
24
th

 Annual INCOSE International Symposium (IS2015)

Seattle, WA, July 10 – 16, 2015

System Life Cycle Trajectories:
Tracking Innovation Paths

Using System DNA

William D. Schindel

ICTT System Sciences

schindel@ictt.com

Copyright © 2015 by William D. Schindel. Published and used by INCOSE with permission.

Abstract. In-service systems change configuration across life cycles. Systems in development

change in-progress developmental configurations. Evolving product lines and competing

product models change configurations, over lives of product lines. Understanding system

trajectories (paths of changing configurations) is important to understanding installation

history, developmental progress, and competitive evolution.

What to track? For living systems, physical form (phenotype) was the initial focus, but the

study of genetic information (genotype) became vital. MBSE, Configuration Management

(CM), Product Lifecycle Management (PLM), Model Management (MM) disciplines and tools

partially address engineered system needs. However, cyber warfare, epidemics, and other

threats raise pressure to accelerate rates and efficacy of system evolution, increasing interest in

agility.

This paper (Part II of a Case for Stronger MBSE Semantics) outlines “system DNA”

trajectories, follows work reported by a System Sciences Working Group project at IW2014,

and prepares support for the IW2015 MBSE Workshop session on patterns in Agile Systems.

Introduction

System configuration space. System configuration space is the set of all possible

configurations of a system (or system family) of interest. It is made geometric by

conceptualizing it as an N-dimensional space, where the N degrees of freedom describe all the

system configuration variables for the system or system family of interest. Here we mean all

the degrees of freedom, including stakeholder values, technical requirements, physical

implementation, interfaces, normal and failure modes, and otherwise. While almost never a

linear space, this configuration space can nevertheless often support inner products,

projections, distance metrics, and other ideas motivated by geometric space. Basic ideas of this

system configuration space used in this paper are described in another IS2015 paper (Schindel,

2015), which points out that emphasis on systems engineering process and procedure

sometimes detracts from focus on this space, even though it is implicitly the ultimate target of

innovation effort. This is partly over lack of its explicit representation, to the detriment of

innovation performance. Model-Based Systems Engineering (MBSE) offers the opportunity to

remedy this, provided the underlying semantic models supporting MBSE are strengthened.

Each point (N-tuple) in the space represents one configuration of a system. It is understood that

many of these (combinatorial) configurations will be infeasible due to constraints or

sub-optimal (both expressible by system models), or otherwise of less interest than other

configurations. For most practical work on real systems, this N-space is not literally drawn, but

used to support lower-dimensional (coupled) subspace maps and views that are themselves

cross-sections of the larger configuration space.

mailto:schindel@ictt.com

Trajectories in System Configuration Space

Trajectories in system configuration space describe sequences of different configurations in

that space:

 Travelled conceptually by human innovators designing the system, during the

innovation process (for example, see Figure 1), or . . .

 Travelled in the real world by a series of configurations of an in-service system

instance, over its life cycle, or . . .

 Travelled by a series of evolutionary generations of a system family, being adapted and

innovated (for example, see Figure 2), or . . .

 Travelled by an ecology of systems interacting systems, including those of competitors,

suppliers, and other environmental systems.

Figure 1: Path as a series of system configurations,

 through iterations of the SE process

Figure 2: Evolution of engineered system product lines

Sufficient Representations of
System Configuration Space, and of Trajectories Within It

What are those N degrees of freedom? What are the variables? How shall we view them?

Because we are interested in formal representations of systems, it should not be surprising that

Model-Based Systems Engineering (MBSE) is relevant to these questions. The related

question is “What is the smallest model of a system, for purposes of science or engineering?”,

addressed in (Schindel, 2011b). This question is equivalent to asking what the underlying

Metamodel would be for MBSE, independent of specific modeling language—it is about the

underlying nature of systems. The answer offered to the question was S*Space, described by

the underlying S*Metamodel, discussed in (Schindel, 2011b, 2014, 2015; Smith, Marzolf,

2014). This underlying semantic model has been applied and refined in over twenty years of

MBSE applications across automotive, aerospace, telecom, medical/healthcare, consumer

packaged goods, advanced manufacturing, and other domains (Berg 2014; Bradley et al, 2010;

Peterson and Schindel, 2013, 2015; Cook & Schindel, 2015; Schindel & Smith, 2002).

