SysML-Modelica
Transformation Specification

Version 1.0

Date: May 2010

OMG Document Number: syseng/2010-05-24
Standard document URL: http://www.omg.org/spec/acr onym/1.0/PDF

Associated File(s)*: http://www.omg.org/spec/acronym/200xXXxxx

http://www.omg.org/spec/acronym/200xxxxx

Source document: syseng/2010-05-24

* Original file(s): Title (document number)

Copyright © 2009-2010, Deere & Company

Copyright © 2009-2010, EADS

Copyright © 2009-2010, Georgia Institute of Tecluyyl
Copyright © 2009-2010, Jet Propulsion Laboratory
Copyright © 2009-2010, Linkdping University
Copyright © 2009-2010, Lockheed Martin Corporation
Copyright © 2009-2010, NoMagic Inc.

Copyright © 2009, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object dgment Group specification in accordance withi¢has, con-
ditions and notices set forth below. This docuntkrgs not represent a commitment to implement anyopoof
this specification in any company's products. Tiferimation contained in this document is subjeatttange
without notice.

LICENSES

The companies listed above have granted to thecOblanagement Group, Inc. (OMG) a nonexclusiveahyy
free, paid up, worldwide license to copy and distté this document and to modify this documentdisttibute
copies of the modified version. Each of the copyrigolders listed above has agreed that no persalhtse deemed
to have infringed the copyright in the included em&t of any such copyright holder by reason ofihgwsed the
specification set forth herein or having confornaeg computer software to the specification.

Subject to all of the terms and conditions beldw, dwners of the copyright in this specificatiomdi® grant you a
fully-paid up, non-exclusive, nontransferable, géugal, worldwide license (without the right to sabhse), to use
this specification to create and distribute sofewand special purpose specifications that are hased this spe-
cification, and to use, copy, and distribute tisdfication as provided under the Copyright Aectwpded that: (1)
both the copyright notice identified above and figsmission notice appear on any copies of thisiipation; (2)
the use of the specifications is for informatiopatposes and will not be copied or posted on atwar& computer
or broadcast in any media and will not be otherwgés®ld or transferred for commercial purposes;(@hao modi-
fications are made to this specification. This tadi permission automatically terminates withouiaeoif you
breach any of these terms or conditions. Upon tetian, you will destroy immediately any copiedlué specifica-
tions in your possession or control.

PATENTS

The attention of adopters is directed to the pdgyithat compliance with or adoption of OMG splications may
require use of an invention covered by patent sightMG shall not be responsible for identifyinggrds for which
a license may be required by any OMG specificatiwripr conducting legal inquiries into the legalidity or
scope of those patents that are brought to itetadte OMG specifications are prospective and amtyi®nly. Pro-
spective users are responsible for protecting teéms against liability for infringement of patents

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may aielcopyright laws, trademark laws, and commurooatregula-
tions and statutes. This document contains infdonathich is protected by copyright. All Rights Reged. No
part of this work covered by copyright herein mayrbéproduced or used in any form or by any mearegpkc,
electronic, or mechanical, including photocopyirerording, taping, or information storage and estl systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATEIT IS PROVIDED "AS IS" AND MAY CON-
TAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GRIBP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPIED, WITH REGARD TO THIS PUB-
LICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESSFOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUBR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FORIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INOUDING LOSS OF PROFITS, REV-
ENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIB PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIALMEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

The entire risk as to the quality and performarfcsoftware developed using this specification isnedby you. This
disclaimer of warranty constitutes an essential pithe license granted to you to use this speatiidn.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Govemitmis subject to the restrictions set forth ingatagraph (c) (1)
(ii) of The Rights in Technical Data and Computeft®are Clause at DFARS 252.227-7013 or in subpapy(c)
(1) and (2) of the Commercial Computer Softwareestiicted Rights clauses at 48 C.F.R. 52.227- s @pecified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Suppletraamd its successors, or as specified in 48 CE2R12 of the
Federal Acquisition Regulations and its successmspplicable. The specification copyright owrsesas indic-
ated above and may be contacted through the OWjeagement Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube lgo®, OMG Logo®, CORBA® and XMI® are re-
gistered trademarks of the Object Management Growap, and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture LogpModel Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ | MOF™QMG Interface Definition Language (IDL)™
and OMG SysML™ are trademarks of the Object Managar@roup. All other products or company names men-
tioned are used for identification purposes ontyl may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge tt@atObject Management Group (acting itself or tigtoits de-
signees) is and shall at all times be the soléyetfiat may authorize developers, suppliers arlérsedf computer
software to use certification marks, trademarksther special designations to indicate complianiti these ma-
terials.

