

Capitalizing on Systems Engineering
Jason J. Sherey

ICTT, Inc.
100 East Campus Drive, Terre Haute, IN 47802

(812) 232-5968 sherey@ictt.com

Copyright © 2006 by Jason Sherey. Published and used by INCOSE with permission.

UML are trademarks of the Object Management Group, Inc.
Systematica, Uncover The Pattern, Harvest The Pattern, Gestalt Rules, and Return on Variation are trademarks of System Sciences, LLC.

Abstract. Project managers often find it difficult to justify allocating significant resources

and schedule to systems engineering tasks when “real” engineering has to be done. With ever-
decreasing time to market demands, systems engineering continually loses out to design,
integration, and test. A new method of systems engineering called Pattern-Based Systems
Engineering (PBSE) enables companies to transfer portions of systems engineering costs out of
project specific budgets and into company capital asset accounts. Such a change in accounting
provides a series of benefits that include improved documentation and management of core
corporate intellectual property, best practices, and standards as well as not having to reserve as
much precious project money on tasks that need constant re-justification to product development
managers with typically constrained budgets. This paper reviews PBSE, relevant accounting
standards, and how much of systems engineering can be performed as a company-wide capital
asset development program instead of as project overhead.

The Current Situation
Justifying Systems Engineering in Project Budgets. Systems engineering is sometimes
described as a way of reducing risk to product development and support areas such as:

• Project Schedule,
• Life Cycle Cost,
• Integration and Test, and
• Product Performance (ICTT 2005b).

Most of these cost impacts, however, occur after product development phases and during
support phases whose costs are often reported in completely different organizational accounts
(Blanchard et al. 1998). The effects of not performing enough systems engineering are therefore
not very visible to the product manager planning development budgets. This creates an “iceberg”
effect in which the project manager figures a small allocation to systems engineering is all that is
needed while the hidden yet much larger costs of maintenance, distribution, market share losses
due to poor performance, and other life cycle support costs are ready to cripple the company
(Blanchard 1998).

Arguments that explain that while program costs are spent mostly towards the end of the life-
cycle the costs are actually committed based on the work very early in the program when most of
the systems engineering is performed can be used to clarify the need for systems engineering
(Blanchard 1998). However, systems engineering costs are usually accounted for in an overhead
expense account in typical Work Breakdown Structures (WBS) that also includes costs for
project management (DOD SMC 2001). When looking at the rest of the WBS, it is very difficult

not to reallocate hours from overhead activities like project management and systems
engineering to the large number of accounts that apply to specific technologies and component
work or typical trouble accounts like integration and test.

No matter how much numerical proof is gathered to validate an explicit and direct link
between systems engineering and the reduction of life cycle cost and/or improved product
performance and market acceptance, it still will be very difficult to overcome the human
tendency of project managers and business executives to fight fires and allocate money needed
for systems engineering to other WBS accounts.

Product Line Pressures. While developing one successful product at a time is hard enough,
today’s economy dictates that a company must be able to introduce a set of similar products into
various markets at the same time. In order to be successful, a company needs to strive towards
commonality and configurability in their products and development processes (Lehnerd et. al.
1997).

Most companies usually try to solve the need for product commonality by institutionalizing
“Best Practices” or company-wide standards. Often written and followed blindly, these
standards don’t allow for the intricacies of each project (Reinertsen 1997). Typically, each
market introduction has its own product development teams. Additionally, each market has its
own needs and pressures for different features. Given intense schedule and cost pressures, each
project will characteristically compromise the standards they are required to follow. Even with
good intentions to follow up with a more complying product, the development team for the next
version will face the same pressures, and will eventually yield, to improve on that market’s
unique solutions and features. Therefore, even if the “Best Practices” had correct advice and
design patterns, the set of product configurations in a given product line or portfolio tend to
fragment into completely different designs and therefore completely different products (ICTT
2005a).