Clearly related to explicit or implied underlying models used in various languages and

interface standards, such as (OMG, 2012; U’Ren, 2003), it was reported (Schindel 2011b) that

the typical resulting system representations are found to be simultaneously “too large”

(redundant) and “too small” (missing key concepts). These represent opportunity for improved

effectiveness as well as compression.

A “teaching summary” of some of the key concepts of the more complete S*Metamodel is

shown is Figure 3, detailed further in (ICTT 2009), and also mapped to various third-party

COTS engineering tools. Definitions of some of the more prominent metaclasses are listed in

Appendix 1.

Figure 3: S*Metamodel, “Teaching Subset”

The S*Space is made up of a number of sub-spaces, including:

 Stakeholders, Stakeholder Features, and their Attributes

 Functional Interactions, Input-Outputs, and Interfaces

 Functional Roles and their Attributes

 States (Modes)

 Requirements

 Physical Components and their Attributes

 Failure Modes and Impacts

 Others

The couplings between these sub-spaces are also a key part of S*Space.

State

Input/

Output

Interface

Functional

Interaction

(Interaction)

System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

BB

WB

We have formally modeled the (ISO15288 2014) representation of system life cycle processes

as a configurable S*Pattern, to show more explicitly how the life cycle processes (as a system)

consume and produce information in the S*Space. This “System of Innovation” consumes and

produces information that is in the S*Space, as symbolized by the summary diagram of Figure

4. For the system of interest being designed or supported, these life cycle processes over time

result in trajectories (paths that are sequences of points) in S*Space, as in Figure 1.

Figure 4: The Systems Engineering Process
Consumes and Produces Information, All In S*Space

For examples “drilling into” the above processes in more detail, the Verification Process

blocks in the above are themselves further detailed in (Cook and Schindel, 2015), where they

are powered by model-based verification test patterns. Likewise, discussion of patterns

optimizing human review processes in the Requirements Validation and Design Verification

Processes is provided in (Nolan, Pickard, Russell, and Schindel, 2015).

Operation of the System Life Cycle Processes in the upper part of Figure 4, over time, result in

movement of the system S*Configurations described by the lower part of Figure 4. The

sequence of configurations in such a configuration trajectory is not typically viewed “all at

once” across all the N degrees of freedom for the configured S*Metamodel (too big for human

views), but that data is quite real and may be stored in one or more tool repositories.

Even though the practical views of this information are lower dimension subspace slices,

having the full S*Space information formally integrated by the S*Metamodel means that we

can conceptually visualize that trajectory as the sequential columns of a table of system

configurations, represented by Figure 5. Each of the columns of this table represents one

configuration of the “System DNA” along the path of Figure 1.

Figure 5: Progressive Configurations (Columns) Along a System Trajectory

Stakeholder Features Subspace View Has Special Significance

Figure 5 is only a conceptual perspective. For practical views of the subspaces of S*Space,

each of the subspaces has its own significance--but the Stakeholder Feature subspace is first

among equals. This is because it represents the value (fitness) or trade space for the rest of the

S*Space—a projection of the rest of the subspaces onto a “stakeholder scoreboard”, which

becomes a key perspective into a project or system. For this reason, practical views in the

Stakeholder Feature subspace (as in Figure 6) become important for understanding not only

trade space optimization, but also failure mode effects (Schindel, 2010), risk management in

general, and the basis for evaluation and decisions of all project issues.

Figure 6: A View of the S*Stakeholder Feature Subspace Status

The Stakeholder Feature selection-oriented issues represent conceptual “forces” on the other

sub-spaces, leading to travel through the configuration space. So, practical views of the

Stakeholder Feature space take on special significance:

 Where all “whys” are represented;

 For human-engineered projects, this view is always the top level “dashboard” on

progress and status;

 Highly compressible, dividing configuration vs. pattern content.

