
27th Annual INCOSE International Symposium (IS 2017) 
Adelaide, Australia, July 15-20, 2017 

Case Study: Agile SE Process for Centralized SoS 
Sustainment at Northrop Grumman 

 

Rick Dove 
Paradigm Shift International 

rick.dove@parshift.com 

Bill Schindel 
ICTT System Sciences 

schindel@ictt.com 
 
 
 

Copyright © 2017 by Rick Dove and Bill Schindel 
Published and used by INCOSE with permission. 

Abstract. In 2015 Northrop Grumman’s GCSS-J Systems Engineering group in Mclean, Virginia, 
supporting the DISA GCSS-J PMO, had been sustaining and evolving a critical information 
service portal for 12 independent user groups accessing 22 independent systems. This web-based 
portal is a centralized Systems-of-Systems (SoS) hub, dealing with unpredictable 
independent-system changes, mitigating immediate-priority security needs, and replacing 
uncontrollable obsolescence of COTS software elements – all the while deploying new capability 
in six month increments requested by expectant users. The systems engineering process combines 
elements of Scrum, and contract waterfall requirements simultaneously on three release instances, 
one in development, one in accreditation test, and one in deployed use – with a wave-like transition 
among the three instances every six months. The process had six years of effective employment 
and evolution, winning praise from GAO and users alike. Most notable is the real-time control 
model for re-prioritizing work-in-process, the intimate involvement of customer and users in the 
agile systems engineering process, and the never-ending evolution with all life-cycle stages in 
simultaneous activity. 

Introduction 
An INCOSE project-in-process is seeking a generic Agile Systems Engineering Life Cycle Model 
(ASELCM). The project reviews effective agile systems engineering (SE) processes in three-day, 
on-site, structured-analysis workshops; and develops case studies to support the eventual life cycle 
model. This article is one of those case studies. Companion case studies range across software, 
hardware, and firmware agile SE processes, and include (Dove, Schindel, Scrapper 2016, Dove, 
Schindel, Hartney 2017, Dove, Schindel 2017). 
This case study is based on the three-day workshop held August 26-28, 2015, that analyzed a 
six-year-mature agile systems engineering (SE) process employed by Northrop Grumman’s 
Global Combat Support System – Joint (GCSS-J) group in Herndon, Virginia. The GCSS-J 
process, supporting the DISA GCSS-J PMO, sustained and evolved functional capability for a 
military-critical centralized systems-of-systems web-hub that enables 12 independent military 
user communities access to 22 independent data sources, depicted in Figure 1.  
 

mailto:rick.dove@parshift.com
mailto:schindel@ictt.com


 
 

Notable process concepts that will be discussed include: 

• Intimate stakeholder involvement in 
the SE process. 

• Asynchronous and simultaneous life 
cycle stage activity, in never-ending 
system growth and evolution. 

• Hybrid Scrum/Waterfall/Wave 
process model integration, in 
contract conformance. 

• CMMI level 5 procedure discipline, 
providing seamless new-release 
operational stability. 

• Awareness and mitigation of 
external environment evolution. 

• Real-time optimal process-control 
model, for re-prioritizing 
development-increment activity and 
acting on feedback. 

The process to be described went live in 2009 to replace a waterfall process initiated in 1996 that 
took too long to evolve new capabilities. The process, depicted in Figure 2, decouples 
back-to-back Scrum-based six-month development increments from subsequent six-month phases 
of accreditation (government security test) and deployed operation. Development starts with a 
five-day planning session, and utilizes one or two 10-day Z sprints following the four 20-day 
development sprints. Z sprints are dedicated to defect correction and baseline stabilization. Four 
development sprints is typical, but three- and five-sprint releases occur on occasion. GCSS-J 
employs about 60 people on the program. 
Process effectiveness had been demonstrated consistently over six years in seamless cutover of 
new capability every six months. The effectiveness of this process is marked by a US Government 
Accountability Office (GAO) congressional report, citing it as one of “seven investments [that] 
were successfully acquired in that they best achieved their respective cost, schedule, scope, and 
performance goals (GAO 2011).” 

Overview 
Systems engineering life cycle stages and processes formed the process analysis framework. It is 
neither expected nor necessary that workshop-analyzed systems engineering processes utilize the 
15288 (ISO/IEC/IEEE 2015) process framework, but the 15288 standard provides an analysis 
framework that encompasses generic systems engineering activities, regardless of what they may 
be called. 

 
Figure 1. Centralized System-of-System hub as 

web-portal for accessing 22 independent databases. 



 
 

Asynchronous and simultaneous life-cycle stage and process activity is a hallmark of effective 
agile systems engineering processes, as 
modeled in Figure 3. In Figure 2 the 
Development cycle functions implicitly as 
depicted in Figure 3, while the four 
simultaneous release-status levels function 
explicitly as simultaneous stages of 
Development, Production, Utilization, and 
Retirement.  
Systems and Software Engineering — Life 
Cycle Management — Part 1: Guide for Life 
Cycle Management (ISO/IEC 2010) 
recognizes six “commonly encountered” 
system life cycle stages. Figure 3 adds a 
seventh life-cycle stage, Research, as a 
critically necessary element of effective 
agile systems engineering life cycle models, 
as will be seen later.  
Counter to the implication that a progression 
through stages is sequentially expected, 
(ISO/IEC 2010, p 32) clearly accommodates 
asynchronous and simultaneous activity in 

any and all stages with this clarification: “…one can jump from a stage to one that does not 
immediately follow it, or revert to a prior stage or stages that do not immediately precede it. … one 

 
Figure 3. Purposes for each Life Cycle Model 

stage, adapted from (ISO/IEC 2010, p 14), with 
added Research stage. 

 
Figure 2. Yellow path depicts development-decoupled single-release waterfall progression. 

Green path depicts three active releases using common automated daily build and test for new 
development, operational patching, and security updates. Development sprints start with a 
½-day meeting that combines a Preliminary Design Review (PDR) for the new sprint and a 

Critical Design Review (CDR) for the prior sprint. 



