incident occurs within a country's border,
it must be able to take measures to ensure traffic
speed reduce approaching the incident.

Individual country must be able to manage traffic
flow

«requirement»

id#
R06

txt
There should be communication
between the Traffic Management
Systems of any two countries.

Cross border communication

«requirement»

id#
R06

txt
A country must respond to a request to
implement traffic speed reductions on roads
entering a neighouring country.

Must respond to request from neighbour

«requirement»

id#
R08

txt
A country should be able to sense road traffic
conditions and detect when measures should be
taken.

Sensing of road traffic conditions

«requirement»

id#
R09

txt
Countrys should be able to influence the speed
of road traffic in its own borders.

Influence road traffic

Requirements in Context

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

Architectural Modelling

• When defining a SoS architecture, follow
COMPASS architectural approach
– patterns and guidelines

• Use collections of modelling patterns to define
SoS structure and behaviour

• COMPASS architectural modelling approach also
includes guidelines for SoS integration and
development lifecycles

• In border traffic example, we define the
behaviour required by each country’s TMS – using
the interface contract pattern

Architectural Modelling

• Identifying contract conformance

1

1

1

1

bdd [Contract Conformance View] BorderTraffic SoS

«block»
«SoS»

Country A - B SoS Scenario

«block»
«Constituent System»

Country A TMS

«block»
«Constituent System»

Country B TMS

«block»
«Contractual SoS»

BorderTrafficSoS

«block»
«Contract»

Country TMS

1

1

1

1 «conformsTo»

«conformsTo»
«conformsTo»

Architectural Modelling

• Defining connections and interfaces between
systems

CConnV [Contract Connections View] BorderTraffic SoS

«block»
«Contractual SoS»

BorderTrafficSoS

«Contract»

CountryA : Country TMS

«Contract»

CountryB : Country TMS

«Contract»

CountryA : Country TMS

«Contract»

CountryB : Country TMS

tmsIF

tmsIF

Architectural Modelling

• Defining the functionality of the contract

!

1..*1

CDV [Contract Definition View] CountryTMS Operations

«block»
«Contract»

operations
determineSpeedCorridor
createSpeedCorridor
disableSpeedCorridor
calcNeighbourTarget
calcDistance
isNeighbourNeeded
neighbourRequest
neighbourOk

values
id
nId
nationalSpeedLimit
acts

Country TMS

«block»
«Operation»

parameters
(startLoc:int, distance:nat)

postcondition
forall a in set elems RESULT @
(actMap(a).loc >= startLoc and actMap(a).loc <= distance+startLoc) and
RESULT not in set currCorridors

precondition
len actSeq > 1

return
RESULT:Corridor

determineSpeedCorridor

«block»
«Operation»

parameters
(corr:Corridor, target:nat)

postcondition
forall a1, a2 in set elems corr @ (a1 <> a2 =>
(actMap(a1).loc > actMap(a2).loc => actMap(a1).disp > actMap(a2).disp)) and
corr in set currCorridors

precondition
forall a in set elems corr @ a in set elems actSeq and
target < nationalSpeedLimit
and corr not in set currCorridors

return
()

createSpeedCorridor

«block»
«Operation»

parameters
corr:Corridor

postcondition
forall a in set elems actSeq @ (actMap(a).disp = nationalSpeedLimit)
and corr not in set currCorridors

precondition
forall a in set elems corr @
(actMap(a).disp < nationalSpeedLimit)
and corr in set currCorridors

return
()

disableSpeedCorridor

«block»
«Operation»

parameters
startLoc:int, target:nat, distance:nat

postcondition
RESULT > target

precondition
true

return
RESULT:nat

calcNeighbourTarget

«block»
«Operation»

parameters
targetSpeed :nat

postcondition
true

precondition
targetSpeed <= nationalSpeedLimit

return
RESULT:nat

calcDistance

«block»
«Operation»

parameters
startLoc:int, distance:nat

postcondition
RESULT = not(exists ha in set elems actSeq @
actMap(ha).loc > (startLoc + distance))

precondition
true

return
RESULT:bool

isNeighbourNeeded

1..*1

Current model of loctation

means only works in one

direction

!