A Differential View of Trajectories in S*Space

Like the trajectories of other types of dynamical systems, these S*Space trajectories can be

thought of in two different ways:

- Analyzed globally, as an overall path

- Analyzed locally, on a differential basis

Global views of overall paths are clearly of interest, but here are also several reasons why a

differential view of system trajectories in S*Space turn out to be of special interest, discussed

further below:

1. Delta Requirements

2. Compression of Path Representation

3. Equations of Motion

Delta Requirements. It is very common to see specification of requirements that are

“changing” in a new system version, in comparison to past history. These might be called

“Delta” or changing, requirements, and are accompanied by “Delta” of changing aspects of the

other sub-spaces of the S*Space, showing changes to physical design, stakeholder features,

interfaces, modes, or other aspects.

N
e

e
d

s

In
te

rf
ac

e
s

R
e

q
u

ir
e

m
n

e
st

D
e

si
gn

N
e

e
d

s

In
te

rf
ac

e
s

R
e

q
u

ir
e

m
n

e
st

D
e

si
gn

N
e

e
d

s

In
te

rf
ac

e
s

R
e

q
u

ir
e

m
n

e
st

D
e

si
gn

N
e

e
d

s

In
te

rf
ac

e
s

R
e

q
u

ir
e

m
n

e
st

D
e

si
gn

V V V V V V V V V V V V V V V V

Config 1 > 2 2 1
Config 2 > 2 2 0
Config 3 >

Config 4 >

Config 1 > 2 2 2 2 2 0 2 2 2 2 2 1
Config 2 > 2 2 2 2 2 0
Config 3 >

Config 4 >

Config 1 > 2 2 2 2 2 2 2 2 2 2
Config 2 > 2 2 0
Config 3 >

Config 4 >

Config 1 > 2 2 2 2 2 0
Config 2 >

Config 3 >

Config 4 >

Config 1 > 2 2 2
Config 2 >

Config 3 >

Config 4 >

LEGEND

0

 all with possible scores of … 1

2
3+

System Security

Management

Utilities and

Space

Compatibility

System

Configuration

Management

Regulatory

Compliance

Equipment

Configuration

Path

System

Accounting

Management

Standards

Compliance

Equipment

Configuration

System

Performance

Management

Performance and

Usage

System Fault

Management
Health & Safety Deliverability

"Needs" columns ask how well Features satisfy Stakeholder Needs . . .

"Interfaces" columns ask how well Interfaces satisfy Features . . .

"Requirements" columns ask how well Requirements satisfy Features . . .

"Design" columns ask how well physical Designs satisfy Features . . .

Unsatisfied or unknown

Satisfied, low margin

Satisfied, in margin

Satisfied, high margin

Such a “Delta” view is common in engineering because it helps call attention to what is

changing and needs focal attention. But, there are (in)famous consequences of

over-emphasizing these “Delta” requirements:

 Consequence 1: Some other aspect of the changing system is impacted / broken,

through lack of awareness of coupled consequences.

 Consequence 2: Even if we don’t break anything, by going through repeated “Delta”

update cycles on a series of future versions, after many such cycles we eventually arrive

at a point where no one has a description of the complete set of requirements.

What to do? When the full system “System Genome” of S*Space is tracked by information

systems, it becomes more possible to “have it both ways”, as follows.

Path Compression. This second subject generalizes on the special case of Delta Requirements

above. Differential representations of system trajectories can further compress the

dimensionality of an evolutionary path—not only for requirements, but any other aspects of the

“System Genome” represented by an S*Configuration. The global path and baseline

configurations can be re-created from the differential descriptions, provided they are

complete—and S*Metamodel consistency helps to assure that completeness. (This is

analogous to the communication engineer’s Delta-Sigma Modulation.)