 
 

applies, at any stage, the appropriate life cycle processes, in whatever sequence is appropriate to 
the project, and repeatedly or recursively if appropriate.” 
Agile systems engineering processes are justified and effective when it is expected that the 
engineering environment and activities will be subject to changes that affect the ongoing 
development effort throughout the project.  
A framework for characterizing the general/high-level dynamic nature of the engineering 
environment provides guidance for what must be accommodated in five categories: 
capriciousness, uncertainty, risk, variation, and evolution (CURVE). This framework was 
introduced in (Dove and LaBarge 2014) as UURVE, changed here to CURVE by replacing 
Unpredictability with Capriciousness as it provides a more descriptive acronym. 
GCSS-J characterized their CURVE environment as follows: 
Capriciousness/Unpredictability (unknowable situations): 

• External data sources change their services at will. 
• COTS (Common Off The Shelf) software upgrades deprecate existing interfaces. 

Uncertainty (randomness with unknowable probabilities): 
• Software and/or hardware may go end-of-life at any point. 

Risk (randomness with knowable probabilities): 
• May not be able to meet 15-day schedule for delivery of security fixes. 

Variation (knowable variables and variance ranges): 
• Number of security vulnerabilities to address varies greatly week-to-week. 
• Development man-hours available for capability evolution in competition with higher 

priority patches and security updates. 
Evolution (gradual successive developments):  

• As technology changes, the program must port existing capability to new technology. 

Enabling, Facilitating, and Sustaining Agility 
The discovery and description of a common Agile Architecture Pattern (AAP) for systems and 
processes that successfully deal with CURVE operational environments is detailed in (Dove and 
LaBarge 2014). In process-transformational activity, the AAP graphic is useful as a design tool for 
the agility-enabling Concept of Operations (ConOps), depicting what is intended to enable and 
facilitate agility in the systems engineering process. Thereafter it is useful as an active reflection 
of, and memory for, ConOps evolution. The AAP is a framework for customer and management 
communication, for training new team members, for capturing lessons learned, and for 
maintaining a current central understanding of the process’ key operational concepts as they 
evolve. In presentations, it serves well as a single-slide road map for the systems-engineering 
ConOps. 
For purposes of describing the relevant systems engineering process issues unambiguously, we 
recognize three distinct systems of interest, distinguished as Systems 1, 2, and 3. System 1 is the 
target system under development, a six-month-cycle evolution of a web portal hub connecting 22 
independent data bases. System 2 includes the basic systems engineering development and 
maintenance processes, along with their operational domain that produces System 1. System 3 is 



 
 

the process improvement system, called the system of innovation that learns, configures, and 
matures System 2. 
Figure 4 depicts the GCSS-J systems engineering process (System 2) as an instance of the AAP. 
Briefly, the architecture contains three principle elements: a pool of resources that can be 
configured to address the process-activity of the moment, a passive enabling infrastructure that 
establishes common rules for readily interconnecting these resources, and an active facilitating 
infrastructure with responsibilities for sustaining the agility of the SE process by maintaining and 
evolving the resources, the internal and external environmental awareness, the interconnection 
standards, and the agility-enabling ConOps. 

The AAP instance of the GCSS-J process in Figure 4 serves to frame the discussion of the key 
process elements and their relationships. The process architecture is structured to configure a 
variety of process activities with personnel and other resources as and when needs arise. Activities 
draw upon pools of available resources, assembled into a variety of configurations upon need, 
interfacing with each other according to resource-interconnect rules and standards. The four 
activities depicted in Figure 4 relate to Figure 3 as instances of Production, Development, 
Research, and Concept stages. 
The principle intent of this section is to discuss the passive enabling infrastructure and the active 
facilitating infrastructure, but necessarily starts with a description of the resources. 
 

 
Figure 4. Agile-process architecture depicting four process-activity configurations assembled 
from available resources in conformance with the interconnection rules and standards of the 

passive enabling infrastructure. 



 
 

The AAP calls out the resources that are employed in assembling process-activity configurations: 

• Scrum Team Resources – Typically three Scrum teams were active on three simultaneous 
sprints within the same development release, with teams configured and reconfigured from 
appropriate resources as needed. 
• Systems Engineers – one per Scrum team, served as the liaison to the PMO personnel 

for requirements, worked directly with the Scrum team to oversee the implementation 
of the requirements, and supported the test team to ensure the requirements are tested 
accurately and completely. 

• Architects – one per Scrum team, defined the software architecture for their portion of 
the system, met weekly with the other architects and the Chief Engineer to enhance the 
overall system architecture, peer reviewed the code developed by the team, and 
supported the scrum team developers as a mentor. 

• Scrum Masters – one per Scrum team, lead the scrum team on a daily basis, managed 
the personnel on the scrum team, worked with the other scrum masters to coordinate 
and share resources, and represented the Scrum team at the daily Scrum-of-Scrum 
meetings. 

• Developers – five code developers per Scrum team. 
• Testers – one per Scrum team that did daily testing of the prior night’s code build. 
• Contractors – The GCSS-J program utilized personnel from both the prime contractor 

and five sub-contractors. GCSS-J operated in a badgeless environment with no 
separation of duties based on prime and sub status. This approach to providing Scrum 
team resources improved the program’s ability to attract and keep top talent no matter 
what the badge said. 

• New Hires – Regardless of the program, some Scrum team resource attrition will occur. 
An on-boarding process was in-place to provide guidance on the GCSS-J processes, 
with automation to expedite the construction of a new employee’s development 
environment, and mentoring to quickly bring a new employee up to speed. 

• Security Team – Information assurance specialists. 
• PMO Personnel (Program Management Office product owners) – Established and 

re-established release priorities. 
• Technical Engineering Management – Architectural oversight and program technical 

direction. 
• War Fighters (Users) – Did first-look sprint testing, contributed to release-requirements 

development, and participated in next-release theme development. 
• Story Backlog – user stories developed for each release and parceled out to development 

sprints according to evolving priorities. 
• Technical Debt – User stories not completed for a release could be carried over to 

subsequent releases as technical debt. Stories were built for all tasks of any kind. 
• Parameterized Widgets 1  – Parameterized GUI capability code enables reusable 

employment with similar but varying user-story needs. 

