Semantic MBD Workflows

CAPVIDIA

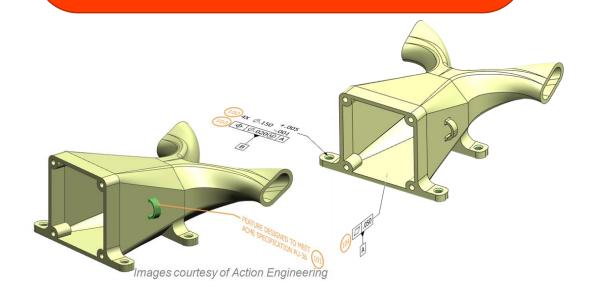
How the use of Model Based Definition can help bring about Digital Transformation for the modern manufacturing enterprise

www.capvidia.com

Overview

- What is MBD?
- QIF how MBD is implemented
- MBD Workflows
 - Digital FAI with Supply Chain
 - MBD-Based CMM Workflow
- Questions

Model Based Definition (MBD)

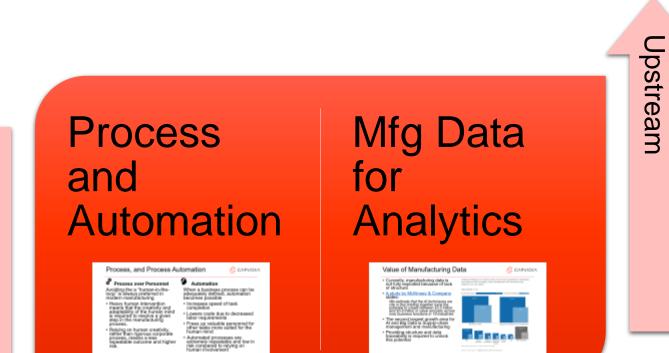


What is MBD, and why is it important?

Model Based Definition (MBD)

Using the **3D CAD** model, managed in the context of a PLM workflow, as the "**single source of truth**" for **product and process data**

From Wikipedia:


Model-based definition (MBD),

sometimes **digital product definition**, is the practice of using <u>3D models</u> (such as solid models, 3D <u>PMI</u> and associated metadata) within 3D <u>CAD</u> software to define (provide specifications for) individual components and product assemblies. The types of information included are <u>geometric dimensioning and</u> tolerancing (GD&T), component level materials, assembly level <u>bills of materials</u>, engineering configurations, design intent, etc. By contrast, other methodologies have historically required accompanying use of 2D <u>engineering</u> drawings to provide such details.^[1]

Wikipedia contributors. (2018, October 9). Model-based definition. In Wikipedia, The Free Encyclopedia. Retrieved 19:27, June 8, 2019, from <u>https://en.wikipedia.org/w/index.php?title=Model-based_definition&oldid=863182909</u>

Looking to the Future: What is the Value of MBD?

Model Based Definition provides a source of value in the downstream direction from design, and in the upstream direction from operations and deployment

Downstream

5

Process, and Process Automation

Process over Personnel

Avoiding the a "human-in-theloop" is always preferred in modern manufacturing

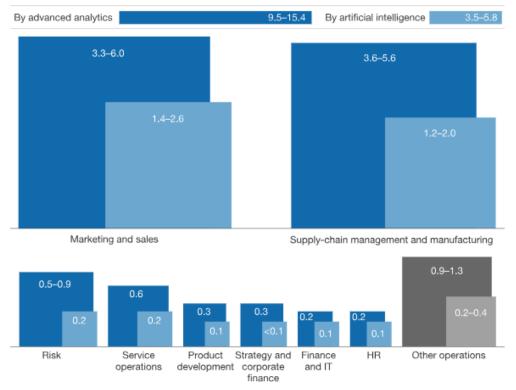
- Heavy human intervention means that the creativity and adaptability of the human mind is required to resolve a given step in the manufacturing process.
- Relying on human creativity, rather than rigorous corporate process, means a less repeatable outcome and higher risk.

Automation

When a business process can be adequately defined, automation becomes possible

- Increases speed of task completion
- Lowers costs due to decreased labor requirements
- Frees up valuable personnel for other tasks more suited for the human mind
- Automated processes are extremely repeatable and low in risk compared to relying on human involvement

Value of Manufacturing Data


- Currently, manufacturing data is not fully exploited because of lack of structure
- <u>A study by McKinsey & Company</u> states:

We estimate that the AI techniques we cite in this briefing together have the potential to create between \$3.5 trillion and \$5.8 trillion in value annually across nine business functions in 19 industries

- The second largest growth area for AI and Big Data is Supply-chain management and manufacturing
- Providing structure and data traceability is required to unlock this potential

Artificial intelligence's impact is likely to be most substantial in marketing and sales as well as supply-chain management and manufacturing, based on our use cases.

