SysML Model-Based Testing

Fabrice Bouquet

fabrice.bouquet@univ-fcomte.fr
OMG SYMSL - Modelica Group

SysML / ALF / OCL / Modelica
March 20th 2013
Outline

1 Context and Team
 • Research Team
 • Context

2 Current Works
 • Framework
 • Modeling Consistency Verification
 • Model Transformation Validation

3 Synthesis
Research Team

- 11 People (2 full Prof., 3 Lecturers, 4 PhD, 2 developers)
- Model-Based Testing (MBT) Domains:
 - Security and Safety i.r. functional
 - IT (UML) and Embedded System (SysML)
- Test Coverage Criteria:
 - Classical:
 - Flow control,
 - Data control,
 - Definition/use of variables
 - Dedicated to SysML:
 - Communication (Signal) Coverage
 - Equation coverage
 - SysML + Marte: time coverage
Language

- Activity Diagram
- Sequence Diagram
- State Machine Diagram
- Use Case Diagram
- Block Definition Diagram
- Internal Block Diagram
- Package Diagram

- Same as UML 2
- Modified from UML 2
- New diagram type
Language

with OCL and ALF
Language

with OCL and AFL
Language

with OCL and AFL
Language with OCL and AFL
Language

with OCL and AFL
Language

with OCL and AFL
Language

with OCL and AFL
Context: existing MBT tool chain

VETESS Project: http://lifc.univ-fcomte.fr/vetess
Context: tool chain analysis

Strengths
- Relevant to generate many test cases
- Ensures an optimal coverage of the model
- Reasonable time of test generation
- Successful feedback from industrial engineers

Weaknesses
- Creation of both SysML model and simulation model
 - Late functional validation of the SysML model
- Discrete model of the system
 - Concretization step very costly (+ 50% of time spent during concretization)
Motivations

Validation of Real-Time and Embedded Systems using MBT

- Improvements of an existing MBT tool chain:
 - Extension for real-time and embedded systems
 - Use of simulation to validate the test model
 - Automation of the end-to-end MBT process

- Use of standardized languages and MDE techniques:
 - SysML/MARTE profiles
 - Generate element for simulation code (VHDL-AMS, Modelica)
 - UTP as a pivot language
Outline

1. Context and Team
 - Research Team
 - Context

2. Current Works
 - Framework
 - Modeling Consistency Verification
 - Model Transformation Validation

3. Synthesis
Current Works

1. **ABSTRACT MODEL** (continuous)
 - Block Definition Diagram
 - Internal Block Diagram
 - Statechart
 - Requirement Diagram
 - Parametric Diagram

2. **Model transformation**
 - SIMULATOR
 - Electrical
 - Mechanical
 - Fluidic

3. **Test publication**
 - TEST GENERATION

4. **Test execution**
 - CONCRETIZATION (continuous)
 - PHYSICAL TEST BENCH

5. **Verdict**
 - EXPECTED VALUES
 - OBTAINED VALUES

Additional tools:
- SysML4MBT + OCL4MBT Subset

Fabrice Bouquet MBT SysML
Current Works

1. CONTINUOUS MODEL - UML MARTE
 - + OCL + Alf
 - Test generation

2. SIMULATOR
 - Electrical
 - Mecanical
 - Fluidic
 - Expected values

3. Model transformation

4. Test execution
 - Synchronization
 - Test execution

5. Verdict
 - Obtained values

Context Framework Synthesis

Fabrice Bouquet MBT SysML
Outline

1. Context and Team
 - Research Team
 - Context

2. Current Works
 - Framework
 - Modeling Consistency Verification
 - Model Transformation Validation

3. Synthesis
Modeling Consistency: contributions

- How to generate correct Modelica code?
- How to provide a SysML modeling guideline?
- How to automate these issues?