Figure 7: “Delta” Descriptions Further Compress Trajectory Representations

Equations of Motion in S*Space. Once the MBSE representation of both the System of

Interest (the engineered, innovated, or supported system) and the System Life Cycle Process

(the ISO 15288-like System of Innovation that acts on the System of Interest) are complete

enough, a deeper understanding of the dynamical configuration trajectory becomes possible.

C
o

n
fi

gu
ra

ti
o

n
 A

C
o

n
fi

gu
ra

ti
o

n
 B

C
o

n
fi

gu
ra

ti
o

n
 C

C
o

n
fi

gu
ra

ti
o

n
 D

C
o

n
fi

gu
ra

ti
o

n
 E

C
o

n
fi

gu
ra

ti
o

n
 F

C
o

n
fi

gu
ra

ti
o

n
 G

Features
x X X X X X X X

x X X X X X

x X X X X

x X X X X

x X X X X X

Feature Attributes
x 33 30 30 25 20 9 9

x 18 27 27 27 99 99 99

x Yes Yes No No No Yes Yes

x Left Left Right Right Left Left Left

Interactions
x X X X X X X X

x X X

x X X X

x X X X X X X

x X X X X X X

x

Roles
x X X X X X X X

x X X X X X

x X X X X

x X X X X

x X X X X X

x

x

Role Attributes
x 12 12 12 12 0 0 0

x -4 -4 -5 -5 -5 -5 -5

x 33 33 33 5 5 33 33

x

x

States
x X X X X X X X

x X X X X X

x X X X X

x X X X X

x X X X X X

x

Interfaces
x X X X X X X X

x X X

x X X X

x X X X X X X

x X X X X X X

x

x

The S*Metamodel helps to assure that degree of completeness, adding to the case for stronger

underlying semantics of systems. This subject was introduced in the IW2014 report of the

System Science Working Group modeling sub-team project (Smith, Marzolf, Schindel, 2014),

and will be extended in the Patterns in Agile Systems session of the MBSE Workshop at

IW2015 (Dove, Schindel, 2015). In the current paper, we provide some motivating discussion

of why this subject is worthy of greater attention.

Why Trajectories Are Becoming More Important:
Agility in Innovation

Threats, Opportunities, Short and Long Term Trajectories. Along evolutionary paths in

S*Space, versions of systems have characteristics that are different (for better or worse) than

their “ancestors” (predecessors). Those ancestors may be earlier product models or biological

species, but may also be earlier configurations of a current (reconfigurable) system instance, or

earlier ideas in a sequence of design concepts for a single project system. In the short term,

many different factors can drive movement in an S*Trajectory. In the longer term, the

S*Stakeholder subspace progress determines the sustainable long-term path in S*Space.

Over multiple life cycles, systems evolve (or are evolved) in response to their environment.

This includes responses to new threats and new opportunities. Figure 8 illustrates such

movement in the case of the public health care system.

Figure 8: Short-Term Responses to Threats and Opportunities

Co-Evolution. One may initially think of a System of Interest changing its configuration from

time to time in response to relatively slow shifts in the environment of the System of Interest.

However, if that domain includes competitive systems, then it is possible that the environment

may be driven to evolve faster than the System of Interest, as a competitive strategy.

In order to get this firmly in mind, it is helpful to see the entire domain system (environment) as

an ecology of co-evolving systems, some of which are symbiotic (cooperative) and some of

which are competitive, but all of which may be interacting with each other and moving through

configuration space. For example, Figure 9 illustrates:

1. Co-evolution of hummingbirds and flowers

2. Co-evolution of radar and stealth technology

3. Co-evolution of cell phones and automobiles

4. Co-evolution of neighbouring food court stores

It is ultimately helpful to this analysis if we think of the parent system, made up of such

subsystems, as itself evolving, with its own overall trajectory.

Figure 9: Co-Evolution of Interacting Systems

Is a system of interest evolving rapidly and effectively enough in response to evolution of its:

 Competitors?

 Customers?

 Prey?