Standard
Designs

pressure

Figure 1: Market Segments Fragment Design Standards (ICTT 2005a)

The “Best Practices” and standards are typically inflexible due to the nature of the work that
produced them in the first place. Once a company realizes the need for commonality, they
usually commission work to develop “best practices” and standards from the experiences of
successful engineers and project managers. Unfortunately, this effort is often a one-time task to

pressure
pressure

Market
Segment

Product
Configuration

Product Product
Configuration Configuration

Market
Segment

Market
Segment

capture current knowledge and practice. By definition, a new product will require some change
to previous work, which instantly applies the market pressures previously mentioned. Therefore,
the “Best Practices” and standards become out of date and difficult to manage entire product
lines towards commonality.

A seemingly simple solution to this problem is to constantly manage and improve the
standards, which requires a team of “Best Practices” consultants to actively maintain the
standards. These staff members are often considered secondary team members while a project is
on the line to develop a new product before an upcoming deadline (Babcock et. al. 2002).
Project managers find it increasingly difficult to even work with the consultants to improve the
standards, as they wonder why they should spend their project’s money on non-project
discussions and issues. This opinion eventually manifests itself into the reduction of non-project
specific company overhead to provide each individual project more resources. After all, the
product development projects are the ones directly providing profit.

The effects. The end result, then, is that companies have a difficult time performing the
necessary planning and analysis for each product by not allocating enough resources to systems
engineering tasks. Nor are they very successful at enforcing or at least influencing commonality
through “Best Practices” or design standards. Given the typical high variance of individual
project outcomes (Reinertsen 1997), is it any wonder why it is so common to see products in
similar portfolios or product lines have such a lack of commonality that they use different parts
for the same functions (Lehnerd 1997)?

Pattern-Based Systems Engineering (PBSE)
The Solution. Systematica™, the systems engineering methodology this paper references,
provides a process and meta-model that helps to both reduce systems engineering effort on a
project basis as well as provide a better strategy on managing common corporate knowledge
such as “Best Practices,” design standards, and “lessons learned.” The meta-model, summarized
at a high level in Figure 2, captures the information relevant to any system or product’s needs,
requirements, and designs (ICTT 2005c).

Figure 2: Systematica™ Informal Meta-Model (ICTT 2005c)

The use of the meta-model provides a company with the benefits of Model-Based Systems
Engineering (MBSE) as opposed to normal prose methods. MBSE helps to more clearly
understand, catalog, model, analyze, and even simulate a system’s requirements and designs
(INCOSE 2005a). While this paper does not intend on reviewing the meta-model in detail, it
includes standard systems engineering concepts such as Systems, Features, Interfaces, States,
Input/Outputs, and Design Components, as defined below (ICTT 2005c):

• Architectural Relationships: A relationship that summarizes the architectural
significance of a set of interactions between systems.

• Class Hierarchy: A General-Special hierarchy, in which each progressive layer is
more specialized case of the layer above it.

• Containment Hierarchy: A Whole-Part hierarchy, in which each progressive layer is
a part of the layer above it.

• Design Component: A Physical System that is within a Subject System’s Physical
System Containment Hierarchy and to which is allocated Functional Roles.

• Feature: A collection of Functional Interactions that has marketable value or provides
a valuable service.

• Functional Interaction: An interaction of Systems, expressed as an external
(outcome) relationship in which at least one system affects the state of another
system.

• Functional Role: The behavioral description (and therefore a Logical System) of a
part played by a System in a Functional Interaction’s relationship.

• Input/Output: That which is externally exchanged between interacting systems.
• Interface: The association of a System with a set of its Functional Interaction(s),

Input/Output(s), Architectural Relationship(s), and System(s) of Access.

• Logical System: A system identified solely by its externally viewable behavior or
responsibility.

