Named Graphs
Objective
Whether we could use NGs as a technique for using sub-sets of a specification, to control the degree of coupling between users of our specification and the specifications you get things out of. 

Experiment Carried Out

By Kevin Tyson. See file Publishing Subsets of RDF Specifications.docx

Summary
· Created local ones

· Removed owlImports statements

Test: created something that imports these into an additional file. The file combined from the sub-sets is semantically identical to the original file provided that the triples are semantically equivalent. 

Conclusion: we should be able to use this technique to make snapshots of existing standards and incorporate these into our specification without encumbering the users of our specification. 

Assumptions: the URIs of the original specification remain stable. 

Implications: when we use this technique, the target ontologies have to be ones that we have confidence in the maintenance of, just like the ones where we use the whole ontology are. For ones where we have no such confidence, we use the original "snapshot" technique already documented. 
Progress to Date
· Experiment done

· Results written

Spec lacked solidity. 

Summary: To sub-set specifications that are written in OWL. Example using a small RDF file. Person, Class, 6 instances, gender class. Individuals. SPARQL imported into 2 separate models. SPARQL constructs - moved the definitions. Broke the connection by no longer importing the file. Had exact copies of the triples that were in the original file, into a men's file and a women's file (see detailed notes). Imported the two halves without the original file, performed queries. Original file and the files imported were fundamentally the same where Quads (where 2 identical triples in different graphs are or are not semantically equivalent). 

Example: TBC assumes entire universe of files that are available. 

Protégé does not have built in SPARQL support. Possible issues with opening up resultant files. 

Possible application to Shared Semantics: 

e.g. FOAF - want to use a small part. 

Create a file, place in it the triples that contain the FOAF things we want, containing the FOAF namespace. Would not pull in other parts of FOAF, so there are no inconsistencies introduced at the SPARQL level. Can also determine which triples you are dealing. 

How this would look in our model?

To next session (WS2 - metamodeling)

Q: Can we name a Named Graph? 
A: Yes as long as we give it a URI. 

There may be questions around tools. So we need to take a consistent approach to the application of NGs. 

There are issues whereby the W3C still has not reached consensus on some issues around Named Graphs. Open issue in SPARQL 1.1 

Possible issues
Not yet stable. A long way from consensus. 

Q: Can we document the approach non normatively or does it rely on mechanisms which are themselves not standard? 
A: Our use of it relies on the most base level part of the specification. There is not consistency in specifying how a triple store which could support multi graphs could do so. Our RFC is on the specification level and therefore does not need to address that. 

We can use this process without calling them NGs. We are just effectively cutting and pasting from one namespace to another. We could just call it snapshot. 

Metamodel Implementation for Named Graph
NamedGraph exists. Stereotyped as Package

Not a separate file*. 

May have multiple named graphs within the same file (*DF or OWL file). In our EA model we want to be able to treat it as a UML Package. 
What about in ODM? 
Imports
There is no kind of import statement for this. So how do we reference it? 

SPARQL allows you to specify files as graphs. There is no way to specify graphs in OWL itself. Therefore no way specifying this in ODM. 

So what shall we use?

Suggestion: Look at RDFSchema and see what they have added. See if there is a class. Need a mechanism by which to decide what triples belong.

See RDF next Steps WG. Some graph related way of pulling this stuff together to annotate sets of statements. See e.g. intelligence metadata about who made what statements from X document and Y information and Z conclusions. Reification vocab is the only mechanisms for this. Also OWL2 annotations - source predicate, object for a single statement. That is, annotation of each element of a triple statement. 

Conclusion: Include the elements of the Named Graph in the same package / ontology as the other terms we have that are not in that NG. So there is no new document / RDF File and its ODM equivalent. 

See also RDF Datasets. There is some work happening around this right now. 

See group notes e.g. "Describing linked datasets with the VOID vocabulary". And Working drafts for the new RFD spec concepts in the RDF Concepts document. Look there. 

Action: EK to ask some people how they would assign such metadata to a group of statements. 

See also http://www.w3.org/TR/2011/NOTE-void-20110303/ --link to document on metadata from the RDF working group.

Possible Implementation in the EA Environment
e.g.

· Have namedGraph as a stereotype of Package

· Have namespaces in the elements from the named graph (no)

· Or something else?

Need to make changes to our metamodel and profile to support the latest iteration - it may be correct as it is. The profile does not support it well at present. Have revised the metamodel but need to go back and review it with the new documents that were just published. 

Final usable ODM implementation for these things: It's already in the ODM metamodel. May originally have been Packages. Notion of RDF Statement. Use RDF Statement to annotation specific things people would say in an individual triple or annotate an individual fact in the ontology (but not so sure for a set of facts). 

The question which remains is now to do the equivalent of an owl import, given that this doesn't exist. At present Named Graph is a package but this is not right. What we really want is curly braces include the ontology and give it a name. 

Possibles:

· Boundary?
· Pointer to the head of the graph, which could be a class or a pointer to a statement. 

· Container is the Graph. A named graph simply gives a graph a URI. 

· AssClass?

What we need: a stereotype that points to a set of statements that is in the graph. 

Offline work required. Need a thing we can use to point to a set of triples that make up the Named Graph. The problem is that this is straightforward in a graph database but not in UML. If it is equivalent to the ontology itself you don't need to do anything, but for a sub-set we need to figure out the mechanism to identify those statements that are part of the graph. 