Software developed under the terms of this licenag claim compliance or conformance with this sfieafion if
and only if the software compliance is of a nafiutl matching the applicable compliance pointstsed in the
specification. Software developed only partiallytaieng the applicable compliance points may clamty dhat the
software was based on this specification, but nwyctaim compliance or conformance with this sgeatfon. In
the event that testing suites are implemented prosed by Object Management Group, Inc., softwaneetbped
using this specification may claim compliance onfcomance with the specification only if the softeaatisfactor-
ily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuougiegy and improvement. As part of this process weoerage
readers to report any ambiguities, inconsistenciegjaccuracies they may find by completing treiésReporting

Form listed on the main web page http://www.omg.argler Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Table of Contents

Part | — INTrOdUCTION. ..ttt ittt et ettt ettt et eeaesnsesesesearaeaeanansns 7
L A D S ATttt ettt ettt e e e e e e e e e e e e e n e e e e e enenene e 7
2 S O D ittt ettt ettt e et e e e e e e e e n e et e et neneenens 7
S CONTON M AN C . ettt ettt et ettt ettt see e eeseeeaesesnesaesneneaeensnns 9
R O O I C S, .ttt e e et ee e eeeneneeeee e e emenenseeeseneneensnens 9
4.1 NOIMAtIVE RO O N C S . ittt ittt ittt i ettt ettt ettt teteaseaseeeseesesseaseseeseasesnsnseserees 9
4.2 NON-NOIMAtIVE RO O O CES . . .ttt e e ettt ettt ettt te st tee st seseaeesensesseaeeansesesees 9
5Terms and DefiNitiONS. ...ttt ettt et eeeeeiesneaeaesneneaeenanns 10
D SV IO S . .ttt ettt ettt ettt e e et e e e n e e enenenees 11
7 AAdItIoNal INTOIMIATION. ...t ettt e eeeeeeeeneneeesneneaees 12
7.1 Changes to Adopted OMG SPECHICALIONS. .. eu.euie ittt it ieeiereeeseerereaeeaeerenes 12
7.2 A CKN O O O O N NS . . ettt it ettt ittt sttt ettt ee s eeeseesenseeseensenseensenseeeensenseensensenserenss 12

8 Transformation ADPDIOACK. ...t eeeeeeeeneneeeensnens 13
Part Il — SysMLAModelica Profil€........c.uuuiiiiiiiieiiiiiiiinininnnnn. 15
O ClaSS D INITION . ettt ittt ettt ettt ettt eeaessnsnsaeaesnsneaeensneneaes 15
0. L OV BV B WV, et ettt ettt ettt ettt eeaeee s eeateesee s senseeseeasenseesenseeeensenteensensenseentenseensesenss 15
0.2 «MOUEIICACIAS S D O NI O . .ttt ttt ettt ettt et teesesssesenseessensenssensenseessensenssensenses 17
9.3 «modelicaClass» and «MOdeliCaAMOUEIiiuiieiieiieiieiesieeiiereeieesreteerrenreerees 19
0.4 KIMNOUEI AR GO N, ettt ittt et e et et et et ettt ee ettt et ee st aeesseesenseeseessensenseenceaensens 20
0.5 KIMNOU I CABIOCK . ettt ittt ettt ettt ettt e ettt seeeeaseeseeaaeeseesaenseesensesseensenseesaenss 20
0.6 KIMNOUEHCAC ONN O O . ..ttt tie ittt e e st ettt eeeteeeenseeseessesseessenseeeenseeseesensensenserenss 21
0. 7 KN O T Y D st ettutieeee et tee ettt een seesee s see teessenseeseeasenteensensenseensenseesenseeseenss 22
0.8 KMNOUE CAP A CK A . ettt ittt it ettt ettt ettt ee e teeteensenseessenseeeenseesensensenaeensees 22
0.9 MNOUEH CAFUN G O ettt ittt et ettt et ettt et et teeteeeeeaeesesaeesenseaseencensenasensenss 23
0.10 MO I CAE X O NO S . ettt ittt ittt ettt ettt ettt e et eee s eeeseesenaeesenseeseensenseessensenses 24
0.1 MO A O ettt et ettt ettt et ettt te ettt st see s eeeseeaeeseesaenseeseensenseesenserenss 26

SysML-Modelica Transformation Specification, version 1.0 i

9.12 «MOdeliCACONSIIAINEUBY iieiie it iie ittt s ettt teesteeteeaeenseeseesensenseenseaenserenss 27

