Viewpoint Modeling and Model Based Media Generation for Systems Engineers

Document Generation and Scalable Model Based Engineering

Christopher Delp
NASA/Caltech Jet Propulsion Laboratory
Outline

• Docgen at JPL and Across Industry

• Communication
 – Models and Views
 – Methods and Analysis
 – View Models and Linearization of the Story
 – Libraries and Reusability

• Viewpoint as an Architecture for a Scalable Model Based Engineering Environment
Modeling and Document Generation at JPL

• Developed on the Multimission Ground Systems and Services Ops Revitalization Task
 – Based on previous MBSE pilots at JPL
 – 200 users
 – ~20 projects and tasks
 – Removes barrier to using models in real engineering products
Efforts Across Industry

• ESO Open Source Docgen
• JPL MBEE (Docgen, Docweb, View Editor, System Database)
• Lockheed Martin Document Generator
• Atos Gendoc
Common Features Across Industry

• A need to communicate with stakeholders
 – According to terms of the stakeholders

• Variety of representations

• Edit the Model Information through multiple UI
 – Views at the stakeholder level

• Enterprise integration of multiple applications and modeling tools
 – Views that facilitate integration between applications
Communication as a Principle

• Communicating through understanding point of view
 – Understanding the Point of View of Stakeholders
 • Concerns
 – Describing the model from that Point of View
 • Identifying parts of the model that address concerns
 – Telling the story of the Views
 • Linearization of the Views of the Model
Engineer

“The glass is twice as big as it needs to be”
Building the Viewpoint Model

- Viewpoint Model
 - Purpose informed by Stakeholder Concerns
 - Methods and Analysis for constructing the View from the Model
 - Presentation Rules
Method and Analysis

- Methods
 - Ordered steps for producing the View

- Analysis
 - Describe the nature of queries of the model
 - Analytical assertions
 - Rules for completeness and consistency

- Format and Presentation Style
 - Describe the conventions styles and formats for how the information is presented in the View
Viewpoint and View
Viewpoints

- Power from the point of view of:
 - Scenarios of component states
 - Components and properties and behavior
 - Power Load Profiles
 - Flight System Power
Views of Models

- Component Power Load Profile
- Specific Plot of a Power Load Profile
- Flight System Power Values
- Table of Flight System Power

<table>
<thead>
<tr>
<th>Workpackage</th>
<th>Product</th>
<th>Number of Units</th>
<th>Cruise State</th>
<th>Cruise Duration [%]</th>
<th>Steady-State Power CBE [W]</th>
<th>Contingency</th>
<th>Steady-State Power MEV [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>06 Europe Habitability Mission Project</td>
<td>77</td>
<td>Off, On</td>
<td>64</td>
<td>0.3</td>
<td>100.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>05 Payload System</td>
<td>0</td>
<td>Off</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>06 Spacecraft System</td>
<td>77</td>
<td>On</td>
<td>80.0%</td>
<td>0.3</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>4</td>
<td>06.06 Telecom SS</td>
<td>64</td>
<td>Off</td>
<td>20.0%</td>
<td>0.3</td>
<td>83.2</td>
<td>83.2</td>
</tr>
<tr>
<td>5</td>
<td>TWTA (TWTA)</td>
<td>1</td>
<td>Off</td>
<td>64</td>
<td>0.3</td>
<td>83.2</td>
<td>83.2</td>
</tr>
<tr>
<td>6</td>
<td>TWTA (TWTA)</td>
<td>1</td>
<td>On</td>
<td>80.0%</td>
<td>0.3</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>7</td>
<td>06.07 Mechanical SS</td>
<td>8</td>
<td>Standby</td>
<td>4</td>
<td>0.3</td>
<td>10.4</td>
<td>10.4</td>
</tr>
<tr>
<td>9</td>
<td>SDST (SDST-A)</td>
<td>1</td>
<td>Standby</td>
<td>4</td>
<td>0.3</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>10</td>
<td>SDST (SDST-B)</td>
<td>1</td>
<td>Standby</td>
<td>4</td>
<td>0.3</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>11</td>
<td>06.10 GN & C SS</td>
<td>5</td>
<td>Low Speed</td>
<td>5</td>
<td>0.3</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>12</td>
<td>Reaction Wheel (RWA)</td>
<td>1</td>
<td>Low Speed</td>
<td>5</td>
<td>0.3</td>
<td>6.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Simple Spacecraft Diagram Views

- **Star Tracker**: Component Properties and Behavior
- **Battery**, **Computer**, **Antenna**, **Thrusters**
- **Flight Scenario**: Interaction
 - Star Tracker : Star Tracker
 - On: {3 hours..4 hours}
 - Off: {3 hours..4 hours}
 - Star Tracker Power: W
 - Power Over Time = On.Power On Value
 - Star Tracker Power = Off.Power Off Value
 - Synch all time variables

- **Spacecraft Star tracker Behavior**
- **SysML IBD**
- **Power Load Scenario**
 - Specific Component properties and Behavior
 - On : Power On State Value
 - Off : Power Off State Value

- **assert**
 - [Synch all time variables]
Linearizing the Views

- Model of Views
 - Story of Views
 - Outline of Views
 - Template Outline of Viewpoints
Operations Processes and Checklists

- **Training View Models**
 - Layered Story through process
 - Understand bigger picture down to smallest detail

- **Checklist Views**
 - Single thread through entire process
 - Layout the clean step-by-step
 - Minimum amount of information to do the job
Libraries

- **Viewpoints**
 - Collections of standard representations

- **Methods**
 - Reusable methods for producing different models and representations used in Views

- **Analyses**
 - Libraries of model analyses, queries and rules for checking models

- **Presentation Styles**
 - Styles for presenting models and data such as colors, layout schemes, and conventions

- **Format**
 - Models for formatting information such as Docbook, Office Schemas and modeling languages
Software Environment for MBSE

• Model Based Engineering Environment
 – An environment for developing mutually correspondent and consistent engineering models

• Engineering Modeling Information Systems
 – A class of Information Systems design to enable the development of engineering models
Information Rendered According to Viewpoints

- Domain Specific Modeling Applications
 - CAD (Mechanical, Electrical etc)
 - Software Design (UML etc)
 - MBSE (SysML etc)
 - Analysis (Analytic, Simulation, spreadsheet)

- Viewpoints For Domain specific Apps
- Web-editable Viewpoints
- Document and Report Generation
 - Final products rendered according to Viewpoints and Models
Generating Reports from Models

- Model, Viewpoints and View Models

- Model transformation from SysML to Documents (HTML, PDF etc)

- Reports output using styles and formats specified in the method
Conclusions

• MBSE Success has a strong dependence on the capability to communicate with stakeholders and system implementers.
 – SysML provides the basic semantics to model and generate these artifacts
 – Use of web applications can provide an accessible mechanism for interacting and data collection from stakeholders
 – Model based document generation from View models puts the value of models into the work products systems engineers must deliver.
 – A scalable enterprise for modeling is feasible built around the concept of view point and view.
Backup