                                                 
1 Widget: “a generic term for the part of a GUI [graphical user interface] that allows the user to interface with the 
application and operating system. Widgets display information and invite the user to act in a number of ways.” Vangie 
Beal, www.webopedia.com/TERM/W/widget.html 

http://www.webopedia.com/TERM/W/widget.html


 
 

• Sprint Releases – Typically four sprint releases occur sequentially in a six-month 
development increment, each augmenting and improving the prior release. 

Figure 5 shows an overview of the team activities with the development Sprint at its center. 
Notably, PDR and CDR were embedded within the Sprint, where PDR reviewed the upcoming 
Sprint and CDR reviewed the prior Sprint, both in a single meeting day. 

 

Process Enabling and Facilitating Infrastructure 
Infrastructure consists of passive and active sections. The passive section includes the resource 
interconnection standards that enable effective process-activity assembly. The active section 
designates responsibilities for maintaining and evolving agile process capability that facilitate 
sustainable process agility.  

Passive Enabling Infrastructure 
Figure 4 at the top shows the principle SE-process resources that can be assembled into 
process-activity configurations for specific situations. The ability to drag-and-drop these resources 
into plug-and-play configurations is enabled by the passive infrastructure, so called because it 
encompasses the fairly stable rules that enable effective resource interconnection. 
In the text below System 1 refers to the product being developed (SoS web portal), and System 2 
refers to the process doing the development (GCSS-J SE process). 
Sockets – process physical interconnects: 

• Meeting formats were documented as part of the process Concept of Operations (ConOps). 

 
Figure 5. Sprint process overview with supporting activities 



 
 

• System 1 modular architecture – web-page based System 1 provided encapsulated 
page-modularity with URL links providing the passive infrastructure interconnect 
standard. Enabled reconfiguration/augmentation agility. 

• Automated build environment for nightly development additions and operational patches 
to all three release instances: development, accreditation, operation. 

• User story acceptance criteria provided a testable list of criteria that defined what a user 
story must implement. 

• Roles describing how people fill positions documented in the process ConOps. 
• Culture of full-team mission-focus engagement. 

Signals – process data interconnects:  
• Vision was established by a mission set of requirements shaped and enhanced by the 

customer and customer’s governing body. Intent was defined in the set of Epic user stories 
– high level user stories that describe a significant capability. 

• Spike user stories are new ideas or changes to the overall design identified and validated 
through R&D. These were executed separately from the development code baseline. 

• Release themes developed in the release planning sessions. 
• User stories produced for all development tasks. 
• Wireframes (GUI display architecture) produced by designated developers. 
• Code produced daily. 
• Software Change Request (SCR) produced by Scrum teams and by security team, managed 

through the approval process by a systems engineer. 
• Process status was tracked daily at the Scrum-of-Scrums and provided to the customer at 

the weekly customer meetings. 
• Deliverables: PDR/CDR, and end-of-sprint developed code and documentation. 
• Team behavior was exhibited by, and evident to, all team members. 

Security – process trust interconnects:  
• Governance was managed jointly by the customer Program Management Office and the 

contractor Program Management Team. The contract statement of work identified contract 
scope, required deliverables, etc. 

• Leadership was provided by the program manager and the deputy program manager. 
• Cultural oversight was organically supported by the team in place, and stability was 

maintained by a low turn-over rate and a cadre of long-term team members. 
• QA tracked software quality, document quality, and performs independent peer review of 

documents for delivery. 
• Metrics were collected on SLOC (Source Lines of Code), peer reviews, software defects, 

document defects, etc., and trends over time are plotted for process improvement. 
• CMMI level 5 oversight was performed by a trained practitioner on the program, with 

periodic reviews by both the contractor and the certifying agency. 
• The GCSS-J program had a dedicated Configuration Management resource.  

Responsibilities include validating any changes to the COTS/OSS (Open Source Software) 
products used within the program, tracking licensing, and validating and delivering 
required contract deliverables. 

Safety – of SE-process users, process, process environment:  



 
 

• Open process visibility was documented in a shared wiki and also included in the 
documentation delivered to the customer. QA checked that processes were being observed, 
and audits were conducted by the corporation to validate program adherence to the 
processes. 

• Open no-penalty communications were facilitated by daily team scrums, daily 
management scrums, weekly meetings with the customer, and ad-hoc (occurring almost 
daily) phone calls and email exchanges at all levels of the customer-contractor 
engagement. Communication at all levels was strongly encouraged with policies in place to 
facilitate open communication that do not penalize individuals for bringing up concerns. 

• New hire on-boarding mentoring by architects, with reduced new-hire productivity 
expectation for their first sprint. 

• User-story estimation was a team task, eliminating individual risk. 
• 40-hour/week was scheduled for development and testing personnel to support a 

sustainable work load. Developer time for sprint work was allocated at less than 8 
hours/day to allow time for meetings and other required activities. 

Service – the SE-process ConOps: 
• The Concept of Operations for the hybrid scrum/waterfall/wave process executed in 

overlapping decoupled six-month development, accreditation, and operational cycles was 
documented in the program wiki, with diagrams showing the flow of information through 
the process, the responsible parties for each step in the process, and all process operational 
aspects and interactions. CMMI Level-5 certified conformance was enforced. 

• Embedded awareness of potential external disruptions from likely security and 
COTS-obsolescence events by assigned responsibilities; and embedded awareness of 
internal operational issues and opportunities was openly discussed in full-day sprint 
retrospectives. 

• Continuous DevOps2 integration method with automated build and test tools. 
• A collective culture of engagement was embraced by the full team, monitored and enforced 

by management oversight. 
• Agile Architecture Pattern (AAP) employed for both System 1 and Systems 2. System 1 is 

the systems engineering process, with resources reconfigurable to accommodate 
situational activity needs. System 2 is the continuously developed/evolved SoS hub portal, 
with loosely-coupled web pages and reusable parameterized widgets. 

Active Facilitating Infrastructure 
The active infrastructure is what sustains the agility of the SE process. In order for new 
activity-configurations to be facilitated when needed, five responsibilities are required: the roster 
of available resources must evolve to be always what is needed, the resources that are available 
must always be in deployable condition, the assembly of new activity configurations must be 
effectively accomplished, and both the passive and active infrastructures must evolve in 
anticipation and/or satisfaction of new needs. These five responsibilities are outlined in standard 

                                                 
2 DevOps: A general concept that integrates certain development and operations activities rather then have them occur 
by independent teams with independent methods. In this article, DevOps refers to GCSS-J use of a single process 
employing automated tools for creating and testing developer code and patches made by operations.  