9.13 Short Class DefinitiONS........eeeeeiiiiiiiiiiiiieeeeieiee e 27
10 Predefined TYPES...cuuveieuiiiiiiiieeeiieeeeeeeeie e 27
10.1 OVEIVIEW. oot 27
10.2 ModelicaReal..........cuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 28
10.3 MOUEICAINIEUET ..t 29
10.4 ModelicaBool@an..........ccuuuieeuiiiieii e 30
10.5 MOdENCASHIING. ceeeeeieeeieieee ittt 31
10.6 ModelicaStateSelecCt. . ..uuuuuuiiiiiiiiiiiiieee e 31
10.7 ModelicaEXternalOD EC.uuuuuueeeeieii e 31
11 Component DeclarationS........eeeiiiieeeeiiiiiiieiiiiiiieiiiiiieeennn, 32
11,0 OVOIVIEW. ettt ettt ettt e et 32
11.2 «modelicaValueProperty»........... e eiiiiiiiieiiiiieeeieieieie e 34
11.3 «MOdeliCaPart......cuuueeeeeeiiiiie it 35
11.4 «mOodeliCaPOrt». ...ccuueiiiiiiiiiiieiee e 36
11.5 «modelicaFUNCtiONParamMeteruueeeeeueeueeeeiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeees 37
12 Equation and Algorithm SectionS..........ccccevviiveiiieeiiieanenn, 39
12.1 OVEIVIEW. ettt ettt ettt ettt et ettt e e e e e e e e 39
12.2 «modelicaEquation?........cuuueeuueeeiiiiiei it 39
12.3 «modeliCaAIgONtAM . .uuuuueeiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiii it 40
12.4 «mMOdeliCACONNECHOND vttt 40
13 Other Related CONStrUCtS......uveieeeeiiieiiieiiiieieeiiieiieeeenn 41
13.1 «mOodelicaSIiMUIAtION D i eiiiieieee ettt 41
13.2 «mMOodeliCaANNOLALtION....ceeeiiiieeeeeee ettt 42
Part Il — Modelica Abstract SyntaX.......ccoooevieeiieeiieeiiiaaennnes. 43
14 Modelica Metamodeling Approach.......ccceeeeeeeeieiieeeeieenenenn.., 43
15 Modelica Metamodel CONStruCtS.........ccveeeieeieeeniiiiiieieeenn, 44
15.1 Model Structure DefinitioNn...............eeeuiiiiiiiiiii 44
15.2 Class DefinitioNn........cceeeeeiiiiieiiieeeeee e 45
RS TRC I 0] oo SO PP P PP PPPPTTT 51
15.4 Annotation and COMMENTS. ...uuuuuiiiiiiiiiiiii ettt 52
15.5 Component DefinitioN.........euueeeeueeiiiii i 52

SysML-Modelica Transformation Specification, version Alpha 1

15.6 Modifications and RedeClaralions. i eiesieieeteesteseeaeereeseeaeeerenceaens 54

15.7 BENAVION . ceuuuiiiieieeeieee ettt eeaees 55
15.8 EXPIrESSIONS. ettt ettt ettt ettt ettt ettt ettt et e eeias 57
Part IV — Transformation...........coeeeeueiieiiieiiiiieeeeeieieeeeeenen, 61
16 Class DefinitioN.......ovuveeeiieeeiiie e eeeeeieeeenee s 61
16.0 OVEIVIEW. .ttt ettt ettt ettt ettt ettt ettt ettt ettt et et e e aeeaas 61
16.2 «MOdElICACIASS . eeeiiiiiiiiiieieee ettt a e 62
16.3 «mMOdeliCaMOAEI . .uuuuueueeieiiiiiiiiiee et 62
16.4 «mMOdeliCaRECOId»....ccuuiiiieeeieiiie ittt 62
16.5 «modelicaBIOCK.......uuuuiiiiiiiiiiiiie et 62
16.6 «MOdeliCACONNECOND . .uuuiiiieeeieiieite ettt ettt et e e e eei e e aeeaeeeias 63
16.7 «MOAEIICATY PO eeeruueiiiieeeiiieeee ettt ettt e e e e e 63
16.8 «mMOdeliCAPACKAGE» . ..iivveeeeeiiiiie ettt 63
16.9 «mMOodeliCaFUNCHIONY . .uuuu ittt 63
16.10 «modelicaENUMEratioN»........oeeeeeiiieeeieiiiie ittt e e e eeeee 64
16.11 «mMOdeliCAEXtENAS .. iiieeeeiiiiieieiiiiieie ettt ettt e e eaiis 64
Short Class DefinitiONS.uieeeiiiieeiiieiiiieeeiieeieee ettt e 64
17 Predefined TYPES...cuuiiieuiiiiiiiieeeieee e eeeeeeeeeeeeeenes 64
17,0 OVOIVIEW. ettt et ettt e et e ettt e eee e eeetteseteesetsesenseeenaeeeenaeeennens 64
18 Component DeclarationsS........o.oceuveeeieiiiiiieeiiiiiiiieeeneennes. 65
18.1 OVEIVIEW. eeueuuuiii ettt ettt ettt sttt ettt ettt et e e et e e e et e e e eaeeeeeas 65
18.2 «m0odelicaCOMPONENEN..cviiieeeeeeeeiieeeiiiiiiiieee ettt eeeeieeeeeene, 65
18.3 «MOAEIICAP A i iee ittt e it e ittt et tetetatereteseeesteiessstesateiessterensensees 65
18.4 «MOUEIICAP O T ...t iet ittt ittt e ittt e it ee ittt teteteteeetesesesteiesseietatetessterenazensees 66
18.5 «modelicaValueProperty...........uueeueieeeeeiiiiiiiieiiieieeeeeiieeeiii e ereiieeeie 67
18.6 «modelicaFunctionParametery............uuuuiuieeeeeueiiiiieieiiiiiieciiieeeeeeiieeeiene 68
19 Equation and Algorithm SectionS........coceveveeiieeiieeeieneennne.. 68
19.0 OVEIVIEW. ettt ettt ettt ettt ettt ettt ettt ettt et e e e e 68
19.2 «modeliCaEqQUAtION . ..u.. ittt ee i 68
19.3 «modelicaAlgOrithMceeeeiieeiieeeie ettt 68
19.4 «m0odelicaCONNECION....eeuiirieeeieie ettt ettt e e e e e e e 68
Appendix A — EXamplesS......cooveveueiiieiieiieiiieiiieeieeieeieeieen 70