1..*1

CDV [Contract Definition View] CountryTMS Operations

«block»
«Contract»

operations
determineSpeedCorridor
createSpeedCorridor
disableSpeedCorridor
calcNeighbourTarget
calcDistance
isNeighbourNeeded
neighbourRequest
neighbourOk

values
id
nId
nationalSpeedLimit
acts

Country TMS

«block»
«Operation»

parameters
(startLoc:int, distance:nat)

postcondition
forall a in set elems RESULT @
(actMap(a).loc >= startLoc and actMap(a).loc <= distance+startLoc) and
RESULT not in set currCorridors

precondition
len actSeq > 1

return
RESULT:Corridor

determineSpeedCorridor

«block»
«Operation»

parameters
(corr:Corridor, target:nat)

postcondition
forall a1, a2 in set elems corr @ (a1 <> a2 =>
(actMap(a1).loc > actMap(a2).loc => actMap(a1).disp > actMap(a2).disp)) and
corr in set currCorridors

precondition
forall a in set elems corr @ a in set elems actSeq and
target < nationalSpeedLimit
and corr not in set currCorridors

return
()

createSpeedCorridor

«block»
«Operation»

parameters
corr:Corridor

postcondition
forall a in set elems actSeq @ (actMap(a).disp = nationalSpeedLimit)
and corr not in set currCorridors

precondition
forall a in set elems corr @
(actMap(a).disp < nationalSpeedLimit)
and corr in set currCorridors

return
()

disableSpeedCorridor

«block»
«Operation»

parameters
startLoc:int, target:nat, distance:nat

postcondition
RESULT > target

precondition
true

return
RESULT:nat

calcNeighbourTarget

«block»
«Operation»

parameters
targetSpeed :nat

postcondition
true

precondition
targetSpeed <= nationalSpeedLimit

return
RESULT:nat

calcDistance

«block»
«Operation»

parameters
startLoc:int, distance:nat

postcondition
RESULT = not(exists ha in set elems actSeq @
actMap(ha).loc > (startLoc + distance))

precondition
true

return
RESULT:bool

isNeighbourNeeded

1..*1

Current model of loctation

means only works in one

direction

Architectural Modelling

• Defining behaviour and ordering

!

CPDV [Contract Protocol Definition View] CountryTMS

NEW_INCIDENT CORRIDOR RE_CHECK

CLEAR_CORRIDOR

Incident

NEIGHBOUR_REQ_INIT NEIGHBOUR_CORR_CREATED

Neighbour Behaviour

CountryTMS

NEW_INCIDENT CORRIDOR RE_CHECK

CLEAR_CORRIDOR

Incident

NEW_INCIDENT CORRIDOR RE_CHECK

CLEAR_CORRIDOR

NEIGHBOUR_REQ_INIT NEIGHBOUR_CORR_CREATED

Neighbour Behaviour

NEIGHBOUR_REQ_INIT NEIGHBOUR_CORR_CREATED

[not neighbourNeeded]/newCorr :=

determineSpeedCorridor(sensors(s).loc,

d);createSpeedCorridor(newCorr, t)

[neighbourNeeded]/newCorr :=

determineSpeedCorridor(sensors(s).loc, d);

createSpeedCorridor(newCorr, t);

calcNeighbourTarget(sensors(s).loc, t, d);

neighbourRequest!id!nId!ntarg

/incidentClear.l

[[neigh]]/disableSpeedCorridor

(corr); neighbourOk!id!nId

/neighbourRequest.nId.id?t -> d := calcDistance(t); newCorr :=

determineSpeedCorridor(0, d); createSpeedCorridor(newCorr, t)

/neighbourOk.nId.id -> disableSpeedCorridor(corr)

[[not neigh]]/disableSpeedCorridor(corr)

/inIncident?l?t -> dcl d :nat := calcDistance(t)

Patterns and Frameworks

• Modelling patterns for SoS
– Architectural patterns: centralised, service-oriented,

reconfiguration control, supply chain, …

– Enabling patterns: interface definition, interface
contracts, testing, …

• Architectural frameworks
– Domain-specific: music streaming (B&O)

– Specific modelling activities: Fault Modelling AF

• Use COMPASS AF Framework to define patterns
and AFs

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

Formal Modelling

• CML – COMPASS Modelling Language –
developed for modelling SoS

• Can model data, functionality, event ordering
and communication

– extensible

• Range of formal analysis techniques

• Tools developed for translation from SysML to
CML

Symphony Tool Platform
• Analyse cross border emergent
behaviour
• Simulate execution of model
• Proof obligations generated
• Theorem proving