Value unlocked, \$ trillion

Note: Figures may not sum to 100%, because of rounding.

McKinsey&Company | Source: McKinsey Global Institute analysis

Quality Information Framework – QIF

QIF – and ANSI and DIS ISO standard for implementing Model Based Definition workflows

What is QIF?

XML Technology: Simple Implementation and Built-In Code Validation

Data semantically linked to Model for full data traceability to CAD

QIF Application Areas

QIF Application Areas

Reference a bundle of QIF Results sets and specify a statistical analysis method to be carried out. Can optionally include the results of the statistical analysis as well

Measurement results data, associated with the MBD! This can be just tolerance evaluation results, and can even include all the point cloud data from the features

DMIS is <u>not</u> part of QIF, but it has been updated to harmonize with the data traceability mechanisms in QIF

Create measurement templates—e.g.: If a Surface Profile tolerance value is less than **x**, use at least **y** number of points/sq. in. for CMM measurement QIF MBD is the base for providing traceability to authority CAD data. It is not required for basic QIF use cases. Considered to be the strongest semantic CAD+PMI standard available

Wide range of optional levels of detail for measurement plans:

- Bill of characteristics
- Assign measurement resources
- Specify sampling point locations

Specify basic or highly detailed information about available measurement equipment (e.g., CMMs, probes, calipers, gages, etc.). As always, this data is contextual and semantic

Workflow Example

Process Stage 1:

Search the PMI applied to the QIF MBD model, and identify the necessary measurement tasks. This list of tasks is called a Bill of Characteristics

Process Stage 2:

Using a set of organizational Measurement Rules and a list of available Measurement Resources, assign measurement resources to measurement tasks.

Process Stage 3:

Generate a DMIS inspection program from the high level plan for any CMM measurement tasks that have been assigned.

Process Stage 4:

Evaluate the point clouds from the CMM or other dimensional measurement equipment against the GD&T assigned to each feature.

Process Stage 5:

Carry out statistical analysis of a set of measurement results according to organizational procedures.

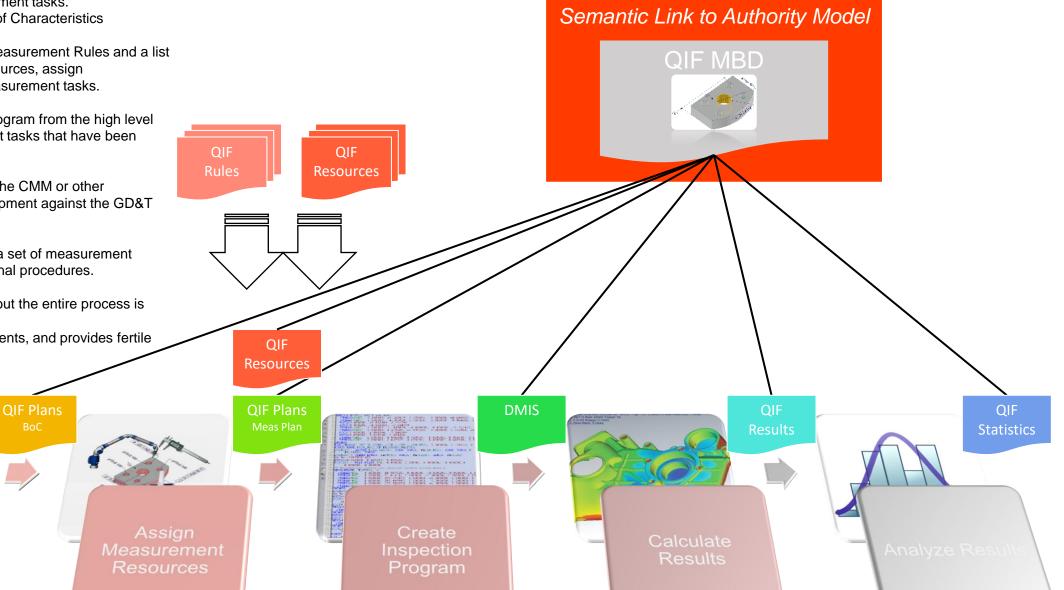
All QIF data generated throughout the entire process is linked to the authority model.