• Physical System: A system identified solely by its physical identity or make-up.
• State: The condition of a system that determines its interactive behavior, viewed

externally from the system.
• System: A collection of interacting components.
• System of Access: A System providing the means of access for interactions between

other Systems.
While MBSE provides certain benefits, Systematica™ combines it with a Class Hierarchy

concept to create a methodology called Pattern-Based Systems Engineering (PBSE). Using the
very same meta-model, an abstract model can be generated by “uncovering” the common
requirements and design models of two or more similar systems. This abstract, reusable model is
called a pattern, and is described with exactly the same concepts defined above. An inheritance
model can then be constructed and audited such that any modeled item in a specialized class can
be examined if it and its related concepts have an abstract origin in the relevant pattern. This
paper does not intend to describe the referenced PBSE process, depicted in Figure 3, in detail,
but a brief summary follows (ICTT 2005a).

Figure 3: PBSE Pattern Pyramid (ICTT 2005a)

The pyramid in Figure 3 represents a Class Hierarchy of system or product models. A
system or product in any of the layers of the pyramid is represented by the meta-model
referenced earlier. The bottom layer of the pyramid includes the requirements and design
models that are specific enough that the resulting specifications can be followed to build a
product or system configuration. The second layer in the pyramid as shown in Figure 3
represents complete models, described with the referenced meta-model, that capture the common
aspects of the configurations in the bottom layer similar enough to be part of the same product
line or system family. The top layer includes complete models, again described with the very
same meta-model, that capture the common aspects, both requirements and design, across all of
the product lines or system families of a company (ICTT 2005a).

The process by which product or system configurations on the bottom level are abstracted
into product line or system family patterns or by which product line or system family models are
abstracted into core system patterns is called Uncover the Pattern™ (UTP). This process
requires active pattern management to ensure the pattern includes the most up-to-date

commonalities of its configurations.
The process by which a new product line or system family model is created from a core

system pattern or by which a new product or system configuration is created from a product line
or system family pattern is called Harvest the Pattern™ (HTP). This process involves creating a
configuration by starting with a pattern and explicitly managing the consistencies between the
two.

Organizationally, the PBSE process can be depicted as in Figure 4.

Figure 4: PBSE Organization Summary (ICTT 2005a)

A small group of experts, labeled the “Core Pattern Systems Engineering Group” in Figure 4
own, update, and manage the patterns in all but the bottom level of the pyramid. The larger
group of systems engineers become the ‘”Systems Factory” Organization.’ This group quickly
configures the patterns into models that represent solutions meeting the needs of a new product
and/or market segment (ICTT 2005a).

PBSE and Project Budgets. Given fully managed patterns of product line systems, system
engineers in product development projects are freed to focus solely on the valuable new ideas,
requirements, architectural considerations, trade space decisions, and designs that are specific to
the product introduction and market segment. One could call the resultant process “Systems
Engineering by Exception” due to the parallels of the management philosophy called
“Management by Exception (Bazley et. al. 2004).” The supplied patterns act as the planned
budget, and the differences between it and the needed product description are the areas needing
systems engineering attention by the product development team.

The PBSE process does not suggest blindly following a pattern and perform no systems
engineering at all during projects. However, the initial needs analysis and concept discovery
processes can be done relative to the patterns provided. The pattern can act as a filter by
identifying those needs and concepts of the new system that do not fit the company’s core
technology and product understandings. The remaining needs and concepts should be
considered the major risk areas of the project and mitigated by focusing the project systems
engineering effort on them.

PBSE impacts the budgets of projects by playing to the previously discussed tendencies of
project managers. Patterns and systems engineering are more clearly understood as risk
management tools and thus are more justifiable. In addition, PBSE allows much of the work of

systems engineering to be done by pattern managers and accounts not directly tied to the project.
Only resources needed to analyze the actual and value-added differences between the core
product line system and the potential product are required to be allocated in the project’s budget.

PBSE and “Best Practices.” Just like “Best Practices,” PBSE captures core technology and
product knowledge and intends to distribute them for use in future product development projects.
There are, however, two major differences between patterns and “Best Practices.” First, patterns
are abstractions, and second, they are actively used to manage risk in individual projects.

