Integrating Reasoning With SysML

Henson Graves
Outline

- Engineering tasks where automated reasoning is needed and is feasible
- Representing engineering questions as questions about a SysML model
- Embedding SysML into a logical framework
- Engineering problems as logic problems
- Examples of reasoning
- Recommendations for the SysML specification
tasks where automated reasoning is feasible

- Verification of a system capability (or requirement satisfaction)
 - Can an aircraft under specific operating conditions loiter in an area for specific time duration.

- Verification whether a design change invalidates design constraints
 - Adding a connection to the electrical system may violate electrical system constraints
 - Adding a pump to a system which is not consistent with the pump specification

- Logic can also be used to justify computational results
 - The weight computed from a model is correct in any implementation
Embedding SysML into a logical framework

SysML
- Classes & properties
- Composite structure
- Behavior

Class Diagrams

OWL
- Classes & properties correspond to a fragment of FOL
- Decidability
- Rich class constructors
- Individuals

Type Theory

FOL
- Quantifiers
- Nary-predicates
- Functions

Type theory
- Contains a higher order logic
- Set theory like abstraction
Example: Checking Whether Aircraft Operating Condition Implies Loitering Condition

```
par [Package] System_Context [AV Motion]

- block Operator
  - Attribute flightCommands: cmd

- block PhysicalEnvironment
  - Attribute wind: wind

- block AirVehicle
  - Attribute rateOfMotion: Rate

```

1. ConstraintProperty avMotion
 - Constraints
 - motion = function (flightCommands, wind)
 - wind
 - motion

Presentation for the INCOSE Symposium 2012, Rome, Italy
Embedding a Class Model in DL and FOF

SysML

Description Logic (OWL)

Pump ⊑ MechanicalDevice

Dom(conn) = Tank

Range(conn) = Pump

First Order Logic

∀ x. Pump^x(x) implies MechanicalDevice^x(x)

∀ x ∀ y. Tank^x(x) and conn^x(y) implies Pump^y(y)
Embedding a Structure Diagram in Logic

Parts
Water \(\subseteq \) hasOxygentAtom(1).Oxygen

\(\forall x \ \exists y. \ Water(x) \implies \text{hasOxygentAtom}(x,y) \)

Connections
What one wants is that the oxygen part is connected to the hydrogen part

\(\forall x. \ Water(x) \implies x.\text{hasOxygen}^{^\wedge}.\text{connectbond} = x.\text{hasHydrogen}^{^\wedge} \)

Water \(\subseteq \)
Water{\text{hasOxygentAtom}^{^\wedge}.\text{connectbond}, \text{hasHydrogen}^{^\wedge}}
Translating Engineering into Logic Problems

A Model translates to an axiom set

Questions about model translate to questions about axioms

- Is the model (axiom set) consistent
- Can a statement be added to the model (axiom set) without making it inconsistent
- What do all of the interpretations look like, do they look like what was intended
Taking Advantage Of Results From Logic

- In examples we show changes to model imply inconsistency

- Inconsistency
 - Thing = NoThing
 - Conjunction of axioms = false
 - \{x : f(x) = true\} = NoThing

- Realize details of axiom system make a lot of difference regarding decidability
Example: Checking Whether Connecting a Device to the Electrical System is OK

- **Source block constraint**
 - sum of all connections must be less than 3.

- **A connection is a path connection**
 - not just the direct connections to A, B, and C

- **A connection of NC to C violates Source constraint**
Example: Adding An Incompatible Pump To a System

- Pump can only be connected to components of type B.

- Pump to a component A where A and B are disjoint, the connection violates the original model.

- To use the pump model, the assumption must be modified as this assumption is incompatible with Pump assumptions.
SysML Recommendations

- Additions to SysML
 - Add DL class constructions
 - Add individuals
 - Add “function call” to block diagrams

- Formal semantics should be part of the SysML specification

- Find axioms for behavior

- Redo the SysML Metamodel to have meta-classes for Model, BDD, IBD,…