
2017-01-27 1

CLOSING THE DESIGN CYCLE LOOP WITH
EXECUTABLE REQUIREMENTS AND OSLC

Hubertus Tummescheit, Modelon
Bob Sherman, Procter & Gamble
Juan Llorens, The Reuse Company

INCOSE IW 2017
MBSE Workshop

AGENDA

• Motivation: Systems Engineering and Modeling and Simulation need to

converge

• Open Standards we build on: Modelica, FMI, OSLC, SySML

• An Ideal Process to Integrate Systems Engineering with Model Based Design

• Continuous Integration to Close the Loop for Rapid Design Iterations

• First Steps to Automate Requirements Formalization

• Call to Action

27 January 2017

SYSTEMS ENGINEERING AND MODEL BASED DESIGN

Two worlds that need to converge

Simulation-in-the-loop along the Design Flow of the Systems Engineering V

Component
Design

Module
Design

Requirements & Performance Targets Finished Product

Component
Verification

Module Integration
& Verification

System Integration
& Validation

System
Design

Modeling & Simulation IN THE V-MODEL is necessary Today

But SE tools and Simulation tools Typically don’t Work together

Many industries do this all the time, but the tools are not integrated!

Systematically

Building-up space of

potential solutions
1

Modelling and

simulating potential

solutions

2

Verifying against

requirements and

identifying the „best“

solution

3

Definition of top-level

requirements

and KPI derivation

0

MODELICA: THE OPEN STANDARDS SYSTEM LANGUAGE

Modelica® is a non-proprietary, object-oriented, equation based language to conveniently model
complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic, thermal,
control, electric power or process-oriented subcomponents

• Object oriented modeling language

• Non-causal and equation based

• First principles (mass, energy, momentum balances)

• Supports multi-domain modeling

• Available in more than 10 different tools

5

FMI IN A NUTSHELL

• What is FMI?
 an application programming

interface and its semantics

 an xml schema that describes
the model structure and
capabilities

 the structure of a zip file that
is used to package the model,
its resources and
documentation.

• > 90 tools support FMI in 10
different categories.

Supported by >90 tools:
• 0/1-D ODE Simulators
• Multibody Simulators
• HIL Simulators /SIL tool chains
• Scientific computation tools
• Data analysis tools
• Co-simulation backplanes
• Software development tools
• Systems engineering tools
• Process integration and optimization

tools
• SDKs

OPEN SERVICES FOR LIFECYCLE COLLABORATION (OSLC)

• OSLC = reusing web standards for
tool integration

• Based on Web standards linked
data and RESTful Web services

• Create specifications for
interactions between tools

• Initiated by IBM, now managed by
OASIS

• Focus on software-and systems
engineering

• Not much traction (yet) with M&S
tools

2017-01-27 7

We built an open-source OSLC-to-FMI connector
to link simulation results and parameters to life
cycle tools

AN IDEAL PROCESS TO INTEGRATE
SYSTEMS ENGINEERING

WITH MODEL BASED DESIGN

27 January 2017 8

Semantic Integration

9

SysML
SimulationRequirements

Behavior
ConstraintBehavior

Purpose/Context Behavior
Observed

The System
shall...

Purpose, Context & Anatomy of a Requirement

10

Interaction

System 1 System 2

Requirement

Attribute

Attribute

Attribute

Attribute

Bill Schindel (of ICTT):
“Requirements are Transfer Functions”

x

y

Example System

11

Example Requirement
(Transfer Function)

12

Example Requirement
(Transfer Function)

13

??? Machine readable requirements statement ???

Simulation

Prospective SE and M&S Integration Strategy

*The “Systems Engineering” metamodel is a representation of Bill Schindel’s “Systematica” method.

Simulation Library

Systems Engineering*

Interaction

Logical
System 1

Logical
System 2

Requirement 2.1

Feature

Physical
Thing A

Physical
Thing B

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute
Interaction

Physical
Thing B Attribute

Physical
Thing A Attribute

Attribute Attribute

Logical
System 1

Logical
System 2

Requirements
Verdict Mgr

Requirements Monitor

Requirements
Editor

Test
Orchestrator

Simulation
Inputs

Loads,
Boundaries,
Initial Conditions,
etc.

Attribute Attribute

Requirement 2.1

Simulation library already knows
set of all possible actions/flows.

Simulation

Prospective SE and M&S Integration Strategy

*The “Systems Engineering” metamodel is a representation of Bill Schindel’s “Systematica” method.

Simulation Library

Systems Engineering*

Interaction

Logical
System 1

Logical
System 2

Requirement 2.1

Feature

Physical
Thing A

Physical
Thing B

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute
Interaction

Physical
Thing B Attribute

Physical
Thing A Attribute

Attribute Attribute

Logical
System 1

Logical
System 2

Requirements
Verdict Mgr

Requirements Monitor

Requirements
Editor

Test
Orchestrator

Simulation
Inputs

Loads,
Boundaries,
Initial Conditions,
etc.