Analysing the Model

process CountryTMS =
begin
…
actions
BEHAVIOUR= NEW_INCIDENT

[]
NEIGHBOUR_REQ

NEW_INCIDENT = inIncident.myId?l?t ->
(dcl d : nat := calcDistance
(t, nationalSpeedLimit) @

CORRIDOR(l, t, d))

CORRIDOR = l : int, t: nat, d:nat
@ ACT_STATUS;c:Corridor :=det; …

…
@ BEHAVIOUR

End

process CountryA = CountryTMS(theAId,
theBId, limitA, actCorrA)

process CountryB = CountryTMS(theBId,
theAId, limitB, actCorrB)

process BorderTrafficSoS =
CountryA [|interface|]
CountryB

NEW_INCIDENT CORRIDOR

RE_CHECK

inIncident.myId?l?t -> d : nat :=
calcDistancet, nationalSpeedLimit)

NEIGHBOUR_REQ

c : Corridor := d;…

…

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

The Symphony Tool Platform

Model-based Validation and Verification

• Interpreter and RT-Tester used for
requirement validation

• Theorem prover and model checker used for
property verification

• Static fault analysis allows FMEA and fault tree
analysis

• External links allow distributed
SoS engineering

Outline

• Systems of systems (SoS)

• Model-based SoS Engineering

• The COMPASS Project
– The COMPASS SoS Engineering Approach

– Requirements Engineering

– Architectural Modelling

– Formal Modelling

– Verification and Analysis

– Fault Modelling

• Applying Fault
Modelling
Architectural
Framework

• Shows the fault,
error, failure
chain and how
these affect the
SoS

• Blocks,
dependencies
and diagrams
stereotyped as
part of a SysML
fault modelling
profile

Fault Modelling

CC : Call Centre : Radio System ERU1 : ERU

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Process
message

«Fault Activation»

: Fault 1 activation

«Erroneous ...

: Drop message

«Failure Event»

: Target not attended

«Error Detection»

: Error 1 detection ...

«Start Recovery»

: Start Recovery 1

: Service
rescue

: Receive
message

«End Recovery»

: End Recovery 1

Initiate Rescue Fault Activation [Fault 1]

«Fault Activation View» {faultsOfInterest = Complete Failure of the Radio System}

CC : Call Centre : Radio System ERU1 : ERU

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Process
message

«Fault Activation»

: Fault 1 activation

«Erroneous ...

: Drop message

«Failure Event»

: Target not attended

«Error Detection»

: Error 1 detection ...

«Start Recovery»

: Start Recovery 1

: Service
rescue

: Receive
message

«End Recovery»

: End Recovery 1

CC : Call Centre

: Start rescue

: Find idle ERUs

: Allocate
idle ERU

: Divert ERU

: Log diversion

: Start rescue

: Wait

: Send rescue
info to ERU

: Radio System

: Process
message

«Fault Activation»

: Fault 1 activation

: Process
message

«Fault Activation»

: Fault 1 activation

«Erroneous ...

: Drop message

«Failure Event»

: Target not attended

«Error Detection»

: Error 1 detection ...

«Erroneous ...

: Drop message

«Failure Event»

: Target not attended

«Error Detection»

: Error 1 detection ...

«Start Recovery»

: Start Recovery 1

ERU1 : ERU

: Service
rescue

: Receive
message

«End Recovery»

: End Recovery 1

[idle ERU]

[no idle

ERU]

[higher

criticality]

[lower

criticality]

For the rescue

the ERU was

diverted from

Fault Modelling

• FMAF also includes views
for:
• Fault activation
• Erroneous behaviour

processes and scenarios
• Fault tolerance

structures
• Recovery procedures

Conclusions

• Large set of usable outputs
• Based on an extensible approach
• Gain large benefits from both semi-formal and

formal modelling
– Significant progress in this area

• A unified model-based approach promotes
consistency, rigour, traceability, validation and
verification

• Join thecompassclub.org !

research into model-based techniques for
developing, analysing and maintaining SoSs

thecompassclub.org

www.compass-research.eu

claire.ingram@ncl.ac.uk

jeremy.bryans@ncl.ac.uk

@_Claire_Ingram

@JWBryans