 Predators?

 Opportunities?

 Threats?

 Resources?

One definition of Agile System is a system that has such a capability. Current example domains

of particular concern to this line of thought include (1) Cybersecurity and the Internet of Things

and (2) Epidemiological Systems.

Time of System Configuration. As human-engineered systems become more mature, their

ability to be re-configured advances to later in their life cycles (see Figure 10):

1. At first, all configuration occurs during design (traditional view of design)

2. More advanced systems can be configured to order, at Manufacturing time,

individually as they move through the process (Michael Dell pioneered; see also the

Ford Rouge pickup truck plant)

3. Still more advanced systems can be configured after delivery, by their distributors,

dealers, users, or maintainers. (e.g., manipulating configuration switches, loading data

parameters)

4. Even more advanced systems can reconfigure themselves while in operation (e.g., F111

aircraft wing configuration)

Biological scientists have referred to the “evolution of evolvability” as a major step in the early

stages of living systems.

Figure 10: Four Different Configuration Times During System Life Cycles

Architectural Aspects. System architectural aspects that increase system agility include:

1. Composable architecture: flexibility through configurable architecture of standard

components (this and other architectural aspects are discussed in (Dove, 2014) and will

be discussed at greater length in the INCOSE IW2015 MBSE Workshop joint session

on Agile Systems (Dove, Schindel, 2015)). Refer to Figure 11.

2. Ability to accumulate experience as information: Cyber-Physical systems are

hardware-software combinations that include information as a part of the systm

architecture, discussed in (Beihoff and Schindel, 2012; Schindel, 2013b; Smith,

Marzolf, Schindel, 2014) and in the following section of this paper. Refer to Figure 12.

Figure 11: Composable Systems and Component Libraries

The System of Innovation Pattern, an S*Pattern discussed in the above references, describes

the domain of innovation for both human-performed and other innovation processes. Figure 12

summarizes the Logical Architecture view reported for that pattern, where the Experience

Accumulation Role is noted as a key behavior. Trajectories informed by the past are not the

same as those which must keep re-experiencing the same “mistakes” (if they survive at all).

Figure 12: System of Innovation Accumulates Experience

Accumulation of Experience: Patterns as System DNA

We assert that agile (faster adapting) systems take advantage of past experience:

 An agile, composable system increases its agility if it “remembers what worked and did

not” in various situations that arose in the past and might arise in the future.

 This implies learning from experience and retaining (remembering) those lessons, in

some way (which could include human aspects of learning, but also other forms).

Living systems invoke previously learned modes of behavior:

 Immune systems retain memory of past antigen encounters and antibodies that worked.

 Biological DNA retains memory of protein synthesis modes that apply under various

stresses.

 Brains retain memory of past situations and responses.

Figure 13: System Agility Enhanced by Accumulated Experience

Likewise, human designers apply their accumulated human experience to future designs:

 Personal experience, held as individuals

 Informal writings, files, libraries, attempts at formal knowledge sharing

 Pattern-based methods allow organizations to formally accumulate and reuse IP

Figure 14: Formal Patterns In Human-Performed Engineering Processes

Just as biologists speak of the evolution of evolvability, there is a notion of the pattern of

generating patterns. Patterns emerge from (are generated by) systems that are themselves

described by the System of Innovation Pattern. Human-performed science and engineering

illustrate this, but so does the natural world of innovation not performed by humans.

The discovery, formal representation, and analysis of patterns, eventually (but not at first) in

the form of models, is at the heart of the physical sciences. In engineering, patterns have taken

a number of forms (not all model-based in earlier patterns), in civil architecture (Alexander,

1977), software design (Gamma et al, 1995), and systems (Cloutier, 2008; Schindel, 2005a,

2007, 2011c, 2012a, 2014).

In all these cases, the expressed patterns describe regularities, across multiple instances:

 Predicting the future from the past—at least within some domain and envelope known

 Configuration space trajectories accumulate experience as patterns

 Increases the ability of (agile) systems to handle different situations

 Just having an architecture of composable components is necessary but not sufficient

for high agility--we also need to know good ways to put them together, or to find those

configurations soon enough when we don’t know them in advance.

