

Model-based SoS Engineering

Jeremy Bryans and Claire Ingram **Newcastle University**

MBSE workshop, Torrance, CA

C O M PASS

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

Systems of systems

Defining SoSs:

- Operationally and managerially independent
- Geographically distributed
- Continuously evolving
- Exhibiting emergent behaviour

Degree of central control & CS awareness are often used to

"categorise" the SoS

- Directed
- Acknowledged
- Collaborative
- Virtual

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

SoS Engineering? Vision ...

Methods & Tools for:

- Selecting constituent systems on limited evidence
- Allocating responsibilities
- Managing dependability assumptions
- Providing support for trade-off analysis
- Managing testing of implementations

Challenged by:

- Managing complexity of the constituent systems and the SoS;
- Understanding behaviours and interactions between constituent systems;
- Communicating effectively between diverse stakeholders and constituent systems; and
- Evidence on which to base reliance on global end-to-end behaviours.

Model-based SoS Engineering

Potential:

- Effectiveness at addressing complexity e.g. by architectural modelling
- Some industrial support already
- Support for communication between stakeholders & disciplines

Challenged by:

- Operational Independence: black boxes & wrapper derivation
- Managerial Independence: can only bound behaviours by contracts
- Evolutionary Development: need basis for re-appraisal
- Emergence: reasoning from compositions

Formally-based SoS Engineering

Potential:

- High level of rigour in analysis
- Wide range of analytic techniques: testing, model-checking, proof
- Cost-effective if well supported by tools and applied carefully to important/risky features and if integrated

Challenged by:

- SoS need to manage imprecise and uncertain information about constituent systems
 - We can draw up contracts between constituents (and infrastructure)
- SoS include functionality, concurrency, communication, inheritance, time, sharing, mobility

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

COMPASS

- Comprehensive Modelling for Advanced Systems of Systems
- EU Framework 7; October 2011 October 2014

Case studies

A/V/Home Automation:

- Multiple content sources, DRMs,
- Multiple devices
- Mobile and concurrent systems

Bang & Olufsen: Can we ensure consistent "user experience" as devices, content, DRM, etc., change?

Smart Grid:

- Many stakeholders with different needs
- Frequent changes to equipment and stakeholder needs.
- Safety cannot be guaranteed centrally

Service Provider: Can we ensure continuity of service and safety in the presence of change and faults?

Traffic Management:

- Wide variety of constituent systems: some legacy, some new
- Harsh physical environment
- Complex integration of new systems and architectures
- Faults & Fault Tolerance

West Consulting: How can we add new/evolved constituent systems, and be sure that they will integrate seamlessly?

Emergency Response:

- Stakeholders (patients to gov't departments)
- Human intervention required for many interactions
- Assurance of global performance and security properties

Insiel: Can we manage evolution to a decentralised SoS while gaining assurance of global properties?

COMPASS SoS Engineering Challenges

- Independence and autonomy of constituent systems
 - Constituent systems evolve at the behest of their owners
 - Response: Collaborative SoS modelling by contractual (rely, guarantee)
 interface specification
- Complexity of confirming/refuting SoS-level properties
 - Verification of emergence
 - Response: verified refinement for engineering of emergent properties;
 simulation tools allow exploration for unanticipated behaviours
- Semantic heterogeneity (integrating models)
 - Wide range of interacting features in models (e.g. location, time, concurrency, data, communication)
 - Response: extensible semantic basis

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

COMPASS Technology

Semi-formal Modelling

- SysML used for SoS modelling
- Guidelines for Requirements, Architecture, Integration
- SoS modelling profiles
- Architectural patterns and extensible frameworks

Formal Modelling

- CML allows representation of behavioural semantics of the SoS
- Supports contract specification
- Describes functionality, objectorientation, concurrency, real-time, mobility.
- Can be extended to new paradigms

Tool-supported Analysis

- Model-checker
- Automated proof
- Static Fault Analysis
- Test generation
- Simulation
- Model-in-Loop Test
- Exploration of design space

COMPASS SoS Technologies

Technology	Method /Tool
SoS-ACRE Requirement Eng.	M
COMPASS AF Framework	M
Integration Framework	M
Refinement Framework	M
Interface Pattern	M
Test Pattern	M
Contract Pattern	M
Traceability Pattern	M
Fault Modelling Architectural Framework	M
CML Language	M
Formal Refinement	M
Compositional Analysis	M