This fulfills traceability requirements, and provides fertile opportunities for data mining.

 60.
 Press
 Press

 II
 6.775
 8.760
 0.55

 II
 6.705
 8.600
 0.667


 II
 6.525
 0.590
 0.652

 III
 6.343
 0.300
 0.338

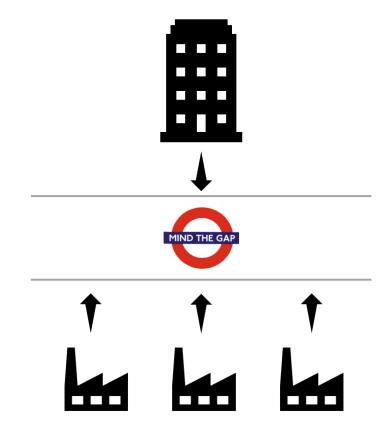
 III
 6.343
 0.300
 0.338

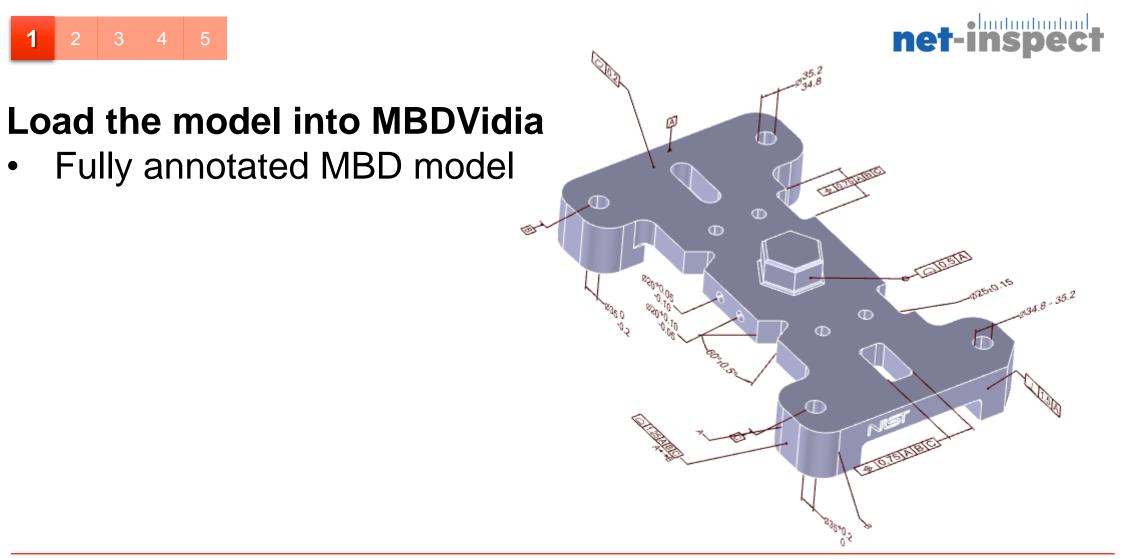
 III
 6.343
 0.300
 0.338

 IIII
 6.343
 0.736
 68.547

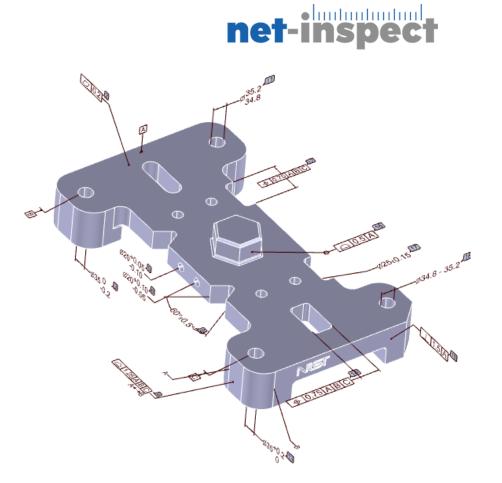
CAPVIDIA

DMSC Members




Bridging the data gap between an OEM and its supply chain

- Manufacturing is global and distributed
- But data is fragmented
- 70-90% of manufacturing is typically executed outside the walls of an OEM