SysML-Modelica Transformation Specification, version 1.0 iii

20 A Car Suspension Model......oooueeei e ieeiararaeeaeens 70

21 ARObOt MOdel. . .uuiieeiiieeeeeeeeeee e, 75
21.2 INrOAUCTION. .ttt ettt eris 75
21.2 Integrating SysML Descriptive Models with Analytical Models..................... 75
21.3 RODOt EXAMPI€. ... eieiiiiiiiiiee ettt 77

Appendix B — Justification.........cooeeveviieeeiiieiiiiiieeiieiieeeiieenn, 86

22 Semantic Comparison between SysML and Modelica........ 86
22.1 MOAEIICA. teeeeutiiiiiee ettt ettt ettt e e e 87
22.2 SysML Hierarchical Blocks, ports and connectors...........cceeeeeeeieiieieeeennnne.. 87
22.3 SysML Parametric CONStraiNtS.cvuveeeiiiieiiiiiiiiiieiiiieeeeiieeeiiiiiieeeeaeeeeeene 87
22.4 SYSML ActiVity GraphS......cuuuueeeeeeiiiiieiiiiiiieie ettt a e 88
22.5 Selected foundation concept: SysML Hierachical Block with Embedded
CONSHAINES. ettt ettt ettt ettt ettt ettt e e eaaaees 88

SysML-Modelica Transformation Specification, version Alpha 1

Preface

OMG

Founded in 1989, the Object Management Group,(D®IG) is an open membership, not-for-profit compunel ustry
standards consortium that produces and maintaimpgter industry specifications for interoperableitpble, and re-
usable enterprise applications in distributed, fogteneous environments. Membership includes Infaomaechnology
vendors, end users, government agencies, and amadem

OMG member companies write, adopt, and maintaiggecifications following a mature, open proceddG3X spe-
cifications implement the Model Driven Architect@€MDA®), maximizing ROI through a full-lifecyclepproach to
enterprise integration that covers multiple opeggystems, programming languages, middleware atvaonking infra-
structures, and software development environm@&G’s specifications include: UML® (Unified ModelinLan-
guage™); CORBA® (Common Object Request Broker Aeadture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertinarkets.

More information on the OMG is available at httwww.omg.org/.

OMG Specifications

As noted, OMG specifications address middlewarejeting and vertical domain frameworks. A Specificas Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_cgthim

Specifications within the Catalog are organizedhgyfollowing categories:

OMG Modeling Specifications

« UML
« MOF
« XMl

« CWM

« Profile specifications
OMG Middleware Specifications

+ CORBA/IIOP

« IDL/Language Mappings

* Specialized CORBA specifications
« CORBA Component Model (CCM)

Platform Specific Model and Interface Specification s

* CORBAservices

* CORBAfacilities

e« OMG Domain specifications

< OMG Embedded Intelligence specifications
e OMG Security specifications

All of OMG's formal specifications may be downloab@ithout charge from our website. (Products immating OMG

SysML-Modelica Transformation Specification, version 1.0 Y

specifications are available from individual suppi) Copies of specifications, available in Posgsand PDF format,
may be obtained from the Specifications Cataloggdcétbove or by contacting the Object Managementigzrimc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available & $&ndards. Please condtp://www.iso.org

Typographical Conventions

The type styles shown below are used in this dootteedistinguish programming statements from adirEnglish.
However, these conventions are not used in talvlesaion headings where no distinction is necgssar

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) andn$gx elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are definethanglossary. Italic text also represents the nafi@edocument, spe-
cification, or other publication.

Vi SysML-Modelica Transformation Specification, version Alpha 1

Part I - Introduction

1 Abstract

OMG SysMI™ is a standardized general purpose graphical muglielhguage for capturing complex system de-
scriptions in terms of their structure, behaviggperties, and requirements. Modelica is a stanzizddyeneral pur-
pose systems modeling language for analyzing thérasmus and discrete time dynamics of complexesystbased
on solving differential algebraic equations. Intgrg the descriptive power of SysML models with #nalytic and
computational power of Modelica models providespability that is significantly greater than SysMiLModelica
individually. The objectives of this document ameshable and specify a standardized bi-directitmalsformation
between the two modeling languages that will supipgplementations to efficiently and automaticalignsfer the
modeling information transfer between SysML and Blahd models without ambiguity.