 
 

role descriptions, assigned to appropriate personnel, and embedded within the process to ensure 
that effective process-activity is possible at unpredictable times. 

• Resource mix evolution – ensures that existing resources are upgraded, new resources are 
added, and inadequate resources are removed, in time to satisfy needs. This responsibility 
was triggered by situational awareness, and dispatched as shown in Figure 3 activities. 

• Resource readiness – ensures that sufficient resources are ready for deployment at 
unpredictable times. This responsibility was ongoing, and dispatched as shown in Figure 3 
activities. 

• Situational awareness – monitors, evaluates, and anticipates the operational environment 
in relationship to situational response capability. This responsibility was ongoing, and 
dispatched according to the situation of interest, typically by Architects, Systems 
Engineering Team, Information Security Team, Technical Management. 

• Activity assembly – assembles process-activity configurations. This responsibility was 
triggered by situational awareness, as and when needed, and dispatched according to the 
activity of interest, typically by Architects, Systems Engineering Team, or Information 
Security Team. 

• Infrastructure evolution – evolves the passive and active infrastructures as new rules and 
roles become appropriate to enable response to evolving needs. This responsibility was 
triggered by situational awareness, and dispatched by the Chief Engineer. 

Key Operational Process Aspects 
Six elements of the process enabling (passive) and facilitating (active) infrastructures are central to 
the effectiveness of the GCSS-J SE process Concept of Operations, which warrant further 
discussion. 
Passive Infrastructure: Intimate stakeholder involvement in the SE process. 

• The customer was intimately involved with the process operation, establishing the 
intended release features, allocating time for COTS obsolescence mitigation, allocating 
effort to backlog tasks, attending daily scrum meetings, and directing sprint backlog 
re-prioritization as high-priority security bulletins arise. This amounts to explicit customer 
risk allocation acceptance and task allocation prioritization. 

• Both the customer and actual users (warfighters) provided the principal end-of-sprint 
first-look testing feedback. 

Passive Infrastructure: Asynchronous and simultaneous life cycle stage activity. 
• The SoS hub was in perpetual feature evolution, and existed in three stages simultaneously 

(development, accreditation, operation) that all received security updates immediately 
when necessary. Research on external awareness for look-ahead on pending COTS and 
OSS (Open Source Software) obsolescence and likely security bulletins happened 
continuously in parallel with all other life cycle stages. Internal awareness was integrated 
with development sprints in both daily scrum meetings and sprint retrospectives. DevOps 
integrated operational utilization and support stage activities with development and 
production stage activities, sharing the same automated build and test tools and processes. 
Retirement occured simultaneously with development as COTS software and OSS were 



 
 

replaced. The concept stage was frequently invoked as spikes (infrastructure-migration 
sprints) and were explored in parallel with development sprints for integration at the start 
of a future development sprint. 

Passive Infrastructure: Hybrid Scrum/Waterfall/Wave process integration. 
• The choice of a hybrid Scrum/Waterfall/Wave model is discussed later. Basically, this 

hybrid model used Scrum for development, Waterfall for accreditation testing at 
completion of development, and Wave to decouple simultaneous development, 
accreditation testing, and operational releases. This hybrid process was accommodated by 
contract provisions that recognized the advantage obtained with on-time operational 
releases every six months, and integrated sprint-staggered PDR and CDR at the start of 
development sprints. 

• Each development sprint provided a first-look (off-line) release for testing by the customer 
and users, somewhat equivalent to Scrum’s desired deliverable at end of every sprint. 

Passive Infrastructure: CMMI Level 5 procedure discipline. 
• The process had been a CMMI Level 5 certified program since 2009, which likely 

accounted for its demonstrated seamless operational-release stability. Operational releases 
had historically exhibited virtually no critical bugs. First-look feedback and accreditation 
testing contributed to this as well. 

Active Infrastructure: Awareness and mitigation of external and internal environment evolution. 
• Information security team did ongoing look ahead for pending security issues in advance of 

immediate-attention bulletins 
• Systems engineering team did ongoing look ahead for pending COTS and OSS 

obsolescence. 
• Chief Engineer and Architects did look ahead for early warning on changes in SoS data 

bases (often there is no warning). Look ahead involved communication with DoD partner 
programs, monitoring of DoD and DISA standards efforts, and observation of industry 
best-practices. 

• Systems engineering team did look ahead on infrastructure evolution needs with 
spike-sprint development and seamless start-of-sprint cut over. 

• Everyone became aware of process issues discussed openly in a full day 
reflection/retrospective after every sprint. These provided frequent checks of where things 
were and if they were on course, a key principle for the program gleaned from both the 
Scrum principles and CMMI Level-5. Issues were raised earlier and problems were 
identified earlier, allowing course corrections before the change created significant impact 
to program progress. 

• The customer convened warfighter workshops to obtain input and feedback directly from 
the users, with members of the GCSS-J systems engineering team present to obtain 
awareness of user’s needs directly. 

• Management actively monitored conformance to ingrained cultural-principles: automate 
whenever possible, build security in from the beginning, follow the program standards, test 
early and often, etc., with mitigation as appropriate. 

Active Infrastructure: Real-time optimal process control model. 
• Discussed at more length in a later section are patterns of real-time optimal process control 

for re-prioritizing development-increment activity and acting on feedback. An effective 



 
 

agile process is driven in real time by awareness gleaned from external and internal active 
research, rather than simply following a standard procedure. 