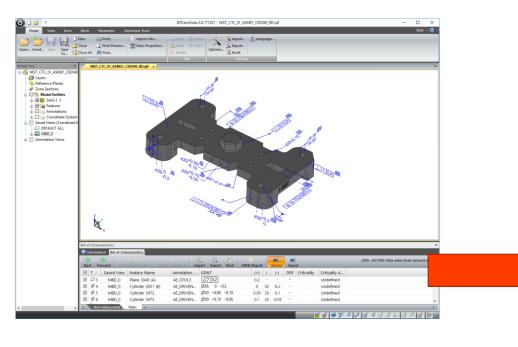


2 3 4 5

Generate Bill of Characteristics

- Automatic ballooning
- Data sorted into organized Bill of Characteristics

🗢 Back	For	🔷 🛛 ward 🔹 Gene		lustration Exp		> Report		ni Upload	ni Impo		67411b-7be6-4c89-8be0
Z T.	Δ	Saved View	Feature Name	Annotation	GD&T	(+)	1	(-)	DRF	Criticality	Criticality Area
/ //	72	MBD_0	Plane 2771 (A)	Flatness.1	∠ 0.2	0.2	-	-	-	Critical	Fit
Ø	3	MBD_0	Cylinder 2773 (B)	Linear Size.1	Ø35 0 -0.2	0	35	-0.2	-		Undefined
	4	MBD_0	Generic 2780	Position sur		1.25	-	-	ABC	Critical	Mission
Ø	5	MBD_0	Cylinder 2786	Linear Size.3	Ø20 +0.05 -0.10	0.05	20	-0.1	-		Undefined
Ø	6	MBD_0	Cylinder 2787	Linear Size.4	Ø20 +0.10 -0.05	0.1	20	-0.05	-	Major	Safety
/	79	MBD_0	Opposite Planes 2791	Angular Siz	60° ±0.5°	0.5	60	-0.5	-		Undefined
Ø	11	MBD_0	Cylinder 2789	Linear Size.8	Ø35.2-34.8	0.2	35	-0.2	-	Major	Fit
•	12	MBD_0	Opposite Planes 2777	Position.3	0.75 A B C	0.75	-	-	ABC		Undefined
Ø	13	MBD_0	Cylinder 2774 (C)	Linear Size.2	Ø35 +0.2 0	0.2	35	0	-		Undefined
•	14	MBD_0	Opposite Planes 2779	Position.2	0.75 A B C	0.75	-	-	ABC		Undefined
7 4	16	MBD_0	Generic 2781	Position sur	□ 0.5 A	0.5	-	-	Α	Critical	Fit
Ø	17	MBD_0	Cylinder 2793	Linear Size.9	Ø25 ±0.15	0.15	25	-0.15	-		Undefined
v Ø	18	MBD_0	Cylinder 2788	Linear Size.7	Ø34.8-35.2	0.2	35	-0.2	-		Undefined
7 ⊥	- 19	MBD_0	Plane 2775	Perpendicul	1.5 A	1.5	-	-	Α		Undefined



1 2 3 4 5

Publish

- FAIR automatically generated/filled
- Linked to MBD

ni	FAIR #1077	Form 3 × +							- c	
ightarrow	ሮ û	① ▲ https://v5t	.net-inspect.com/FirstA	rticles/573777/3	🔊 🏠 🔍 Sea	urch		l	N 🔍	•
et-ii	nspect	III First Articles Qu	ality Management	Calibration eSource			Q	۰	💄 сару	/idia 🗸
eate F	AIR V	iew Internal View Supplier	FAIR Requirements	ITC Review Supplier Tree (Beta) Supplier M	lap (Beta) Re	eports	SAVE FAIR			M 3
Fo	rm 3: (Characteristic Accou	intability, Veri	fication and Compatibility Eval	uation up	DATE INSPECTION PLA	N			
?					VIE	W INSPECTION PLAN				
	Part Numb	C 01 ASME1	2. Part Name NIST_CTC_01_ASME1	3. Serial Number		4. FAIR Number 1077				
	ist thin et	COTABILET	mon_ene_on_nomen.			1017				
			✓ Customer P			70015				
Ch	aracter	istics	Customer P	review + ADD A CHARACTERISTIC -	BULK UPDATE	TOOLS ~				
			Search All	٩						
	5. Char.		7. Characteristic			10. Designed / Qualified Tooling	11. Nonc	onforman	ce	
	No.	6. Reference Location ③	Designator ③	8. Requirement Ø	9. Results 🕲	0	Number	0		
	3	PlaneFeatureNominal 3948 Bubble Number: 3	Undefined	CharacteristicFlatness (< 0.2) mm					×	
	4	CylinderFeatureNominal 3951 Bubble Number: 4	Undefined	DimensionDiameter (35 + 0.0 / -0.2) mm					×	
	5	CylinderFeatureNominal 3972 Bubble Number: 5	Undefined	DimensionDiameter (20.00 + 0.05 / -0.10) mm					×	
	6	CylinderFeatureNominal 3975 Bubble Number: 6	Undefined	DimensionDiameter (20.00 + 0.10 / -0.05) mm					×	
	7	OppositePlanesFeatureNominal 3983 Bubble Number: 7	Undefined	DimensionAngular (60.0 +/- 0.5) degree					×	
	8	CylinderFeatureNominal 3965 Bubble Number: 8	Undefined	DimensionDiameter (35.00 +/- 0.20) mm					×	
		babble Nambel. O								