The standard method of implementing “Best Practices” is to develop some cataloging system
with searching capabilities. Then, trade studies, white papers, successful design standards and
patterns, and “lessons learned” are faithfully added to the company-wide database. Development
processes are also updated such that project managers and engineers are required to review this
database at the beginning of a project to mitigate risks of repeating previous mistakes and to
attempt to manage towards commonality between products. The long lists of “Best Practices,”
standard designs, and “lessons learned” become very difficult to sift through even with advanced
searching mechanisms. Additionally, even if information is actually uncovered that is relevant to
the new project, it is often written in a manner that is difficult to understand how it directly
impacts the tasks at hand (ICTT 2005a).

The UTP™ process alters this strategy by abstracting the “Best Practices,” design standards,
and “lessons learned” into an actual model of requirements, designs, and configuration rules that
should be common across similar products or systems. The resulting pattern is modeled and
viewed in the exact same language and manner as the models of specific product or system
configurations with the major differences being some features and components being optional
and required performance and design parameters having allowed value ranges instead of specific
numbers. A valuable and useful intellectual property asset arises from the process as the pattern
is a model-based specification of both common requirements and designs of the essence of core
product ideas in a product line or product lines across an entire company. For instance, a
Generic Lawn Mower Pattern would be a complete requirements and design model of what the
Acme Lawn Mower Company considers all lawn mowers should be. The UTP™ process
reviews each product development project, abstracts the lessons, practices, and models, and
makes any updates to the patterns that may be relevant and helpful to future projects. The
difference between PBSE and typical “Best Practice” implementations is that a new project
would use the updated patterns as the starting point of its modeled-based requirements and
designs of new product in the product line or family. There would be no sifting through and
interpreting old “lessons learned,” white papers, design standards, or “Best Practices,” as they
are already folded into the pattern by the Core Pattern Systems Engineering Group. Performing
the UTP™ and HTP™ processes catapults a company into the often sought yet rarely achieved
“learning organization” category (ICTT 2005a).

The second major differentiating trait of PBSE is the use of patterns to manage risk in
specific product development projects. As the model-based requirements and designs of a
specific product or system configuration are developed, they are checked to see how they
conform to the appropriate patterns. PBSE employs a simple set of auditing rules called the
Gestalt Rules™ using Class Hierarchy and inheritance concepts:

1. Every component class in the candidate model must be a subclass of a parent
superclass in the pattern—no “orphan classes”.

2. Every relationship between component classes must be a subclass of a parent
relationship in the pattern, and which must relate parent superclasses of those same

component classes—no “orphan relationships”.
3. Refining the pattern superclasses and their relationships is a permissible way to

achieve conformance to (1) and (2) (ICTT 2005a).
These three simple rules lead to a valuable concept known as Return on Variation ™ (ROV).

The Gestalt Rules™ determines how the requirements and design of a new or potential product
differ from those of the core pattern. The incremental revenue and expenses can be determined
to derive ROV™ as seen in Figure 5.

Incremental Expenses C

Figure 5: Calculating Return on Variation™ (ICTT 2005a)

The combination of the application of the Gestalt Rules™ and the Return on Variation™
analysis helps project managers explicitly manage whether each configuration variation with
respect to its pattern:

1. Is truly value-added and should be kept and integrated into the pattern for future
projects,

2. Is value-added for this project only but shouldn’t be part of the pattern for future
projects, or

3. Violates company standards, adding unnecessary risk without adding value, and
therefore the model should be brought back into compliance.

During HTP™, only the configuration of the pattern and fixing any disapproved variations
are applicable to project specific accounts, while the update to the pattern can be billed to non-
project accounts.

Accounting For Pattern Management Costs
Patterns as Capital Assets. While it has been shown that PBSE can solve some important
systems engineering justification, product line commonality, and intellectual property issues, it is
understandable that companies would be hesitant to spend the significant resources required to
create and manage the patterns. Company-wide overhead expense accounts are usually already
considered too large and are frequent first-line targets for cost-cutting measures. However,
consider these aspects of PBSE:

• Pattern management costs are significant,
• Patterns are reusable across more than one product/project and therefore are an asset

used throughout an enterprise,
• With the right process implementations, patterns maintain their use over time, and
• Patterns can be used to directly aid and improve revenue producing product

development efforts.