 Numerous examples in configurable product platforms and multi-mode systems

Agile systems are more adaptable to different situations, but “mission envelopes” apply:

 System “mission envelope” describes how widely a pattern applies.

 Adaptability, but may not anticipate refrigerators providing phone service!

Figure 15: System Patterns Apply Across Some Defined Envelope in S*Space

Pattern
Envelope

Configuration
Space

The INCOSE/OMG MBSE Patterns Challenge Team (INCOSE Patterns Team 2014) is

practicing the use of S*Patterns (Figure 16) as demonstrations of the “smallest possible

configurable model” of adaptable systems, reported in multiple IS2015 papers (Nolan et al,

2015; Cook et al, 2015; Peterson et al; 2015; Schindel, Lewis, Sherey, Sanyal, 2015).

Figure 16: S*Patterns Are In Same Space as S*Models

These offer additional argument and evidence for strengthening the underlying semantic model

supporting MBSE, to make it sufficient to represent S*Patterns (Schindel, 2015) and their

evolving trajectories over time (this paper).

Examples of S*Patterns being worked on by Patterns Challenge Team members:

1. Integrated Enterprise Systems, Manufactured Platform Product, Manufacturing

Systems, Systems of Innovation thereof

2. Systems of Verification for Safety Critical Systems

3. Automated Ground Vehicles

4. Aerospace Systems

Examples of S*Patterns in private industry:

5. Automotive and Off-Road Vehicles

6. Engines

7. Enterprise and Embedded Control Systems

8. Medical Device Products

9. Advanced Manufacturing Processes, Equipment, and Systems (Pharmaceuticals,

Medical Devices, Biotech Products, Formulated Products, Aerospace Parts and

Systems, Advanced Inspection Systems)

10. Advanced Packaging Systems and Packages

11. Others

Conclusions, implications and future work

1. There are very practical reasons to want to track the trajectory of system configurations,

during development, during in-service life cycles, and across product line evolutions.

2. There is a minimal “genome” (S*Metamodel) that can provide a practical way to

capture, record, and understand those trajectories, with significant business impact.

3. There are productive “views” of those trajectories, which may be implemented on most

any general systems modeling tool or PLM system—a risk management application of

SE tracing—projecting detected gaps onto Stakeholder Feature space to understand

their significance.

4. Patterns (configurable reusable models) can provide higher leverage means for

implementing MBSE, tracking and exploiting system configuration trajectories,

configured by selectable Stakeholder Features.

5. Joint work is underway by the INCOSE Patterns Challenge Team and Agile Systems

Working Group to describe the S*Pattern representation of general Agile Systems

Appendix 1: Selected S*Metamodel Definitions

S* Metamodel Definitions. Table 2 briefly defines the metaclasses shown in Figure 2. For

more information on this subject refer to (Schindel 2005a, Schindel 2011).

Table 1: Definitions of Selected S*Metaclasses (of Figure 3)

System A collection of interacting Components. Components can be Systems.

(Functional)

Interaction

An Interaction occurs when Components change each other’s States by

exchange of Input-Outputs.

Input-Output (IO) Input-Outputs are energy, force, or mass (or information encoded on them),

exchanged between Components during Interactions.

State States are conditions of Components that determine their behavior in future

Interactions.

Interface Interfaces are associations of Input-Outputs, Systems of Access, and

Interactions, associated with Systems, through which the Input-Outputs are said

to flow.

System of Access

(SOA)

Systems of Access are systems that mediate the Interaction of systems.

(Functional) Role Roles are the behaviors performed by interacting systems.

Physical

Component

Entities defined by their identity, not behavior, which may be assigned

Functional Roles.

Stakeholder People, organizations, or other entities with a stake in the performance of a

System.

Feature System behaviors, named and defined in the conceptual framework and

language of Stakeholders, of value to Stakeholders.