net-inspect 4 ni FAIR #1071 Form 3 × + (←) → C' @ 🗉 🚥 💟 🏠 🔍 Search 🚽 III\ 🔍 🖽 Ξ Image: Antropy of the sector of the secto **Enter Results** Quality Management Q 1 💄 capvidia 🗸 net-inspect # **First Articles** Calibration eSource Create FAIR View Internal View Supplier FAIR Requirements ITC Review Supplier Tree Supplier Map Reports SAVE FAIR Save FAIR Form 3: Characteristic Accountability, Verification and Compatibility Evaluation 2 UPDATE INSPECTION PLAN VIEW INSPECTION PLAN 1. Part Number 2. Part Name 3. Serial Number 4. FAIR Number NIST PMI CTC 01 ASME1 NIST_CTC_01_ASME1_CR2040_RD 1071 Customer Preview + ADD A CHARACTERISTIC TOOLS ~ Characteristics Search All... Q 5. Char. 7. Characteristic 10. Designed / 11. Nonconformance No. 8. Requirement @ Qualified Tooling (2) 6. Reference Location (2) Designator @ 9. Results (2) Number PlaneFeatureNominal 3948 3 CharacteristicFlatness (< 0.2) mm 0.2 Undefined Bubble Number: 3 CylinderFeatureNominal 3951 4 35 Undefined DimensionDiameter (35 + 0.0 / -0.2) mm Bubble Number: 4 CylinderFeatureNominal 3972 5 19.9 Undefined DimensionDiameter (20.00 + 0.05 / -0.10) mm Bubble Number: 5 CylinderFeatureNominal 3975 6 19.89 Undefined DimensionDiameter (20.00 + 0.10 / -0.05) mm × Bubble Number: 6 **OppositePlanesFeatureNominal** 0 7 3983 60.01 Undefined DimensionAngular (60.0 +/- 0.5) degree × Bubble Number: 7 CylinderFeatureNominal 3965 8 35 Undefined DimensionDiameter (35.00 +/- 0.20) mm x Bubble Number: 8 GenericFeatureNominal 3964 CharacteristicProfileSurface (< 1.25) mm 9 1.24 Undefined × □ 1.25 A B C A → B Bubble Number: 9

23

×

Style 🗸 🕜

MBD Workflows: **Digital FAI with Supply Chain**

Import FAIR number

ni FAIR #1071 Form 3 (←) → C' @

net-inspect

1. Part Number

Characteristics

5. Char

3

4

5

6

8

9

No. @ 6. Reference Location @

Bubble Number: 3 CylinderFeatureNominal 3951

Bubble Number: 4 CylinderFeatureNominal 3972

Bubble Number: 5 CylinderFeatureNominal 3975

Bubble Number: 6 OppositePlanesFeatureNomina 3983

Bubble Number: 7 CylinderFeatureNominal 3965

Bubble Number: 8 GenericFeatureNominal 3964

Bubble Number: 9

PlaneFeatureNominal 3948

NIST PMI CTC 01 ASME1

View Internal

Create FAIR

First Article

View Supplier

2. Part Name

7. Characteris

Designator @

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

NIST_CTC_01_ASME1_CR2040_RD

DimensionDiameter (35 + 0.0 / -0.2) mm

DimensionDiameter (20.00 + 0.05 / -0.10) mr

DimensionDiameter (20.00 + 0.10 / -0.05) mm

DimensionAngular (60.0 +/- 0.5) degree

DimensionDiameter (35.00 ±/- 0.20) mm

□ 1.25 A B C A++B

rofileSurface (< 1.25) mm

35

35

1.24

19.9

5

- See Net-Inspect data on model
- Net-Inspect data now traceable to authority MBD dataset

Home R Open... Insert... Save Save ⊡--@ NIS 0 ----.