C1 C3

Incremental Revenue

C2 New Variation

With these uld seem reasonable to regard patterns as capital assets. This

ounting Standards Board (FASB)

e
able to regard patterns as capital assets is to prove a direct link to revenue producing efforts. A

 traits in mind, it wo
would allow the expenses for pattern creation and management to be depreciated, spreading the
investment across several years. In addition, including general patterns as capital assets could be
an excellent way of showing more corporate value in the company’s financial statements. Of
course, there are some accounting standards and precedents that need to be considered in order to
validate the idea that patterns can be regarded as capital assets.

Relevant FASB Statements. Unfortunately, the Financial Acc
have not provided standards statements and guidance on how to book pattern management
expenses. The intent of this paper, then, is to review past FASB statements to suggest how to
handle pattern management expenses.

The first relevant FASB statement is FASB Statement #2, which describes how to account
for research and development (R&D) costs. R&D projects are so prone to failure, that it is
considered unlikely that any investment in R&D can be directly associated with any revenue.
Therefore, FASB suggests booking all R&D costs into overhead expenses until the costs are
directly associated with revenue producing efforts (FASB 1974).

FASB Statement #86 seems a little more useful since it is regarding software development
costs. Patterns, of course, typically are created, managed, and stored electronically, which may
help a company apply this statement to pattern management costs. Again, FASB is aware of the
significant risks of software development, and so it also suggests recording those costs as R&D
expenses as well. However, it says once a working model and detail design of the software can
prove technical feasibility, then development costs afterwards can be capitalized. Maintenance
and customer support should still be considered overhead expenses (FASB 1985).

FASB Statement #142 applies to intangible assets, which seems applicable to the intellectual
property aspects of PBSE. Some example Intangible Assets that can be capitalized are customer
contact lists, patents, and copyrights. Unfortunately, it is difficult to prove expected use, specific
fair value, level of maintenance required to obtain the expected cash flows, and the effects of
obsolescence and technological advances on the overall value of the intangible asset. Most
companies are wary of these problems and choose to take the conservative approach in not
listing such assets in their financial statements so as to prevent the possibility of presenting an
inflated corporate value (FASB 2001).

Patterns can be easily construed as intangible assets, making FASB Statement #142 the most
applicable standard. However, due to the reluctance of most companies to use the statement, it is
best to take an indirect approach. Because patterns are complex models that include needs,
requirements, and designs, special software is required to automate the PBSE process. In fact,
there are several modelling tools available that help automate modelling in standards such as
Unified Modelling Language™ (UML) (INCOSE 2005b). Patterns can be thought of as a way to
customize these tools so that they better reflect the PBSE process and enforce the use of the
patterns throughout the company. Training for the customized tools becomes less focused on
how to generate UML™ models, but how to view and configure the already provided pattern
models. By considering pattern management as a software customization task, FASB Statement
#86 can be applied. A very useful side effect of this interpretation is that it greatly improves the
probability of proving the generic UML™ tool’s technical feasibility. For, typical product
engineers are not expert modellers. Customizing these tools with the generic pattern allows a
company to transfer strategies from “teaching modelling to teaching the model (ICTT 2005a).”

Pattern Management and Revenue Producing Efforts. The most important threshold to b

helpful strategy in proving such a link is to commission a separate project whose objective is to
continually customize the software modeling tools by maintaining patterns that reflect current
core corporate product and technology knowledge. Creating a separate project or program for
this effort is important in order to use current process infrastructures to advertise, deploy, and
support the patterns internally. The project manager for the pattern management project would
be held to the same standards as any typical product development project manager: the
customization of the software must satisfy and be used by the project’s targeted customers. The
customers and stakeholders for the pattern management project could include the following
organizations or departments:

• Marketing,
• Business development,

nagement, and
opment project teams.