Technology	Method /Tool
Compositional Design	M
Specialised Test Strategies	Т
Symphony Interpreter	Т
Symphony Model Checker	Т
Symphony Theorem Prover	Т
Symphony RT-Tester	Т
Symphony Test Automation	Т
Symphony Co-Simulation Engine	Т
Symphony Linkage to Executable	Т
Fault Analysis Tool	Т

COMPASS Approach

Viewpoints use modelling plements fuger very lowers from architectural framework

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

SoS Engineering Example

- Cross-border traffic corridor
- Incident in one country may require corridor across two countries
- Need to define contract to which each country adheres
- Driver perceives no difference

Requirements Engineering: SoS-ACRE

- Guidelines for specification & management of requirements for SoS
 - Ontology for model-based reqt. engineering
 - Framework containing eight viewpoints
 - Processes for reqt. engineering and management
- SoS-ACRE requirements engineering process:
 - 1. Identify source elements of requirements
 - Identify the constituents and stakeholders of the SoS
 - 3. Define the SoS requirements
 - 4. Examine the SoS requirements in context
 - 5. Identify scenarios for validating the requirements

Requirement Definition

Requirements in Context

COMPASS

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

- When defining a SoS architecture, follow COMPASS architectural approach
 - patterns and guidelines
- Use collections of modelling patterns to define SoS structure and behaviour
- COMPASS architectural modelling approach also includes guidelines for SoS integration and development lifecycles
- In border traffic example, we define the behaviour required by each country's TMS – using the interface contract pattern

COMPASS

Identifying contract conformance

 Defining connections and interfaces between systems

Defining the functionality of the contract MPASS

Defining behaviour and ordering

Patterns and Frameworks

- Modelling patterns for SoS
 - Architectural patterns: centralised, service-oriented, reconfiguration control, supply chain, ...
 - Enabling patterns: interface definition, interface contracts, testing, ...
- Architectural frameworks
 - Domain-specific: music streaming (B&O)
 - Specific modelling activities: Fault Modelling AF
- Use COMPASS AF Framework to define patterns and AFs

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

Formal Modelling

- CML COMPASS Modelling Language developed for modelling SoS
- Can model data, functionality, event ordering and communication
 - extensible
- Range of formal analysis techniques
- Tools developed for translation from SysML to CML

Analysing the Model

COMPASS


```
process CountryTMS =
begin
  actions
  BEHAVIOUR= NEW INCIDENT
            NEIGHBOUR REQ
   NEW INCIDENT = inIncident.myId?l?t ->
        (dcl d : nat := calcDistance
        (t, nationalSpeedLimit) @
                   CORRIDOR(1, t, d))
   CORRIDOR = 1 : int, t: nat, d:nat
      @ ACT STATUS;c:Corridor :=det; ...
   M REHAVIOUR
End
process CountryA = CountryTMS(theAId,
            theBId, limitA, actCorrA)
process CountryB = CountryTMS(theBId,
            theAId, limitB, actCorrB)
process BorderTrafficSoS =
             CountryA [|interface|]
             CountryB
```


Symphony Tool Platform

- Analyse cross border emergent behaviour
- Simulate execution of model
- Proof obligations generated
- Theorem proving

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

The Symphony Tool Platform

Model-based Validation and Verification

COMPASS

Proof Obligation

Symbolic Model Checking

Distributed

- Interpreter and RT-Tester used for requirement validation
- Theorem prover and model checker used for property verification

Static fault analysis allows FMEA and fault tree analysis

Static Fault Analysis Plugin

External links allow distributed
 SoS engineering

- Systems of systems (SoS)
- Model-based SoS Engineering
- The COMPASS Project
 - The COMPASS SoS Engineering Approach
 - Requirements Engineering
 - Architectural Modelling
 - Formal Modelling
 - Verification and Analysis
 - Fault Modelling

Fault Modelling

COMPASS

- Applying Fault Modelling Architectural Framework
- Shows the fault, error, failure chain and how these affect the SoS
- Blocks, dependencies and diagrams stereotyped as part of a SysML fault modelling profile

Fault Modelling

COMPASS

- FMAF also includes views for:
 - Fault activation
 - Erroneous behaviour processes and scenarios
 - Fault tolerance structures
 - Recovery procedures

Conclusions

- Large set of usable outputs
- Based on an extensible approach
- Gain large benefits from both semi-formal and formal modelling
 - Significant progress in this area
- A unified model-based approach promotes consistency, rigour, traceability, validation and verification
- Join thecompassclub.org!

claire.ingram@ncl.ac.uk > 9 @ Claire Ingram jeremy.bryans@ncl.ac.uk

C O M P A S S

research into model-based techniques for developing, analysing and maintaining SoSs thecompassclub.org

www.compass-research.eu