. Image: Antropy of the sector of the secto 🗉 🚥 🔽 🏠 🔍 Search 🛓 II\ 🔍 🗂 . -- 📑 Quality Management Calibration eSource Q 🌼 🛓 CAPVIDIA 🗸 ÷. ÷-= FAIR Requirements ITC Review Supplier Tree Supplier Map Report Form 3: Characteristic Accountability, Verification and Compatibility Evaluation 🔮 UPDATE INSPECTION PLAN VIEW INSPECTION PLAN 3. Serial Numbe 4, FAIR Numbe 1071 Customer Preview + ADD A CHARACTERISTIC TOOLS ~ Search AlL. 11. Nonconfor 10. Designed / Qualified Tooling (?) 8. Requirement @ 9. Results @ Number @ CharacteristicFlatness (< 0.2) mm

×

😧 🗋 🞽 🔻

🗋 New 🛛 🚔 Print... 📄 Import Info...

🚰 Close 🛕 Print Preview... 🏧 Mass Properties... 🛍 Paste 🔉 Redo

X Delete

As 🛄 🤇	Liose All and Find		∧ Delete	Reset							
	General		Edit	Setti	ngs						
ee X VIST_CTC_01_ASME1_CR2040 Layers Reference Planes Zone Sections Model Entities Constructions Annotations Saved Views (Combined S DEFAULT ALL Saved Views (Combined S Annotation Views	NIST_CTC_01_ASME1_CR2040_RD.qit x										
	Bill of Characteristics	aracteristics									×
	Back Forward Gen	erate Illustrations Show I	Ilustration Imp		ITML Report Uplo		rt G		QPID: cf6759f0-5	98a-446d-90d6-5a0ee63	d5de6
	Tag Saved View		Annotation		(+) / (-) DRF	Criticality Critic	ality A	ActualComponent 🗸	7	^
	✓ ➡11 MBD_0	Opposite Planes 3961			0.01 85 -0.0	01 -		fined	85.010		
	☑ ☐ 7 MBD_0	Opposite Planes 3983	-	60° ±0.5°	0.5 60 -0.	5 -	Unde		60.01		
	Ø 8 MBD_0	Cylinder 3965		Ø35.20-34.80	0.2 35 -0.			fined	35.000		
	Ø 4 MBD_0	Cylinder 3951 (B)	AE_DRIVEN	Ø35 0 -0.2	0 35 -0.	2 -	Unde	fined	35.0		~
>	A Non-Measurable	Main +									⊳
							1	a w	3 7 I V 2		1
								↓ 1.	4. 1 2. 2	2 LD 635 6	

3DTransVidia 3.8.171201 - NIST_CTC_01_ASME1_CR2040_RD.qif

🐨 Reset

Copy 9 Undo Simport... A Language...

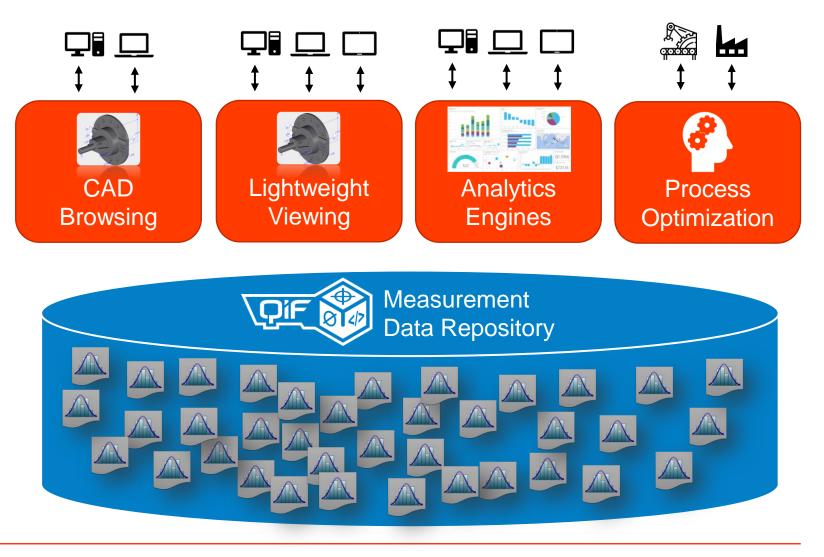
Options...