Eac o holders can directly use the patterns in the customized
softwar o s:

 to RFP’s,
opment and Engineering,

rnatives, and
g of a product or system’s requirements and design.

Sta r evelopment project, to
ensure t se for
rev

 valued. Having a separate project commissioned to manage and deploy patterns as

odels and views?

uction tasks?

ions?

 previous questions.

• Business ma
• Individual product devel
h f these customers and stake
e t help with the following revenue producing task
• Review of product offerings across market segments,
• Selling product features and capabilities,
• Identification of new markets to enter,
• Reducing market entry redundancy,
• Parsing, understanding, and responding
• Communicating with Business Devel
• Integrating of lessons learned and best practices,
• Identifying project risks,
• Analysing technology trade space and design alte
• Jump starting the modellin
nda d project reviews would be held, as with any normal product d
tha the patterns and software customizations are being managed towards feasible u

enue producing tasks by the project’s stakeholders. A company’s deployment and support
mechanism could be employed to actually implement and verify the impacts to revenue
production.

Valuing Pattern Assets. In addition to proving a link to revenue production, capital assets must
be able to be
software customizations helps in this aspect of accounting as well. Project managers and
accountants could use the following questions to determine the value of the patterns and software
customizations:

• How much would each of the project’s customers be willing to pay for use of the
pattern m

• How long would each of the project’s customers find the pattern models and views
useful in their revenue prod

• How many times would each customer use each pattern “product” or “service” during
that time?

• How many product or systems could be developed using the patterns and software
customizat

• How much pattern “maintenance” would be needed to continue the pattern’s value as
determined in the

Giv
which help be capitalized.

ons are appropriate subjects of

thus rendering the patterns obsolete?

Deprec ti
that capital asset valuation and life span properties apply as stated above. For example, with the

as building

In review, the following can be concluded:
1. Current strategies for justifyin s engineering allocations in project

pport to actually allow for proper systems

2.
 across product lines and portfolios.

atterns.

Alexander, Christopher, Notes On The Synthesis Of Form
Babcock, D. and Morse, L., Managing Engineering and Technology, 3rd Edition, Prentice Hall,

Blanchard, Benjamin S., System Engineering Management, John Wiley & Sons, Inc., 1998.

en the pattern management project scenario, each of the above questions are legitimate,
s underscore the idea that patterns can

Pattern Life Spans. All capital assets have life spans that indicate how long costs can be
depreciated. Patterns and their associated software customizati
life span determining questions. For example, consider the following questions an accountant
could reasonably find answers to regarding patterns:

• How often do new initiatives, technological advances, or market shifts change an
understanding of the company’s products,

• Given the company’s culture and managerial and executive support, how long will
the patterns be used?

ia ng Patterns. It also appears reasonable to apply depreciation rules to patterns, given

pattern management project scenario in mind, the project could actually keep track of revenue
resulting from the usage of the patterns and software customizations based on the impacts on its
customers’ revenue production. The standard Current/Total Gross Revenue ratio could be then
used to depreciate a pattern’s value. If this method is too complex to measure for a given
company, the simple economic life straight line approach also would be appropriate.

Similar Capital Assets. In addition to meeting the above capital asset properties, patterns are
used in the PBSE process in similar fashions as accepted capital assets such
blueprints and jigs, tools, molds, and dies of proven technologies. The “Systems Factory”
Organization in Figure 4 uses the patterns and software customizations to quickly configure
value-added product or system configurations with managed commonality much like a factory
uses molds and dies to repeatedly form products with the same shape.

Conclusions

g significant system
budgets rarely garner enough su
engineering and risk management.
“Best Practices” and other current corporate knowledge capture techniques are not
effective in managing commonality

3. Pattern-Based Systems Engineering better incorporates and manages core company
intellectual assets into reusable requirements and design models called p

4. These patterns can be used as capital assets to justify moving portions of systems
engineering costs from project budgets to corporate capital expense accounts.