On Choosing the Hybrid Scrum/Waterfall/Wave Model 
As background, the program initially follow a Waterfall model, taking 1.5 years before a new 
capability got operationally deployed. This often resulted in program requirements changing by 
the time code was released for operation. Requirements had no clear prioritization as to what to 
work first. The requirements for each release grew beyond available development resources, due 
to the long release cycle, putting the schedule at risk. Applying patches and security updates to the 
operational system took a long time and was error prone. 
The principle reasons indicating that an agile SE approach was needed were outlined in this 
article’s CURVE elements earlier. The decision to use an agile SE approach was influenced by the 
need for more frequent operational deployments, a clear way to prioritize requirements, and a 
process-facilitating way to re-prioritize work-in-process when security imperatives, COTS 
end-of-life, and data-base changes required immediate attention. 
The program was software-focused with releases needed in six-month increments, and the issues 
were centrally program and process management. Spiral 3 , more suited to mixed 
Hardware/Software programs with longer release cycles, did not appear appropriate. SAFe 4 
wasn’t on the radar when the choice was made and subsequently went live in 2009, and neither 
SAFe’s team-scalability nor program-portfolio management were issues. 
Scrum5 appeared to have what was needed, and was chosen as the core of the process model for 
six-month software development cycles. But the program required a partial waterfall approach, in 
that CDR and PDR development-in-process gates were required by contract; and accreditation 
required another six-month cycle following the development cycle. Incorporating CDRs and 
PDRs “naturally” in the agile development cycle was an evolutionary learning experience 
discussed later in the Lessons Learned section. The decoupling of development from accreditation 
permitted development cycles to follow each other immediately, with a 3-month accreditation 
cycle followed by a 6-month operational cycle – in a classic Wave6 approach.  
Waterfall is inherent in the sequential separation of development, accreditation testing, and 
operational phases; but was mitigated with a Wave model approach that decoupled these three 
phases to operate in parallel on staggered releases. 

Lessons Learned 
An agile SE process is necessarily and inherently a continuous learning-based process, and 
accommodates frequent adjustment to the SE process based on lessons learned. 

• When first implemented the GCSS-J agile SE process started with the traditional two-reviews 
(PDR and CDR) at two-days each for each of four sprints. A total of eight days for a four-sprint 

                                                 
3 Boehm, Barry. 1988. A Spiral Model for Software Development and Enhancement. IEEE Computer. May. 
4 SAFe refers to the Scaled Agile Framework developed by and described in Leffingwell, Dean. 2007. Scaling 
Software Agility: Best Practices for Large Enterprises. Addison-Wesley Professional. 
5 Schwaber, Ken and Jeff Sutherland. 2013. The Scrum Guide. www.scrum.org. 
6 Dahmann, Judith, Jo Ann Lane, George Rebovich, Jr. and Kristen J. Baldwin. 2011. An Implementers View of 
Systems Engineering for Systems of Systems. IEEE International Systems Conference, Montreal, Canada, 4-7 April. 

http://www.scrum.org/


 
 

release. These reviews evolved into half day reviews that combined both the PDR for the 
current sprint with the CDR for the prior sprint in the half day combined-review session. The 
combined PDR/CDR reviews were initially held during the sprint planning week, but that was 
found to be disruptive and didn’t work well, so they were moved to occur on the first day of a 
sprint. There was no overall PDR/CDR for an operational release, just ones for each sprint. 

• The Functional Requirements Working Group (FRWG), which includes both the customer and 
GCSS-J personnel, was getting bogged down in design discussions rather than being focused 
on reviewing and approving the user stories to be worked. A White Board Session, suggested 
and so-named by the customer, was added where the customer and GCSS-J personnel do a lot 
of the pre-planning and understanding of what the customer wants at a detailed level. This 
allowed attendees to focus each meeting on its respective goal.  

• The systems engineering team discovered that some COTS and OSS software embedded in the 
GCSS-J system were no longer supported, increasing security exposure to an unacceptable 
level. A monthly look-ahead on the versions of COTS and OSS being used was instituted, 
allowed GCSS-J to incorporate a plan for upgrades into the rhythm of the program. 

• The information security team watched the time allowed by the customer for responding to 
high-priority security bulletins shrink over time, and the frequency increase. This prompted a 
look-ahead for newly discovered vulnerabilities in available security discussions that would 
likely become security-bulletin material. 

• The program started with a lot of churn in requirements, with changes being made often and 
too late (once coding had already started). GCSS-J used the development hour metrics to show 
the customer the effects of that churn: less capability for the same hours. This led to an 
agreement that user stories would be solidified before the start of the sprint and no/minimal 
changes were allowed during the sprint. If requirements changed, the changes would be 
implemented in a later user story. 

• Correcting each defect and implementing each new feature required a good deal of 
development time because the changes were scattered throughout the code base. GCSS-J 
negotiated bundled fixes instead of one-off fixes. Bundled fixes were several 
changes/corrections that applied to a particular widget or section of code. By making all of the 
changes to one area, the developer cold fix several things more efficiently, and the testing 
could also focus on that one area. This increased the number of changes that could be 
accomplished within the allotted time. However, this did mean that some changes might get 
delayed if they were singular to a widget or code section and not a high priority. Those changes 
could be delayed until additional changes to the area of the code base were required. High 
priority changes were still made, even if they were isolated. 

• Widgets had been developed for a number of years, but initially each scrum team did it their 
own way, with no standards in place. Eventually the whole user interface was overhauled so 
everything had a consistent look and feel. 

• User interface components, referred to as widgets, were constructed to accept parameterized 
data as input. The widgets could be reused in appropriate places simply by changing the 
parameters passed in. This had a positive effect by allowing code reuse, reducing debug time 
(fix it in one place and several bugs are removed), and reduced the overall number of failed test 
cases because existing mature code was used instead of creating yet another widget. 



 
 

• Automation for code builds and deployment was very successful, but systems operations and 
security patching were still handled separately. The systems operations team agreed to merge 
their work into the software development automation solution. The integration was successful 
and the program then moved into a DevOps  paradigm. All changes to the system, whether 
software development, operational system patches, or security fixes, flowed through the same 
create-build-deploy-test cycle. This streamlined the process to the point that the program was 
able to achieve the short release cycle required by the customer. 