Demonstration: QIF and Net-Inspect

Round trip MBD workflow using QIF and Net-Inspect:

- Auto-generate BoC from MBD and publish to Net-Inspect
- Execute CMM program
- Upload raw results data to Net-Inspect
- Import results back into MBD model to complete the round trip

Click here to watch video online

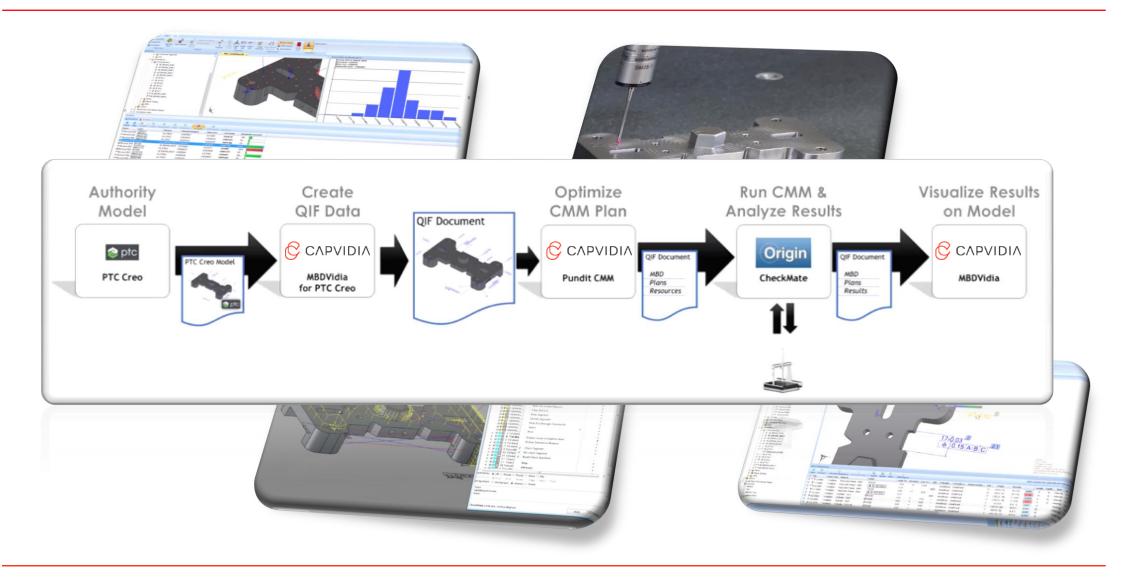


What's the end game?

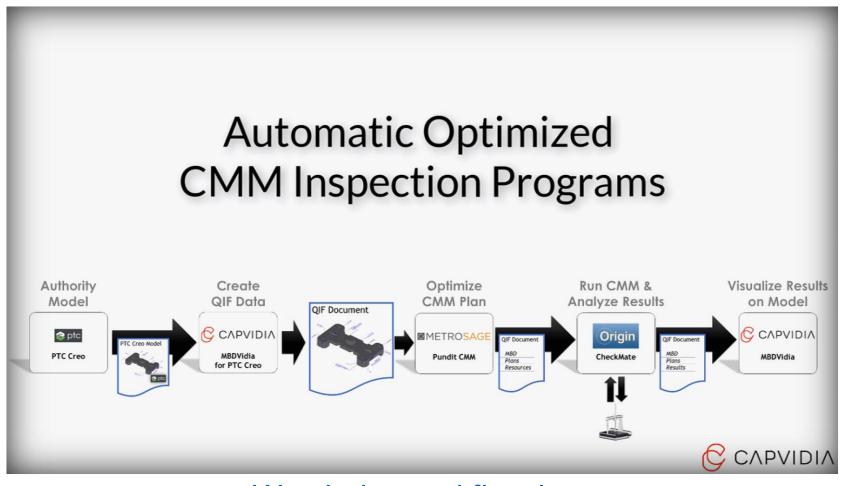
Measurement process and results data, mapped to the "single source of truth": the MBD model.

This creates a continuous digital thread from design to inspection.

Bringing your supply chain into the digital thread can be accomplished using ubiquitous software: Excel.