The transformation approach is to specify firseatension to SysML called the SysML4Modelica pefib repres-
ent the Modelica constructs and then to speci#ySfrsML-Modelica Transformation between the prafiestructs
and the Modelica language. Introducing the prafite the transformation approach is intended napsify the
transformation to Modelica and facilitate modelsely more directly leveraging existing modelditi@s within
Modelica. In this way, the user first creates th&tesm model in a SysML modeling tool as he woulchmadly do.
The user then selects the part of the model tonbby/zed by Modelica (e.g., a particular subsystang) applies the
SysML4Modelica profile to creates an analytic regergtation of that part of the model. The SysML ntiodetool is
expected to include this profile. The analytic eggmtation expressed in the SysML4Modelica pridithen trans-
formed to a Modelica model where it can be execbted Modelica modeling tool.

The SysML-Modelica transformation leverages thedamental concepts of the Model-Driven Architect{Md®A).
Different transformation implementations can beli@gpto implement this specification such as theT@ind oth-
ers. The transformation can leverage an XMI forethttatic file transfer or other mechanisms suchRd% that
support a dynamic interchange capability.

This specification is organized as follows:

Part | — Introduction
Part Il — SysML4Modelica profile
Part Il — Modelica meta-model

Part IV — SysML-Modelica mapping, a bidirectionahpping between the SysML4Modelica profile and thedM
elica meta-model

Annex A — Robotic Sample Problem

2 Scope

OMG SysML™ is a general-purpose systems modeling languagedhabe used to create and manage models of
systems using well-defined constructs with undagysemantics and a graphical notation. SysML reasegset of
UML 2 constructs and extends them by adding newatiogl elements and two new diagram types. Thes#8y
diagrams are shown in Figure 1. The set of behalvi#ord structural diagrams combined with the resquénts dia-
gram and parametric diagram provide an integraied of a system. But SysML represents much more fst a
set of diagrams. Underlying the diagrams, theamiabstract syntax model repository that formadfyresents all
the modeling constructs. The graphical model gtesia mechanism to organize, enter, retrieve, ewvd the sys-
tem-descriptive data contained in the model repositThe diagrams provide multiple views of thensasystem
model; these multiple views can be maintained aestly due to the semantic underpinning of the elind lan-
guage. In the context of SysML, the structure viimnarily refers to the hierarchy and interconnatsi among the
parts of the system, and the interconnections hegtlge system and its external systems. The bahaei de-
scribes how the state of the system changes (aorechasge) over the time according to its own dyrearaind/or to

external events. The requirements diagram captarésequirements in the model, and enables tlelpe finked
to other parts of the model, to provide unambiguoaiseability between the requirements and systesigd. Para-
metrics provide a means to specify that interdeproigs between values of some system propertéesaam
provide a bridge between the system descriptiveainiodSysML and other simulation and engineeringlygsis
models. While structure and behavior are heavisedaon UML, both requirements and parametrics aigue to
SysML. Through these extensions, SysML is capabiemresenting the specification, analysis, designification
and validation of systems.

SysML
Diagram
A
Behavior Req uirements Structure
Diagram Diagram Diagram
A \
e
Activity State Machine Sequence Use Case Block Definition Internal Block Package
Diagram Diagram Diagram Diagram Diagram Diagram Diagram
Sameas | [Modified from H-}w_DiaEam- “Parametric
UML 2 UML 2 Type Diagram

Figure 1: An overview of the SysML diagrams and thi relation to UML diagrams.

As indicated above, the system behavior in SysMiajgtured through a combination of activity graygtate ma-
chine , and/or interactions specifications usiragdams and their associated semantics. The FaondbSubset of
the UML specification provides the additional seizs to enable SysML activity graphs to be exeturtea stand-
ard way. In addition, SysML includes parametriagtoucts to capture models of constraint-basedwehauch as
continuous-time dynamics in terms of energy flddowever, the syntax and semantics of such behddeszrip-
tions in parametrics have been left open to integnath other simulation and analysis modeling taliges to sup-
port the execution of these models. Additionabinfation on SysML can be found at http://www.omgslysrg.

Modelica is an object-oriented language for degugildifferential algebraic equation (DAE) systenosnbined with
discrete events. Such models are ideally suitedefmesenting the flow of energy, materials, signat other con-
tinuous interactions between system componenisssitilar in structure to SysML in the sense thaidelica mod-
els consist of compositions of sub-models conneloyeplorts that represent energy flow (undirectedjignal flow
(directed). The models are acausal, equation-baseldeclarative. The Modelica Language is defaned main-
tained by the Modelica Association (www.modelicg)orvhich publishes a formal specification [Modeli&ssoci-
ation, 2008] but also provides an extensive ModeBtandard Library, which includes a broad fourmtatf essen-
tial models covering domains ranging from (analng digital) electrical systems, mechanical motiad thermal
systems, to block diagrams for control. Finallysitvorth noting that there are several effortdimithe Modelica
community to develop open-source solvers, such & OpenModelica project (www.openmodelica.org).