Metrics 

• Required by CMMI Level 5 and corporate oversight, the program collected a lot of metrics. 
Metrics were tracked for every sprint: technical debt, level of effort actuals compared to 
estimates, number of defects found in testing per user story, defect change over time, how 
much SLOC (source lines of code) and how much it changed each sprint. Trends were watched 
over time. A spike or bad trend caused a root cause analysis and a task team was spun off to 
find out why. Defect rate was watched closely to indicate too much is being tried when that 
goes up. This instigated a debate: the defect rate was extraordinarily low, and considered a 
possible sign of too much caution that might permit pushing a little harder with results still 
good enough. If a spike occurred in SLOC the customer and the GCSS-J personnel wanted to 
know why, so analysis was done ahead of time in anticipation of questions. Velocity was 
tracked. An important part of the development scrum was monitoring velocity and the burn 
down rate. Velocity was not measured in story points but rather in actual hours, at customer 
insistence. This gave the customer incredible visibility into exactly what was being done, 
because they knew how many people and how many hours every sprint. That varied, so every 
bit of maintenance wanting to be done was coordinated with the customer, who saw how 
maintenance takes away from new functionality. This resulted in a great deal of trust, but also 
micro-management and overhead. Everything to be done was expressed as a user story, with 
the customer deciding the priorities.  

• Statistics were collected on code defects, re-deliveries, document red lines, and operational up 
and down time. These predicted how many defects could be expected, how often, and the lines 
of code that might cause defects. 

Pattern-Based Model View of Key Operational Aspects 

The ASELCM Pattern 
The ASELCM Pattern is a formal MBSE reference model describing the framework of system life 
cycle management from an agility perspective, providing a non-prescriptive reference 
emphasizing the principles of agility, for analysis purposes. It is described further in (Schindel and 
Dove, 2016). Figure 6 is one view of that model, summarizing three key system boundaries, 
configured here for the GCSS-J case study:  
System 1:  The Target System, subject of innovation over managed life cycles in the GCSS-J 
system being developed, deployed, supported.  
System 2:   The Target System Life Cycle Domain System, including the entire external 
environment of the Target System—everything with which it directly interacts, particularly its 
operational environment and all systems that manage the life cycle of the Target System.  For 



 
 

GCSS-J this includes all the external data systems integrated by the focal DoD information system, 
as well as all the (agile or other) development, deployment, support, security, accounting, 
performance, and configuration management systems that manage the (System 1) Information 
System. 
System 3:  The System of Innovation, which includes System 1 and 2 along with the systems 

managing (improving, deploying, supporting) the life cycle of System 2. In the GCSS-J this 
includes the systems that define, observe, analyze (as in agile Process Retrospective) improve and 
support the processes of development, deployment, service, or other managers of System 1. 

Trajectories in System 1 Configuration Space; Optimal Control  Estimation 
For purposes of this discussion, the “System Configuration” of the (System 1) Target Information 
System includes its evolving stakeholder fitness space (needs, values), details of System 1 
technical behavior, physical equipment, software design, or other content, and whether in the form 
of written descriptions, or information in the minds of developers, or described by agile Stories, 
traditional Specifications, system Models, hallway conversations, or internalized expertise – all of 
this is considered to be the System Configuration of the Target System,  whether formally tracked 
or not. Figure 7 summarizes this, emphasizing subspaces of Stakeholder Features, externally 
visible Technical Behavior, and Physical Architecture. 
The ASELCM Pattern in Figure 6 is a reference model describing pursuit of agile trajectories 
through system configuration space, but this analysis model does not assume that a given 
environment (such as this case studied) uses model-based development methods. However, the 
analysis framework behind the ASELCM Pattern provides a model-based foundation that can be 
used as a basis for analysis of agile principles and their appearance in any development or life 
cycle management process, model-based or not. 
For example, Figure 5 and Figure 7 shows that sprints involve the prioritized selection of Backlog 
items, resulting in incremental changes in the target information system Stakeholder Features 
(value, fitness), as well as Technical Behavior and Physical Architecture. The choice and sequence 
of these selections effectively determines a trajectory through System Configuration Space of the 

 
Figure 6.  ASELCM pattern system reference boundaries, configured for GCSS-J 



 
 

Target System. The System of Innovation Pattern models this as a problem of optimal control in a 
noisy, uncertain environment. In the GCSS-J, as in most contemporary agile development 
processes, heuristics such as WSJF (weighted shortest  job first) are used to optimize the rate of 
progress (the “job” part) through Stakeholder Fitness Space (the “weighted” part) with respect to 
time, effort, and risk (the “shortest” part). 

Trajectory Uncertainty & Risk; Reducing, Trading, & Sharing Risk; Decisions 
Figure 8 is the formal interactions model of the agile loops summarized by Figure 5. The emergent 
effect of these loops is to traverse System 1 configuration space shown in Figure 7, with increment 
directions of this trajectory set by the following interactions of Figure 8: 

• Initiate Product Backlog 
• Review Priority Items & Set Sprint Thematic Goal 
• Forecast Sprint Content Items  
• Analyze Future Item Requirements 
• Split, Merge, Rescope Future Items 

 
Figure 7. GCSS-J agile trajectory in system configuration space and sub-spaces 



 
 

For GCSS-J these interactions were performed by human analysts, supported by basic information 
repository tools. These strategy interactions include decisions that involve stakeholder risk. For 
GCSS-J this risk was traded between entities by agreement to include the customer in not only the 
definition of Stories, but also the selection of those backlog items for inclusion in sprints. From 
optimal stochastic control theory, we know that effective ability to observe, estimate, and control 
are paramount to effective agility. The underlying sprint loop includes frequent measurement and 
feedback of current state, including in Stakeholder Feature Subspace, with frequent feedback 
control opportunities at the end of each sprint loop. 

States, Modes, and Learning in System 2 
The states in Figure 8 are sub-states of the Development state of Figure 3, and may occur 
concurrently with others, as suggested by Figure 2. During these processes, there are opportunities 
for learning, which is an emphasized characteristic of agile methods. Note that the system 
configuration trajectory progress of Figure 7 does not in itself imply any learning.  Indeed, Figure 
6 shows that previous learning could be the entire basis of that configuration progress, if the past 
learning is available for reflexive use as called upon by the situation (suggested by the “gears” 
portion of Figure 6). An example of this observed in the GCSS-J was the progressive accumulation 
of system test and DevOps methods that could be invoked as called upon by future needs.  