5. With the proper interpretations and implementation, pattern management can comply
with accounting standards to allow pattern capitalization considerations.

References
, Harvard University Press, 1964.

2002.
Bazley, J. et. al., Accounting: Information For Business Decisions, Thomson South-Western,

2004.

Blanchard, B. and Fabrycky, W., “Systems Engineering and Analysis”, Prentice Hall, 1998.
gham, thBri E. and Ehrhardt, M., Financial Management: Theory and Practice, 11 Edition,

tals,

Fin ard, Statement of Financial Accounting Standards No. 2:

Fin nancial Accounting Standards No. 86:

ICTT, Inc., “Patterns-SE Class”, February 2005.

ICT on 1.6.2, July 2005.
orking Group (MDSDWG) web site,

es/modelingtools/mdsdwg.aspx

Thomson South-Western, 2005.
Department of Defense Systems Management College, Systems Engineering Fundamen

Defense Acquisition University Press, January 2001.
ancial Accounting Standards Bo
Accounting for Research and Development Costs, October 1974.
ancial Accounting Standards Board, Statement of Fi
Accounting for the Costs of Computer Software to Be Sold, Leased, Otherwise Marketed,
August 1985.

Financial Accounting Standards Board, Statement of Financial Accounting Standards No. 142:
Goodwill and Other Intangible Assets, June 2001.

ICTT, Inc., “SE Class Intro”, February 2005.
T, Inc., “Systematica Abbreviated Glossary”, versi

INCOSE Model Driven System Design W
http://www.incose.org/practice/techactiviti , 2005.

 web site, INCOSE Tools Database Working Group (TDWG)
http://www.incose.org/practice/techactivities/modelingtools/tdwg.aspx, 2005.
nerd, A. and Meyer, M., The Power of Product Platforms, The Free Press, 1997. Leh

Rog Improvement”

proach to Systems

Sch , “Requirements Statements Are Transfer Functions: An Insight from

Sch s Impact”, SAE

She f

Jas stems engineering company.
He practices, documents, teaches, and hel T’s Systematica™ Methodology. He
has modeled patterns for a variety of sy g engines, tractors, trucks, software,

Reinertsen, Donald G., Managing the Design Factory, The Free Press, 1997.
ers, G. and Schindel W.D., “Methodologies and Tools Supporting Continuous
Journal of Universal Computer Science, March 2000.

Schindel, W. and Smith, V., “Results of Applying a Families-of-Systems Ap
Engineering of Product Line Families”, SAE International, Technical Report 2002-01-3086,
November, 2002.

Schindel, William D., “Does Our SE House Have a Foundation?”, INCOSE Crossroads of
America Chapter technical program presentation, Peoria, IL, May 22, 2002.
indel, William D.
Model-Based Systems Engineering”, Proceedings of INCOSE 2005 Symposium, July, 2005.
indel, William D., “System Engineering: An Overview of Complexity’
International, Technical Paper 962177, October 1996.
rey, Jason J., “A New Method to Justify Systems Engineering”, INCOSE Crossroads o
America Chapter Fall Mini-Conference, Fort Wayne, IN, 2004.

Biography
on J. Sherey is a Senior Systems Engineer for ICTT, Inc., a sy

ps develop ICT
stems, includin

business processes, manufacturing systems, and guidance systems. Jason has earned an M.S. in
Systems Engineering and is finishing an M.S. in Engineering Management from Southern
Methodist University. He also has a B.S. in Electrical Engineering from Rose-Hulman Institute
of Technology. He is currently the president for the INCOSE Crossroads of America Chapter,
which covers much of the Indiana and Illinois area.

http://www.incose.org/practice/techactivities/modelingtools/mdsdwg.aspx

	The Current Situation
	Pattern-Based Systems Engineering (PBSE)
	Accounting For Pattern Management Costs
	Conclusions
	References
	Biography

