SysML for Telescope System Modeling
- Variant Modeling -

by the
INCOSE MBSE Challenge Team SE^2
Tim Weilkiens, managing director of the German consultancy oose GmbH, is a member of INCOSE MBSE Challenge Team SE^2 (Telescope modeling). He is also an active member of the OMG working groups about SysML and UML and has written sections of the SysML specification.

Rainer Diekmann, works as an independent consultant in the aerospace industry, joins the INCOSE MBSE Challenge Team SE^2 (Telescope modeling) a year ago. He work(ed)s in system engineering projects focussing on MBSE, using different modelling approaches like UML, SysML and IDEF.
Agenda

- What is the SE^2 Challenge project about?
- Overview Variant Modeling
- The SYSMOD Variant Profile for SysML
- Variant Configurations
- Managing Complexity – Building simple views
- What’s next?
About SE^2

- Collaboration between European Southern Observatory (ESO) and German Chapter of INCOSE (GfSE)
- Access to high-tech project, the Active Phasing Experiment (APE).
- The team members are:
 - Robert Karban (ESO)
 - Tim Weilkiens (oose GmbH)
 - Rudolf Hauber (HOOD Group)
 - Rainer Diekmann
 - Michele Zamparelli (ESO)
 - Andreas Hein (TU Munich)
- Former members: Andreas Peukert (TU Munich)
ESO

Non-profit Intergovernmental European Organisation for Astronomical Research in the Southern Hemisphere
http://www.eso.org

Headquarters in Munich, Germany, 3 Observatories in Chile

Mission statement

Build and operate world class ground based astronomical facilities
ESO’s sites

- **Paranal** (2600 m)
- **La Silla** (2400 m)
- **Chajnantor** (5000 m)
ESO major projects

Very Large Telescope (VLT)
Started 1988, in operation since 1999

Atacama Large Millimeter Array (ALMA)
Europe-US-Japan
Started 1998, installation starting now
E-ELT

Images on this slide were produced by ESO
• 10000 tons of steel and glass
• 42m segmented primary mirror
• 20000 actuators, 1000 mirrors
• 50000 I/O points, 700Gflops/s, 17Gbyte/s
• Many distributed control loops
• Use MBSE/SysML to model the control system since 2008
What is the challenge project about?

- System case study (since 2007)
 - APE technology demonstrator for future Extremely Large Telescope (ELT)
 - High-Tech interdisciplinary opto-mechatronical system in operation at Paranal observatory

- Goals
 - Create modeling guidelines and conventions for all system aspects, hierarchy levels, and views
 - Create fully fledged SysML model
 - Documented at http://mbse.gfse.de
APE was installed at telescope in Atacama desert, Chile.

Images on this slide were produced by ESO
Installation on the platform of the telescope
What have we achieved?

- APE model, guidelines and best practices: MBSE Cookbook
 - Model structure and overview
 - Objectives and Requirements
 - Context, System Structure
 - Behavior and Data
 - Verification
- Model library and SE Profile
- Plug-in for modeling tool
- Input for tool vendor and SysML RTF
Agenda

- What is the SE² Challenge project about?
- **Overview Variant Modeling**
- The SYSMOD Variant Profile for SysML
- Variant Configurations
- Managing Complexity – Building simple views
- What’s next?
The value of variant modeling

The modeling of system variants is a core technique for model based systems engineering. You need to model variants

- for analysing design alternatives,
- for evaluating variants via trade-offs,
- for modeling of product families,
- and for the separation of a logical and a physical architecture.

The challenge is to separate the variant from the common part and to manage the dependencies.
Example

The APE system could be installed in the laboratory in Munich as well as directly at the VLT. We use the concept of variant modeling to separate the different contexts in the model.
Simple model example
Agenda

- What is the SE^2 Challenge project about?
- Overview Variant Modeling
- The SYSMOD Variant Profile for SysML
- Variant Configurations
- Managing Complexity – Building simple views
- What’s next?
Definitions

A **variation** contains a set of variants that have a common discriminator.

A **variant** is a complete set of variant elements that varies the system according to the variation discriminator.
Definitions

A variation point marks a core element as a docking point for a variant element.

A variant element is an element in a variant package.

A core element is an element that is valid for all variants.
The model

Structure aspect contains all structural core elements.

Variation point

Variation aspect contains all variations.

Variation

Variant

Variant element
Ontology –
A formal definition of our modeling concepts
Variation Ontology

- **Organizational Unit**
- **Variations Aspect**
 - name = <ContainingNameSpace>_Variations
- **Variation**
 - allocatedTo = Variation
- **Variation Point**
 - allocatedTo = Variation point
- **Variant**
 - allocatedTo = Variant
- **Variant Element**
 - allocatedTo = Variant element

Contains all variants of a system element. It has the same name as the system element which is a variation point.

Contains all system elements belonging to one variant.