MBD Workflows: MBD-Based CMM Workflow

Using MBD to drive automation and optimization in CMM measurements


MBD-Based CMM Workflow

Video demonstration

Watch the workflow here

Raytheon Pilot Workflow

Raytheon

Creo: MBDVidia for Creo Plugin

- 1. Starting point: MBD model in Creo
- Export to Quality Information Framework (QIF) standard using "MBDVidia for Creo" plugin (Capvidia)

Less than 1 minute

MBDVidia

1. Load the QIF MBD model

2. Check and heal the PMI – make sure that it is *machine readable*

5 minutes (but can be automated)

- 1. Import the machine-readable QIF MBD model
- 2. Enter essential information: probe configurations, CMM setup, etc.
- 3. Auto-generate the CMM program
- 4. Clean up and verify

Less than 3 hours – pilot processed can be drastically streamlined from this baseline effort

Simple ROI Analysis

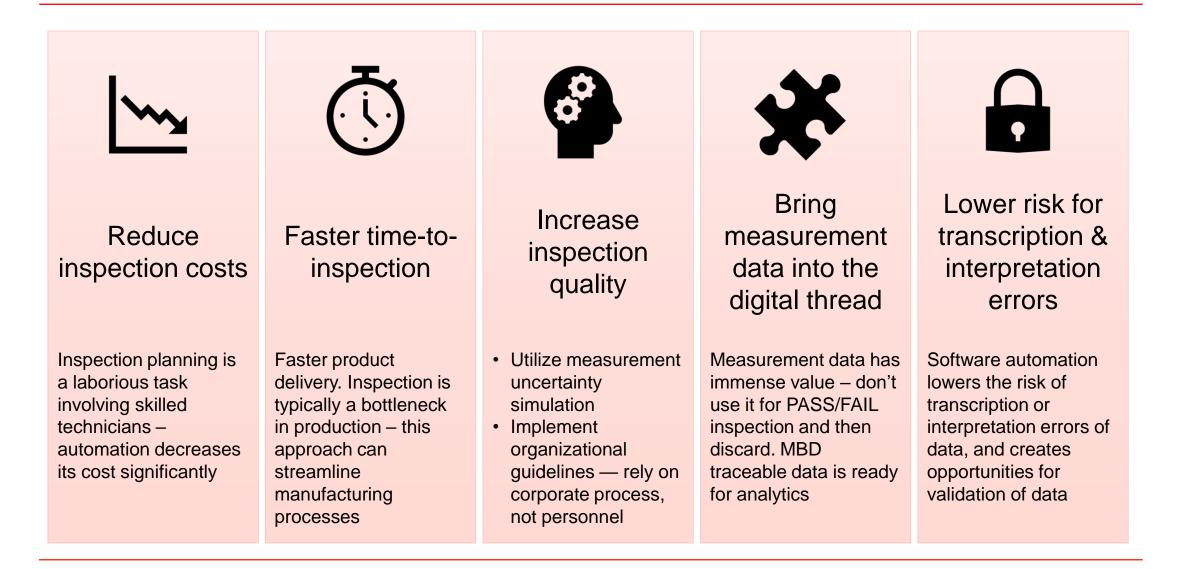
Current Workflow	
Total hours, existing manual	
workflow	16 Hours
New MBD Workflow	
MBDVidia	5 Minutes
FormatWorks import of Creo file	5 Minutes
Checkmate Setup Parameters	5 Minutes
Checkmate Auto Programming	
Accessibility	15 Minutes
Sorting for dependencies	1 Minutes
Auto Coordinate Systems	1 Minutes
Probe moves/rotations	1 Minutes
Collision detection	20 Minutes
Manual editing (estimate)	120 Minutes
Post process program	5 Minutes
Total, New MBD Workflow	178 Minutes
Total, New MBD Workflow	2.97 Hours

81% Reduction in Time

Today's traditional, manual workflow for this part is estimated at about 16 hours.

The MBD pilot workflow took less than 3 hours.

ROI Analysis


Time reduction	
MBD Workflow time vs. Manual	
Workflow Time	19%
MBD Workflow decreases total	
time by:	81%

ROI Analysis

Hours saved on MBD Workflow	13.03
Number of parts programmed per year	80
Total yearly labor reduction	1,042 hours

Value of MBD Measurement

Thanks!

Daniel Campbell Director of Business Development

Office: +1-415-738-7366 Mobile: +1-415-244-6407 <u>dc@capvidia.com</u>

www.capvidia.com www.capvidia.com/blog