In conclusion, SysML and Modelica are two completagnlanguages supported by two active communiBgsn-
tegrating SysML and Modelica, we combine the veqyressive, formal language for differential algébequa-
tions and discrete events of Modelica with the \@tgressive SysML constructs for requirementscatral decom-
position, logical behavior and corresponding crosing constructs. In addition, the two commuetstare expec-
ted to benefit from the exchange of multi-domairdeldibraries and the potential for improved anganded com-
mercial and open-source tool support.

The objective of this document is to provide a ibéctional mapping between SysML and Modelica teetage the
benefits from both languages. By integrating Sysivid Modelica, SysML's strength in descriptive modgtan be
combined with Modelica's formal executable modeliagability to support analyses and trade studies.scope of
this specification supports the objectives of thdikectional mapping, and includes the SysML4Mackeprofile,
and the SysML-Modelica Transformation. Not all Mtida constructs will be represented in this peofithe focus
is to include the Modelica language features thai@ost common and together cover the majorithefModelica
models in the standard library. When certain Maretionstructs are omitted, then this will be palraeat explicitly

in this document. Changes to SysML and Modelicg bearecommended as a result of this effort to kenie
transformation, but these changes are subjecetadbption process for the respective specificatibnture
changes could also include the introduction of éoldal SysML constructs into the Modelica Languagaddi-
tional Modelica constructs in the SysML languageybver, this is outside the scope of the currefotief

3 Conformance

The Conformance clause identifies which clauseb@pecification are mandatory (or conditionallyntatory)
and which are optional in order for an implemewtatio claim conformance to the specification.

3.1 Compliance with SysML4Modelica profile
3.2 Compliance with the SysML-Modelica mapping

Note: For conditionally mandatory clauses, theditions must, of course, be specified.

4 References

4.1 Normative References

The following normative documents contain provisiavhich, through reference in this text, constitutgvisions
of this specification. For dated references, subsegamendments to, or revisions of, any of thesdigations do
not apply.

« Systems Modeling Language: Specification, versi@n(fittp://www.omg.org/spec/SysML/1.2)
* Modelica Specification, v.3.1 (http://www.modelioeg/index_html/documents/Modelica Spec31.pdf)

« QVT1.0
e« (OCL22
4.2 Non-normative References

The following document contains provisions whidirpugh reference in this text, constitute provisiofthis spe-
cification. For dated references, subsequent amentio, or revisions of, any of these publicatidasot apply.

* ormsc/09-02-01: MDA Foundation Model - Santa ClaBainitial comments draft
(http://www.omg.org/members/cqgi-bin/doc?ormsc/09602pd1)

5 Terms and Definitions

There are no formal definitions in this specifioatthat are taken from other documents

reference the Modelica spec for Modelica terminglogAppendix A of Spec.

Analytical model: a model that is used with the intent of producingaaalytical result through simulation

Descriptive model:a model that is used to capture descriptionssyséems or concepts generally in terms of their
features and relationships

Experiment model: model of the system and the test environment ingtrumentation/test harness/probes and in-
put values

Simulation: execution of Experiment Model with resulting outfnace. Experiment results include simulation out-
puts plus post processing of the input/output \v@faem multiple simulation executions

System model:model of the system that includes the dae’s

6 Symbols
Acronym Meaning
MDA Model Driven Architecture
MOF Meta Object Facilities
OoMG Object Management Group
SysML System Modeling Language
UML Unified Modeling Language
XMI XML Metadata Interchange
XML eXtensible Markup Language

7 Additional Information

7.1 Changes to Adopted OMG Specifications

The following are proposed changes to the SysMlcHipation and designated as required or desireatder to
support this specification:

Reference to nested properties (SysML issue #14055)

SysML provides a mechanism to create unambiguonseziions between parts whatever are their regukletvel
of nesting. This is done thanks to the NestedCdonend extension and its propertyPath propertyodohately
this facility is not provided for other kinds offeeence. So, relationships like allocation can tmdiguous when
they are used across several level of nestingrikigure 19. Thus, a more generic mechanism isired to solve
this problem for all kind of references. The issB4055 has been raised on SysML for that purpose.

The following are proposed changes to the Moddigecification and designated as required or degiredder to
support this specification:

(none)

7.2 Acknowledgments

The following companies submitted this specificatio

* Atego

« Deere & Companyto be confirmed)

« IBM (to be confirmed)

e Jet Propulsion Laboratorto be confirmed)
* No Magic Inc.

e Sparx Systems

The following companies supported this specifiqatio

« EADS

+ ESA/ESTEC

« Georgia Institute of Technology
e Linkdping University

e Lockheed Martin Corporation

The following people have contributed significartilythis document either directly or indirectlyabgh discus-
sions and feedback:

e Yves Bernard (EADS)

* Roger Burkhart (Deere & Co)

e Hans-Peter De Koning (ESA)

« Sanford Friedenthal (Lockheed Martin)
e Peter Fritzson (Link&ping University)

* Nerijus Jankevicius (No Magic Inc)