⇒ Rules definition for SysML model consistency:
 - Syntactic verification
 - Semantic verification

⇒ Automation based on MDE techniques:
 - ATL for Model to Model Transformation
 - Acceleo for code generation
Modeling Consistency

Model transformation (detailed process)

1. Modeling
 - Verification (design rules)
 - ATLAS (M2T)
 - OK VALID
 - Model To Model Transformation
 - Code Generation

2. Acceleo (M2T)
 - Simulation
 - Open Modelica Simulator

Context Works Synthesis
Modeling Consistency Verification

- Problem
 - location : EString
 - description : EString
 - severity : Severity

- Severity
 - warning
 - error
 - critic

- Properties
- Problems
- Console
- Synchronize

6 errors, 26 warnings, 1 other

Errors (6 items)
- Flow port 'Nout' typed with 'Fluidic' without importing the corresponding package: IEEE::fluidic_systems
- Property 'APSInstance' typed with 'C' without importing the corresponding package: SI Definitions::SI Value Types
- Property 'Atype' is not typed
- The block 'APS' contains parts that are not typed with a block
- The connector 'Connector15' link two flow ports that are not typed with the same type
- The connector 'Connector20' link two flow ports that are not typed with the same type

Warnings (26 items)

Infos (1 item)
ATL Verification Rule

```plaintext
helper def: reservedWords: Sequence(String) =
  Sequence{'ABS', 'ACCESS', 'AFTER', 'ALIAS', [...], 'TOLERANCE'};

helper context MMuml!NamedElement def: isReservedWord() : Boolean =
  if self.name <> OclUndefined then
    thisModule.reservedWords->exists(r | r.toString().toLowerCase() = self.name.toString().toLowerCase())
  else
    false
  endif;

rule uncorrectNameReservedWord{
  from umlElement: MMuml!NamedElement( umlElement.isReservedWord() )
  to problem: MMproblem!Problem(
    severity <- #error,
    description <- umlElement.name + ' is a reserved word for Modelica',
    location <- 'root::' + umlElement.getQualifiedName()
  )
}
```
Outline

1. Context and Team
 - Research Team
 - Context

2. Current Works
 - Framework
 - Modeling Consistency Verification
 - Model Transformation Validation

3. Synthesis
How to validate the transformation process?
How to detect bugs during the transformation development?

Test-Driven Development strategy:
- Use of unit tests
- Use of the EUnit framework
EUnit Framework

- Epsilon Unit Testing Framework
- Based on Eclipse EMF
- Compares transformation result with expected result
- Can be integrated as an automated task
Results

- **SysML Consistency verification:**
 - Detects Modelica syntactic/semantic errors
 - Allows SysML modeling guideline for Modelica generation
 - 31 ATL rules
 - 24 ATL helpers

- **Model Transformation Validation:**
 - $SysML2Problem$ transformation \rightarrow 59 unit tests
 - $SysML2Modelica$ transformation \rightarrow 41 unit tests:
 - 34 ATL rules
 - 23 ATL helpers
Outline

1 Context and Team
 - Research Team
 - Context

2 Current Works
 - Framework
 - Modeling Consistency Verification
 - Model Transformation Validation

3 Synthesis
Overview

1. Continuous Model
 - UML
 - MARTE
 - + OCL + Alf

2. Simulator
 - Electrical
 - Mechanical
 - Fluidic

3. Test Generation
 - Test publication

4. Concretization
 - Test execution
 - Synchronization

5. Physical Test Bench
 - Obtained Values
 - Expected Values
 - Verdict
Conception Choice

- SysML and (Modelica) Connector?
 - Connector as Stereotype for Block Vs Flow Specification
 - Use Stereotype on flow properties
- For a subset with only "Model" can be optional?

- Tool for simulation of Modelica?
 - Interactive simulation
 - documented API
Thank you for your attention

“Testing is always model-based!”
Robert Binder

Research supported by:
- SyVAD Project: http://syvad.univ-fcomte.fr/
- Smart Blocks Project: http://smartblocks.univ-fcomte.fr/