Sc
ru

m
-S

cr
um

 
Fe

ed
ba

ck
 L

oo
p

Re
le

as
e-

Re
le

as
e 

Fe
ed

ba
ck

 L
oo

p

Performing a Project
   Planning Project

              Performing a Sprint (Time Limited)
 Planning Sprint

  Performing Sprint Development

  Refining Future Sprint Backlog

   Conducting Sprint Product Review

  Conducting Sprint Process Retrospective

 Performing Product Release

       Subsequent Life Cycle of Product Release

       

Project
Planned

Retrospective
Completed

Project
Initiated

Sprint
Planned Sprint Time 

Window Ends

Sprint Time 
Window Ends

Inspected Product 
Not Ready for Release

(not “Done”) Inspected Product
Ready for Release 

(“Done”)

Product
Released

Release 
Life Cycle 

Ended

  Initiate Product Backlog

    Review Priority Items & Set Sprint Thematic Goal

    Forecast Sprint Content Items

   Attend Daily Scrum
    Perform Developmental Task

   Track Daily Progress

    Analyze Future Item Requirements

    Split, Merge, Rescope Future Items

    Estimate Future Items 

     Inspect Product
    Update Product Backlog

   Review Process & Environment
   Adapt Process & Environment

    Release Product

    Perform Target Interaction

Copyright 2015, ICTT System Sciences

    Provide In-Service Feedback

Product 
Owner

Scrum 
Master

Development 
Team

Development 
Environment

Target 
System

Target System 
Environment

Stakeholder 
(incl. Customer)

       Consume Resources

 
Figure 8. Nested feedback loop processes traverse system configuration space 



 
 

Whether learning is accumulated informally by humans or in more explicit automated and 
configurable models, Figure 9 conveys that System 1 learning accumulates for use by System 2,  as 
underlying patterns across all the same sub-spaces as those of Figure 7.  

Although agile methods often emphasize learning by human teams, in this project we are also 
examining the formalized accumulation of persistent knowledge that is not necessarily 
human-based in all cases. Compared  to other, more product line-oriented, cases of System 1, the 
GCSS-J target information system was seen as not intended for deployment in multiple application 
configurations, and a higher balance of learned persistent memory about this single target 
information system was seen to be in the learned patterns of human team members. In Figure 6 and 
9 the two “databases” shown represent (a) relatively fixed knowledge of System 1 and 
environment previously learned and available for use, versus  (b) the  more dynamic new learning 
also potentially occurring about that same domain. 

Resources and Attention in System 2 
The ASELCM Pattern described in (Schindel and Dove, 2016) provides Attention Management 
Features for the responsive dynamic (and potentially concurrent) allocation of limited System 2 
resources to dynamically changing environments. In analyzing GCSS-J it was noted that this 
particularly applied in responding to high priority system security related threats. 

States, Modes, and Learning in System 3 
Agile Scrum includes the idea shown in Figure 8 as the interactions in the Conducting Sprint 
Process Retrospective state, during which the status and performance of System 2 (GCSS-J 
development and other life cycle management processes) are analyzed and updated. While shown 
within the sprint model, this is actually the role of System 3 in Figure 6. A number of GCSS-J 

 
Figure 9: “Fixed” Agents apply past learned patterns from “Learning” Agents 



 
 

practices and systems were developed and improved through this process,  improving process 
performance to a high level of maturity. Indeed, the GCSS-J project adoption of the agile systems 
engineering approach itself was a leading example of this type of activity.  

Concluding Remarks 
The ASELCM project reviews well-working agile systems-engineering processes – so this case 
study may sound a little rosy, but it is factual and intended to be instructive. This case study 
reviews the process that developed and perpetually evolved a web-based software product, which 
in some circles is assumed to be the ideal environment for agile software development concepts: 
small feature chunks are natural, a loosely coupled product architecture is inherent, continuous 
delivery is possible, and DevOps is easily accommodated. But the analysis-team’s eventual task is 
to find necessary principles with universal agile-system-engineering application. This and other 
ASELCM case studies are intended to provide a foundation for eventual extraction of those 
universal principles. 
Initially the analysis team viewed the GCSS-J process as a maintenance process, rather than a 
systems-engineering process. The distinction was rooted in a belief that systems engineering is 
about developing and deploying a new system for the first time, and that subsequent upgrades 
would simply be maintenance of that original system. But a revelation occurred. Before the 
analysis workshop ended we realized we were analyzing an agile process that evolved an agile 
system, perpetually. When a deployed systems’ environment continues to evolve it is necessary 
that systems engineering is also a continuous process, punctuated by a series of next generation 
evolved system instances. This is system life extension, a core conceptual view for systems 
expected to live effectively in today’s rapidly evolving environments, and requires a life-extending 
agile architecture pattern as the basis of the deployed system’s structure and design. It is not 
uncommon for web-based software systems to enable and exhibit continuous evolution, but the 
lesson of import is the general concept of perpetual evolution applied to all system types that need 
to provide sustained service. 
This article introduced a circular asynchronous and simultaneous agile-life-cycle model 
framework, featuring the addition of a Research seventh stage. Unlike sequential-stage waterfall, 
agile systems engineering processes may be conducting activities in any and all of the stages 
simultaneously and without progressive sequencing. The newly acknowledged Research stage 
attends to active external and internal situational awareness – the critical driver of agile capability 
expression in all of the other stages. Active awareness and enabled mitigation of situational threats 
and opportunities to process and product alike, throughout the perpetual systems engineering 
process and the target system’s life cycle, is a distinguishing feature of effective agile systems 
engineering – previously unrecognized explicitly for its fundamental driving role. The active 
Research awareness  and mitigation activity breaths life into the agile systems engineering 
process, taking it beyond the repetitive execution of traditional development-sprint procedures. 
This article illuminated a process of optimal control that contends effectively with potential 
disruptions to the integrity of a system-of-systems composed of independent constituent systems 
that change without notice; and contends effectively with a centralized hub that must give priority 
to rectifying frequent short-notice security vulnerability bulletins and frequent obsolesce of 
COTS/OSS elements. These disruptive situations impact the ability to execute new capability 
development planned for sprints, mitigated by frequent real-time re-prioritization of target system 



 
 

release evolution. The agility of the GCSS-J process to sustain continued service with integrity 
under frequent disruption has not appeared in the literature to the authors’ knowledge. 