« Thomas Johnson (Georgia Tech)

* Alek Kerzhner (Georgia Tech)

e Chris Paredis (Georgia Tech)

* Russell Peak (InterCAx, Georgia Tech)
* Axel Reichwein (Georgia Tech)

* Nicolas Rouquette (Jet Propulsion Laboratory)

e Wiladimir Schamai (EADS, Linkdping University)

8 Transformation Approach

To develop a transformation between the SysML anddfica languages, a formal, systematic approackad. As

is illustrated in Figure 2. the transformation aygwh is to specify first an extension to SysMLealthe SysML4-
Modelica profile which represents the most commardblica language constructs. This allows the Madetion-
cepts to be expressed in an extension of SysMLstingborts round-trip transformations between Sysiviil Mod-
elica. The profile extends the UML4SysML subsetUML and the SysML extensions to provide the concept
quired to capture the relevant Modelica semanticsemable the mapping between the two languages.

pkag [SysML-Modelica Transformation]) pka SysM_-Modelica Transformation Approach [Applicaﬁon])
- 1 — —
emetamodel: _ areferences zprofiles «pmme»elim «mm?g:'»
UMLASysML [~ — — — — 1 SysML Profile
in. = . [
M | - - !
. . - 1 e - |
fereferences | ~ereferences i - - /, i
| - - H - - E
- Y canform sTo;
- = # p;’jw «m appings “ : ®
aprofiles smetamodelz 5 ! Sysh Modelica !
SysML4Modelica Modelica : T ;
| i |
= - 1 1 1
\ / 1 i H
H smodel: sinsgtanceC s smockels
b SysML Modelica : Modelica
, Anabtical Model ! Simulation Model
d 1
3 H L
‘ . H -
stransformation: T R
2 - moces L
SysML-Modelica - Modelica -
TransformationR ecord

Figure 2: The SysML-Modelica Transformation inrela tion to SysML and Modelica

To develop the SysML4Modelica profile in a systeiméishion, we start from the Modelica LanguagecHjpation
and identify for each Modelica language constructquivalent construct in SysML from a semantimpof view.
Where equivalent constructs do not exist, sterestygre created to extend the SysML language. Tlosvfag
naming convention is used to define a Modelica transin the SysML4Modelica profile: «modelicanstrucy
whereConstructis the name of the Modelica language construceéiaetl in the Modelica abstract syntax defini-
tion (see Chapteqqg-insert ref after combining documents).

Even when an equivalent SysML construct exists, sometimes necessary to introduce a stereotypelar to dis-
tinguish the Modelica construct from the ordinagsBL construct when supporting round-trip transfation. In
addition, the concrete syntax of Modelica oftenvites alternative representations to express thetesame se-
mantics. In such cases, the intent is to avoididaidhg this redundancy in SysML4Modelica withoog$ of ex-
pressivity. For mapping purposes, one of the redontepresentations is identified as the primargstnexplicit)
representation, and SysML4Modelica constructs eetepably mapped onto this primary representatioshould
also be noted, that Modelica includes a graphigallasc using iconic representations of block diagsdhat maps to
its textual syntax. An example of the Modelica dniapl syntax is shown in Figure 3 for a set of comgnts con-
nected together via Modelica connectors and coiorect

Step1

controller gearbox
positione... B

motor = load
_ = | _ | —
- tiol10 [——

- — J=0.5*mfr*
startTime=0 Ti=Ti

peojyd

Figure 3: A Modelica model of a motor controller co nsisting of component models and the connections
between them. The connections include both causal signal connections (e.g., in and out of the control

and acausal energy connections (e.g., the rotationa | mechanical energy connections of the gearbox).
Initially, the SysML-Modelica Transformation Spécétion provides a textual description of the mapgbetween
Modelica and SysML4Modelica. However, it is theeintt also to describe this mapping formally by defira
Triple Graph Grammar, linking the Modelica and Sysieta-models. Such a formal definition of the magpas
the additional advantage that meta-CASE tools (siscMOFLON) can be used to generate executablsftiana-
tions between SysML and Modelica modeling toolsasing they support some standardized interfacle asic
JMI). An additional implementation of the mappisgoeing developed as part of the OpenModelica gtroje

ler)

Part II - SysML4Modelica Profile

This part of the SysML-Modelica Transformation Sfieation describes the stereotypes that repretbeniiodelica
modeling constructs in SysML. As illustrated in tiig 4, the stereotypes, together with the librdnyredefined
types, are organized in sub-packages and profildseithe SysML4Modelica profile. In Chapter Btlze stereo-
types related to the Modelica restricted classesraroduced. In Chapter 10, the predefined Madetypes and the
enumerations used in the SysML4Modelica profiledafined. In Chapter 11, the Modelica equivalemiroperties
are defined — called Component Declarations in Mode Finally, in Chapter 12, the Equation and&ithm sec-
tions of Modelica models are covered.

pkg [Profile] SysMLdModelical SysML4Modelica Overview LJ

] [1 1 1]

Classes Types a Components Equations and Algorithms Other

|]
Chaptel% Chaptel% Chapter 7 Chapter 5 Chapter &

Figure 4: Package diagram with an overview of the Y sML4Modelica profile.