Attribute Attribute

Requirement 2.1

Implementation Space

Functional Needs Space

Prospective Mapping
of

Functional Architecture
to

Tool Suppliers

Simulation Library

Systems Engineering*

System of Systems

Logical
System 1

Logical
System 2

Requirement

Feature

Physical
Thing A

Physical
Thing B

Simulation

LS Attribute

LS Attribute

LS Attribute

LS Attribute

LS Attribute

LS Attribute

LS Attribute

LS Attribute
Interaction

Physical
Thing B LS Attribute

Physical
Thing A LS Attribute

LS Attribute LS Attribute

Logical
System 1

Logical
System 2

Requirements
Verdict Mgr

Requirements Monitor

Requirements
Editor

Test
Orchestrator

Test Orchestration Tool
(InterCAX)

Simulation Tool

Systems Modeling Tool
(IBM)

Requirement
Authoring Tool

(Re-Use)

Logical
Modeling

Tool
(IBM)

Standard

St
an

d
ar

d

St
an

d
ar

d

Requirement
Monitor Tool

(Modelon)

Requirement
Verdicts Tool

(???)

EXECUTABLE REQUIREMENTS

Continuous feedback on compliance of requirements

Translate
to

Executable
s

IN-THE-LOOP REQUIREMENTS VERIFICATION

Connect SE to MBD:
Stakeholder Requirements

Design Requirements

All
Pass?

Test Cases
Requirements

Monitors

Verifier Models

Batch
Execution

Result Report

Done

Modify:
• Reqs

• System
• Model

Virtual SystemReal System

Executable
EnvironmentYes

Requirements
Manager

No

These exercise the
system dynamics.

Combining a test case with
one or more monitors allows
requirements to be verified.The complete set of

executable verifier models
can be tested automatically.

Complete
Coverage?

When requirements are
not met, modifications
can be made to the
system, model or even
the requirements.

These are the executable
checks to verify the
requirements are met.

Specifying the requirements in a
standard way, e.g. LTL, opens the
possibility to automatically
generate the executable monitors.

The requirements manager
should be able to verify that all
requirements will be tested by
the set of verifier models.The report shows a

summary overview of the
pass/fail results.

Formalized
Requirements

These are low-level and
testable. When possible
also specified in a formal,
open standard language.

Translate
to

Executable
s

AUTOMATED REQUIREMENTS VERIFICATION

Stakeholder Requirements

Design Requirements

All
Pass

?

Test Cases
Requirements

Monitors

Verifier Models

Batch
Execution

Result Report

Done

Modify:
• Reqs

• System
• Model

Virtual SystemReal System

Executable
EnvironmentYes

Requirements
Manager

No

Complete
Coverage?

Formalized
Requirements

Degree of
Automation?

Connect SE to MBD:

Automate Analysis
& Deploy to team!

AUTOMATED REQUIREMENTS VERIFICATION

• Systems Engineering centric FMI-based workflow example:
automated requirements verification for hardware and
software requirements

Requirements Formalized
requirements

Executable model of
requirements (e.g. FMU)

Physical plant Model of plant
Deployable model

of plant (FMU)

Software spec Software model
or prototype

Deployable model
of software (FMU)

Development of a customized workflow to allow
rapid iterations of plant & software configuration

Operations Model of
operations

Model of
operations / loads

RESEARCH IMPLEMENTATION: REQUIREMENTS IN MODELICA

• Open Source Modelica library, based on 3-valued logic:
Satisfied, Undecided, Violated

• Large Library of pre-defined requirement structures
•  Executable and formal model of requirements, in Modelica language

(x,y) coordinates of input must
stay within closed polygon
(output: closest distance to
polygon + property)

CONTINUOUS INTEGRATION OF REQUIREMENTS
VERIFICATION

Test Automation with Optimica Testing Tools (OTT)

EXECUTABLE REQUIREMENTS FOR DESIGN ENGINEERS

1. Design task (e.g. controller with given performance metric)

1. Designer has access to a model with executable requirements monitors

2. Designer validates requirements with each design iteration interactively

3. Designer adds finished models of design and requirements to Continuous Integration
server & trigger for automated re-testing

2. Designer moves to next task and repeats process

3. Observe productivity gain and fewer turn-backs

27 January 2017 Modelon Confidential 23

Design
task

Req

Executable
Requirements

Validated
Module

Req

Trigger & iterate on
any changeRepeat for next task

Add to CI server for
continuous
verificationProcess Enabled by

Modelica Requirements &
OPTIMICA Test

Automation

OPTIMICA TESTING TOOLKIT

• Key features

 Modelica and FMI cross testing & execution platform

 Flexible test authoring, with GUI & scripts

 Simulation-specific automated validation

 Automated test execution and reporting

• Architecture

 Core
• Command line tool for running & automating tests

• Integrated with Jenkins

 GUI
• Tool for creating, updating and running tests

• Reviewing and updating results

OPTIMICA TESTING TOOLKIT GUI

Report shows summary
of results with
hyperlinks to detailed
reports

TRANSFORMING NATURAL LANGUAGE TO A FORMAL
REPRESENTATION

Closing the gaps

MOTIVATION I

Several ways to verify & validate requirements:

 Formal methods: check e.g. consistency of a set of logical requirements

 Simulation: verify that requirements are consistent with physical reality of
system

 Both require formalized and executable requirements

27 January 2017 Modelon Confidential 27

Need to ensure that the requirements are consistent in terms of time

Proposal:

analyze NL requirements,

detect temporal elements,

formalize them

assess temporal quality and show results using a The REUSE Company’s RQA

Custom-coded metric

MOTIVATION II

Method

Automatic Translation from Natural Language to Formal representation
Method

NL
Requirement

Conceptual

graph

representationRequirements
Pattern

Matching

Formalized output
Transformation

Formal
representation

Formal Analysis or Simulation based verification
Method

NL
Requirement

Requirements
Pattern

Matching

Formal
Transformation

LTL

Analysis

Result

LTL
Analysis

Requirements
Quality Analyzer:

RQA

Requirements
Authoring Tool:

RAT

LTL Analysis Tool
Conceptual

graph

representation

Formal
representation

Simulation based
Analysis

Simulation
Analysis

Result

Simulation based
Analysis

Simulation
Analysis

Result

Compilation to
FMU (FMI standard)

Create a Metric for LTL consistency: Custom Code in RQA
RAT Overview

Example

Shared Resource Arbiter

SRA_2

When the flying engine activates, the propeller shall be canceled until the ignition starts

When the aircraft departures, the wheels shall be closed until the electrical power system activates

When ignition starts, electrical power system shall be stopped

When electrical power system activates, ignition shall be deactivated

G((flying_engine=1)  X((propeller=0)U(ignition=1)));

G((aircraft=1)  X((wheel=0)U(electrical_power_system=1)));

G((ignition=0) + (electrical_power_system=0));

Example

Client

Mutex

Shared Resource Arbiter

SRA_3
When the flying engine activates, the propeller shall be canceled until the ignition starts

When the aircraft launches, the wheels shall be closed until the electrical power system activates

When the navigation system starts, the control mode shall be stopped until the gearshift enables

When ignition starts, electrical power system and gearshift shall be stopped

When electrical power system activates, ignition and gearshift shall be deactivated

When gearshift begins, ignition and electrical power system shall be terminated

G((flying_engine=1)  X((propeller=0)U(ignition=1)));

G((aircraft=1)  X((wheel=0)U(electrical_power_system=1)));

G((navigation_system=1)  X((auto_control_mode=0)U(gearshift=1)));

G(((electrical_power_system=0) * (gearshift=0)) +
((ignition=0) * (gearshift=0)) +
((ignition=0) * (electrical_power_system=0)));

Example

Client

Mutex

Ontology Building

Pattern matching and Formalization
Ontology Building

When the flying engine activates, the propeller shall be canceled until the ignition starts

«Time» «System»

«Start»

ADVERB NOUN

«Stop»

VERB

VERB

or

«Start»

«Stop»

VERB

VERB

or
Shall

«System»

NOUN

VERB Until
«System»

«Start»

NOUN

«Stop»

VERB

VERB

or

Flying Engine Propeller

«Stop»

Ignition

Attribute Value

ReqType Client

Flying Engine Activated

Propeller Deactivated

Ignition Activated
G((flying_engine=1)  X((propeller=0)U(ignition=1)));

RAT overview

Plug-in for IBM rational DOORS
RAT Overview

Allows Requirements Authoring
RAT Overview

RAT Plug-in running on top of DOORS
RAT Overview

RAT Plug-in running on top of DOORS
RAT Overview

Requirement
Authoring Pane

RAT Plug-in running on top of DOORS
RAT Overview

Quality Pane:
Correctness

RAT Plug-in running on top of DOORS
RAT Overview

Decision Support
Pane

RAT Plug-in running on top of DOORS
RAT Overview

Correctness
Quality
Value

Structural
Quality
Value

RAT Plug-in running on top of DOORS
RAT Overview

Overlapping
Requirement

s

Terminology
Coverage

Completeness
Issues

Consistency
Issues

WHERE DOES THIS LEAVE US OVER ALL?

We have a vision of an integrated process and tool landscape to bring together
Systems Engineering and Model Based Design

A few good things can be done today:

The RAT allows to write high quality requirements, integrated into requirements
management

We can use Modelica to make requirements executable

We can give the requirements to design engineers and enable automated
requirements verification with Optimica Testing Tools

We can transform natural language requirements to a formal representation for
formal or simulation based verification

There are still many missing links to fill the gaps!

CALL TO ACTION

• We are looking for other systems engineering users that support
the same vision

• We are looking for more tool vendors on the systems engineering
and modeling and simulation side that share our vision

• We strongly believe in open standards to connect SE & MBD

• Let’s work together to make this a reality:
We need better tool integration to enable engineers to design
complex systems!

27 January 2017 48