References 
Dove, R. and R. LaBarge. 2014. Fundamentals of Agile Systems Engineering – Part 1 and Part 2. 

International Council on Systems Engineering, International Symposium, Las Vegas, NV, 
30Jun-3Jul. www.parshift.com/s/140630IS14-AgileSystemsEngineering-Part1&2.pdf 

Dove, R., W. Schindel, and C. Scrapper. 2016. Agile Systems Engineering Process Features 
Collective Culture, Consciousness, and Conscience at SSC Pacific Unmanned Systems 
Group. Proceedings International Symposium. International Council on Systems 
Engineering. Edinburgh, Scotland, 18-21 July. www.parshift.com/s/ASELCM-01SSCPac.pdf  

Dove, R., W. Schindel. 2017. Case Study: Transition to Scaled-Agile Systems Engineering at 
Lockheed Martin’s Integrated Fighter Group. Unpublished working paper. 

 www.parshift.com/s/ASELCM-04LMC.pdf 
Dove, R., W. Schindel, R. Hartney. 2017. Case Study: Agile Hardware/Firmware/Software 

Product Line Engineering at Rockwell Collins. Proceedings 11th Annual IEEE 
International Systems Conference. Montreal, Quebec, Canada, 24-27 April. 
www.parshift.com/s/ASELCM-02RC.pdf 

GAO. 2011. GAO-12-7, Report to Congressional Committees: Information Technologies – 
Critical Factors Underlying Successful Major Acquisitions. US Government 
Accountability Office. October. http://www.gao.gov/assets/590/585842.pdf 

ISO/IEC/IEEE. 2015. Systems and Software Engineering — System Life Cycle Processes. 
ISO/IEC/IEEE 15288:2015(E) first edition 2015-05-15. Switzerland. 

ISO/IEC. 2010. Systems and Software Engineering — Life Cycle Management — Part 1: Guide 
for Life Cycle Management. ISO/IEC TR 24748-1:2010(E) first edition. Switzerland. 

Schindel, W. and R. Dove. 2016. Introduction to the Agile Systems Engineering Life Cycle MBSE 
Pattern. Proceedings International Symposium. International Council on Systems 
Engineering. Edinburgh, Scotland, 18-21 July. 
www.parshift.com/s/160718IS16-IntroToTheAgileSystemsEngineeringLifeCycleMBSEPattern.pdf 

US Department of Defense. 2014. Strategy for Improving DoD Asset Visibility. Department of 
Defense. Washington, DC (US): Assistant Secretary of Defense for Logistics and Materiel 
Readiness. January. 
http://gcss.army.mil/Documents/Articles/Strategy_for_Improving_DoD_Asset_Visibility.pdf 

Acknowledgements 
The agreement to host the workshop, choice of process to analyze, and arrangements for enabling 
the workshop were the efforts of Emmet (Rusty) Eckman III, Director, Business-Facing, 
Engineering and Sciences, Northrop Grumman, Sector Technical Fellow, and INCOSE ESEP.  
The SE process analysis described is this article is the collective output of a workshop team that 
includes (alphabetically): Judith Dahmann (MITRE), John Davidson (Rockwell-Collins), Rusty 
Eckman (Northrop Grumman), Rick Dove (Paradigm Shift International), Tim Fulcher (Northrop 
Grumman), Kevin Gunn (MITRE), Suzette Johnson (Northrop Grumman), Mark Kenney 
(Northrop Grumman), Ken Laskey (MITRE), Sunil Lingayat (Northrop Grumman), David 
Lempia (Rockwell-Collins), Chris McVicker (Northrop Grumman), Erin Payne (Northrop 

http://www.parshift.com/s/140630IS14-AgileSystemsEngineering-Part1&2.pdf
http://www.parshift.com/s/ASELCM-01SSCPac.pdf
http://www.parshift.com/s/ASELCM-02RC.pdf
http://www.gao.gov/assets/590/585842.pdf
http://www.parshift.com/s/160718IS16-IntroToTheAgileSystemsEngineeringLifeCycleMBSEPattern.pdf
http://gcss.army.mil/Documents/Articles/Strategy_for_Improving_DoD_Asset_Visibility.pdf


 
 

Grumman), Avinash Pinto (MITRE), Jack Ring (OntoPilot), Bill Schindel (ICTT Systems 
Sciences),  and Chris Scrapper (US Navy). 

Biographies 
Rick Dove is CEO of Paradigm Shift International, specializing in agile systems 
research, engineering, and project management; and an adjunct professor at 
Stevens Institute of Technology teaching graduate courses in agile and 
self-organizing systems. He chairs the INCOSE working groups for Agile 
Systems and Systems Engineering, and for Systems Security Engineering, and 
is the leader of the INCOSE Agile Systems Engineering Life Cycle Model 
Discovery Project. He is an INCOSE Fellow, and the author of Response 
Ability, the Language, Structure, and Culture of the Agile Enterprise. 
Bill Schindel is president of ICTT System Sciences. His engineering career 
began in mil/aero systems with IBM Federal Systems, included faculty service 
at Rose-Hulman Institute of Technology, and founding of three systems 
enterprises. Bill co-led a project on Systems of Innovation in the INCOSE 
System Science Working Group, co-leads the Patterns Working Group, and is a 
member of the lead team of the INCOSE Agile Systems Engineering Life Cycle 
Project.  
 


	Introduction
	Overview
	Enabling, Facilitating, and Sustaining Agility
	Process Enabling and Facilitating Infrastructure
	Passive Enabling Infrastructure
	Active Facilitating Infrastructure


	Key Operational Process Aspects
	On Choosing the Hybrid Scrum/Waterfall/Wave Model
	Lessons Learned
	Metrics

	Pattern-Based Model View of Key Operational Aspects
	The ASELCM Pattern
	Trajectories in System 1 Configuration Space; Optimal Control  Estimation
	Trajectory Uncertainty & Risk; Reducing, Trading, & Sharing Risk; Decisions
	States, Modes, and Learning in System 2
	Resources and Attention in System 2

	States, Modes, and Learning in System 3

	Concluding Remarks
	References
	Acknowledgements
	Biographies