Requirement

Statement

Requirements Statements (associated with Interaction-Role pairs) describe the

behavior of Roles during Interactions, in the form of (parameterized)

input-output relationships.

References

1. (Alexander, 1977) Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

and Angel, S., A Pattern Language. Oxford University Press, New York, 1977.

2. (Berg, 2014) Berg, E., “Affordable Systems Engineering: An Application of Model-Based System

Patterns To Consumer Packaged Goods Products, Manufacturing, and Distribution”, at INCOSE

IW2014 MBSE Workshop, 2014.

3. (Beihoff, Schindel, 2012) Beihoff, B., and Schindel W., “Systems of Innovation I: Models of Their

Health and Pathologies”, Proc. of INCOSE International Symposium, 2012.

4. (Bradley, Hughes, Schindel, 2010) Bradley, J., Hughes, M. and Schindel, W., “Optimizing

Delivery of Global Pharmaceutical Packaging Solutions, Using Systems Engineering Patterns”

Proceedings of the INCOSE 2010 International Symposium (2010).

5. (Cloutier, 2008) Cloutier, R., Applicability of Patterns to Architecting Complex Systems: Making

Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008.

6. (Cook, Schindel, 2015) Cook, D., and Schindel, W., “Utilizing MBSE Patterns to Accelerate

System Verification”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle,

WA, July, 2015.

7. (Dove, LaBarge, 2014) Dove, R., LaBarge, R., “Fundamentals of Agile Systems Engineering—Part

1” and “Part 2”, INCOSE IS2014, July, 2014.

8. (Dove, Schindel, 2015) Dove, R., and Schindel, W., “Agile Modeling and Modeling Agile

Systems”, to appear at INCOSE IW2015 MBSE Workshop, Torrance, CA, January 24, 2015.

9. (Gamma et al, 1995) Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing Company, Reading,

MA, 1995.

10. (Gould, 2002), Gould, S., The Structure of Evolutionary Theory, Harvard, 2002

11. (ICTT, 2009) “Systematica Metamodel”, Version 7.1, Methodology Release 4.0, May 29, 2009.

12. (ICTT, 2013) “Abbreviated Systematica 4.0 Glossary”, P3125 Ver. 4.2.2, ICTT System Sciences,

2013.

13. (INCOSE SSWG 2014), INCOSE System Sciences Working Group, Systems of Innovation Project

web site: https://sites.google.com/site/syssciwg/projects/o-systems-of-innovation

14. (INCOSE Patterns Team, 2014) INCOSE/OMG MBSE Initiative: Patterns Challenge Team

2013-14 Web Site: http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

15. (ISO 15288, 2014) ISO/IEC 15288: Systems Engineering—System Life Cycle Processes.

International Standards Organization (2014).

16. (Nolan, Pickard, Russell, Schindel, 2015) Nolan, A., Pickard, A., Russell, J., Schindel, W., “When

two is good company, but more is not a crowd”, to appear in Proc. of the INCOSE 2015

International Symposium, Seattle, WA, July, 2015.

17. (OMG, 2012) “OMG Systems Modeling Language, Version 1.3”, Object Management Group, June,

2012.

18. (Peterson, Schindel, 2015) Peterson, T., Schindel, W., “Model-Based System Patterns for

Automated Ground Vehicles”, to appear in Proc. of the INCOSE 2015 International Symposium,

Seattle, WA, July, 2015.

19. (Schindel, 2005a) Schindel, W., “Pattern-Based Systems Engineering: An Extension of

Model-Based SE”, INCOSE IS2005 Tutorial TIES 4, (2005).

20. (Schindel, 2007), “Are Patterns Software?”, ICTT System Sciences, January 2007.

21. (Schindel, 2010) Schindel, W., “Failure Analysis: Insights from Model-Based Systems

Engineering”, INCOSE International Symposium, Chicago, 2010.