The (new) varied system elements...
Example: Requirement variants

```
pkg [view] Webinar Variant Modeling [ ☑ Requirement variants ]

«Requirements Aspects»
APE_Requirements
System requirements
«requirement»
VLT-SPE-ESO-10000-2723

Observatory_Requirements
«Variant element»
System requirements

Laboratory_Requirements
«Variant element»

Telescope Mechanical Interface
«variant element»
«satisfy»
Passive Support Structure

Lab Mechanical Interface
«variant element»
«satisfy»
Air Damped Support Structure
```
Profile for Variation Modeling

```uml
package SYSMOD Variants [Variant Stereotypes]

class Variation {
  attribute bindingTime : BindingTimeKind = DesignPhase;
  association variation (1..*)
}

classVariant element [PackageableElement]

class Variant parameter [Class]

class Block [Class]

class Variation point [PackageableElement]
{allocatedFrom = Variation Point}

class BindingTimeKind {
  DesignPhase;
  ManufacturingPhase;
  OperationPhase;
}

```

© 2010 by ESO, oose GmbH, TUM, Hood GmbH
Separation of Concerns: Core and Variations

Core elements – valid for all variations

Variations – one root package for each variation and variant
Relations between variant and core elements

- No predefined guidelines for the relation type
- Degree of freedom of the relation type depends on the application type of the model: automated analysis, model transformations, only human readable
Open issue – Modeling Generalizations
Proposal for a simplified Product Variation

Diagram:

- **Car**
 - parts
 - w : Wheel [4]
- **Wheel**
 - parts
 - lb : Lugbolt [6]
- **VariantCar**
 - parts
 - w.lb : VariantLugBolt {redefines lb}
Agenda

- What is the SE^2 Challenge project about?
- Overview Variant Modeling
- The SYSMOD Variant Profile for SysML
- Variant Configurations
- Managing Complexity – Building simple views
- What’s next?
FODA Feature Oriented Domain Analysis

mandatory features must be present in every product line instance

optional features may be present, or not, in a product line instance

alternative features define the scope for an exclusiveor choice of features

Source: Myra Cohen, Matthew Dwyer: Software Product Line Testing Part II : Variability Modeling
Example: Configuring variations

Rules formulated in a textual DSL and embedded in UML constraints are defining the variation possibilities.
Agenda

- What is the SE^2 Challenge project about?
- Overview Variant Modeling
- The SYSMOD Variant Profile for SysML
- Variant Configurations
- Managing Complexity – Building simple views
- What’s next?
Model2Model-Transformation (M2M)

Even simple variations are resulting into complex configuration spaces. Necessary is a simple view for a selected configuration. This view could be produced by a M2M-Transformation.

3 variations are spanning a 3-dimensional configuration space and eventually many possible configurations.

A configuration is one point in the configuration space.

Aim of the model transformation:
Face-out of irrelevant details
- Creation of a product model out of a product family model
- Elimination of non-existing variants and closure of variants because of superfluous abstractions
Categories of Model2Model-Transformations

- **View- vs. Copy-Strategy:**
 - View: The transformation creates a view in the source model.
 -> Separation of Product Line Engineering and Product Engineering
 - Copy: The transformation creates a new model
 -> Discard of variants during the development phase.

- **Filter vs. Refactoring-Strategy**
 - Filter: No more required model elements will be deleted (from the view or the copy) by the transformation
 -> Easy to apply, but some „ballast“ remains
 - Model-Refactoring: There exists not „the one and only“ transformation, but a set of adequate refactorings, with a corresponding non-trivial transformation
 -> Best possible reduction, but hard to implement

![Diagram](image.png)
Example: Simple M2M approach
Example: M2M-Model-Refactoring approach
Open issue – Model2Model transformation

- Until now model transformations are only manually applied in the telescope model.
- Simple approach could be easily implemented:
 E.g. MagicDraw offers the Module concept. This could be used to hide all other variants and present only the elements belonging to that module/variant.
- Automatic model transformation by using transformation frameworks like OpenArchitectureWare, which is now part of the Eclipse Modelling Project [http://www.eclipse.org/modeling/]
Trade-Off Analysis for different alternatives

<table>
<thead>
<tr>
<th>Components</th>
<th>Var1</th>
<th>Var2</th>
<th>Var3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Sensor1</td>
<td>Sensor2</td>
<td>Sensor2</td>
</tr>
<tr>
<td>Actuator</td>
<td>Actuator1</td>
<td>Actuator2</td>
<td>Actuator2</td>
</tr>
<tr>
<td>Software</td>
<td>-</td>
<td>Standard</td>
<td>OpenSource</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Var1</th>
<th>Var2</th>
<th>Var3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>0.3</td>
<td>5</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Reliability</td>
<td>0.5</td>
<td>95%</td>
<td>98%</td>
<td>99%</td>
</tr>
<tr>
<td>Cost</td>
<td>0.2</td>
<td>10,000,00 €</td>
<td>20,000,00 €</td>
<td>20,000,00 €</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>2001,975</td>
<td>4003,49</td>
<td>4006,495</td>
<td></td>
</tr>
</tbody>
</table>

Source: Sanford Friedenthal,: Advancing Systems Engineering Practice Using Model Based Systems Development
Agenda

- What is the SE^2 Challenge project about?
- Overview Variant Modeling
- The SYSMOD Variant Profile for SysML
- Variant Configurations
- Managing Complexity – Building simple views
- What’s next?
What’s next?

- Generalization issue ➔ Fix by SysML RTF
- M2M transformation ➔ Find resources to develop transformation
- Trade-Off Analysis ➔ Make a Trade-Off analysis in the Telescope context using the new simulation toolkit from MagicDraw
Live Demo of the Model

- Please fasten seatbelts - setting up the system…