22. (Schindel, 2011a) Schindel, W. “Innovation as Emergence: Hybrid Agent Enablers for

Evolutionary Competence” in Complex Adaptive Systems, Volume 1, Cihan H. Dagli, Editor in

Chief, Elsevier, 2011

23. (Schindel, 2011b) Schindel, W. “What Is the Smallest Model of a System?”, Proc. of the INCOSE

2011 International Symposium, International Council on Systems Engineering (2011).

24. (Schindel, 2011c) Schindel, W., “The Impact of ‘Dark Patterns’ On Uncertainty: Enhancing

Adaptability In The Systems World”, in Proc. of INCOSE Great Lakes 2011 Regional Conference

on Systems Engineering, Dearborn, MI, 2011

25. (Schindel, 2012a) Schindel, W. “Introduction to Pattern-Based Systems Engineering (PBSE)”,

INCOSE Finger Lakes Chapter Webinar, April 26, 2012.

26. (Schindel, 2012 b) Schindel, W., “Integrating Materials, Process, & Product Portfolios: Lessons

from Pattern-Based Systems Engineering”, in Proc. of Society for Advancement of Materials and

Process Engineering (SAMPE), 2012

27. (Schindel, 2013b) Schindel, W., “Systems of Innovation II: The Emergence of Purpose”,

Proceedings of INCOSE 2013 International Symposium (2013).

28. (Schindel, 2014) Schindel, W. “The Difference Between Whole-System Patterns and Component

Patterns: Managing Platforms and Domain Systems Using PBSE”, INCOSE Great Lakes Regional

Conference on Systems Engineering, Schaumburg, IL, October, 2014

29. (Schindel, 2015) Schindel, W., “Maps or Itineraries? A Systems Engineering Insight from Ancient

Navigators”, to appear in Proc. of the INCOSE 2015 International Symposium, Seattle, WA, July,

2015.

30. (Schindel, Lewis, Sherey, Sanyal, 2015) Schindel, W., Lewis, S., Sherey, J., Sanyal, S.,

“Accelerating MBSE Impacts Across the Enterprise: Model-Based S*Patterns”, to appear in Proc.

of INCOSE 2015 International Symposium, July, 2015.

31. (Schindel, Peterson, 2013) Schindel, W., and Peterson, T. “Introduction to Pattern-Based Systems

Engineering (PBSE): Leveraging MBSE Techniques”, in Proc. of INCOSE 2013 International

Symposium, Tutorial, June, 2013.

32. (Schindel, Smith, 2002) Schindel, W., and Smith, V., “Results of applying a families-of-systems

approach to systems engineering of product line families”, SAE International, Technical Report

2002-01-3086 (2002).

33. (Smith, Marzolf, Schindel, 2014), Smith G., Marzolf, T., Schindel, B., “Report of the SSWG SP/SP

Modeling Sub-Team”, INCOSE IW2014, Los Angeles, CA, Jan. 27, 2014.

34. (U’Ren, 2003) U’Ren, J., “An Overview of AP233: STEP’s Systems Engineering Standard”, ISO

10303 AP233 Working Group, October 20, 2003.

35. (Vance, 2014) Vance, A., “Updates Available”, article in “Technology” section of Bloomberg

Business Week, Sept 8-14, 2014, pp. 30-32.

Biography

 Bill Schindel is president of ICTT System Sciences (www.ictt.com), a

systems engineering company. His 40-year engineering career began in

mil/aero systems with IBM Federal Systems, Owego, NY, included

service as a faculty member of Rose-Hulman Institute of Technology,

and founding of three commercial systems-based enterprises. He has

led and consulted on improvement of engineering processes within

automotive, medical/health care, manufacturing, telecommunications,

aerospace, and consumer products businesses. Schindel earned the BS

and MS in Mathematics. He co-led a 2013 research project on the science of Systems of

Innovation within the INCOSE System Science Working Group, and currently co-leads the

Patterns Challenge Team of the OMG/INCOSE MBSE Initiative. Bill is an INCOSE CSEP,

and president of the Crossroads of America INCOSE chapter.