9 Class Definition

9.1 Overview

The class concept is the basic structural unit gd®lica. Classes provide the structure for objentscontain equa-
tions and algorithms, which ultimately are the bdsi the executable simulation code. The mostigémtass is

“model”. Specialized classes such as “record’pé&ty “block”, “package”, “function” and “connectotiave most
of the properties of a “model” but with restrictmwhich need to be preserved in SysML to supmamd-trip map-

ping.

The following production rules define the differesptecialized classes. The reference in parentlogste right in-
dicates the section of this document in which thgipular language element is discussed in detail:

stored _definition:

[within [name] ";"] (9.2)

{ [final] class definition ";" } (9.2)
class_definition :

[encapsul ated] (9.2)

[partial] (9.2)

(class (9.2)

| nodel (9.3)

| record (9.4)

| bl ock (9.5)

| [expandable] connector (9.6)

| type (9.7)

| package (9.8)

| function) (9.9)
cl ass_specifier

cl ass_specifier

| DENT string_coment conposition

| I DENT "="

[class_nodification] coment

|
end | DENT

| DENT "=" enuneration "("
| DENT "=" der " ("
extends IDENT [class_nodification] string_conment conposition

([enum.list]
IDENT { ","

nanme

base prefix name [array_subscripts]

| ")

")" coment

IDENT } ")" comment

(11)
(9.7)
(11)
(9.7)
(9.9)
(9.10)

The following table lists the SysML stereotypesrigpresenting the specialized Modelica classesidibiis ap-

proach the modeler only needs to apply the respestereotype to indicate all the semantics antticgsns of the
associated Modelica class. This information isespnted graphically in . In the following subgeats, the details
of each stereotype are described.

Table 1: Mapping for the Modelica specialized clags.

Modelica Construct

SysML4Modelica

SysML Base Class

New Stereotype

Comments

abstract generalization fq
all Modelica classes

D

=

UML4SysML::Classifier

«modelicaClassDefinition

N

SeecSon 9.2

»

Class and Model

SysML.::Blocks::Block

«modelicaModel»

See Section 9.3

Record SysML::Blocks::Block «modelicaRecord» See sach.4
Block SysML::Blocks::Block «modelicaBlock» See Seant@.5
Connector SysML.::Blocks::Block «modelicaConnector Seetion 9.6
SysML::Blocks::Block
Type SysML::Blocks::ValueType «modelicaType» See Sections 9.7
UML4SysML::Enumeration
Package SysML::Blocks::Block «modelicaPackage» Setd?e9.8
Function UML4SysML.::FunctionBehavior «modelicaFunact» See Section 9.9

pkg [Fackage] Classes [Modelica Class Sterectypes U
smetaclasss smetaclasss

Ciassifier FunctionBehavior

T

wstereotypes
T Nbdofica ClassDefinition
[Classifier]

+iizFinal : Boolean [1] = false
+izPartial : Boolean [1] = false
+izModelicsEncapsulsted | Boolean [1] = false
+izReplaceahle | Boolean [1] = false
-fromLibarary - String [0..1]

- izPartial is derived from isAbstract
- izFinal is derived from isLeaf

: |
zstereotypes zsterectypes sstereotypes zsterectypes zsterectypes
ModelicaModel ModelicaRecord ModelicaConnector ModelicaType ModelicaFunction
[Class] [Clas=s] [Class] [DataType] [FunctionEehaviar]
-izExpandable . Boolean [1] = falze +zcope . ModelicaScopekind [1] = none
wsterentypes asterectypes wsterectypes wsterectypes «sierjot =
ModelicaClass ModelicaBlock ModelicaOperator ModelicaPackage < ?‘Ip
i - i ol ModelicaFunctionExternal
[Ctass] [Bass] [Class] [Ses] [FunctionBehavior, OpagueExpression]
: N ¥
stereot =terect
SLEERpes «metaclazss ametaclasss ¢ o «metaclasss
Hlack Enumeration il DataType ValueType OpaqueExpression
[Class] e [DataType] Dan-sn

Figure 5: Package diagram with an overview of the s tereotypes for Modelica Classes

9.2 «modelicaClassDefinition»

Stereotypes
e Classifier (from UML4SysML)

Abstract Syntax
e See Figure 5.

Description

A Modelicacl ass is the basic structural unit in Modelica. Howeumcause it lacks precise semantics, the

cl ass construct should never be used in Modelica. Witlprecise semantics, a Modelica tool cannot eabibck
whether any restrictions are violated. Thereftite,constructs that are specialized from Modeaticass should
be used instead.

In the context of the SysML4Modelica profile, theodiklicacl ass construct is mapped to the stereotype «model-
icaClassDefinition» which is abstract and thus cate instantiated directly. This choice has beaderbecause it

is desirable to have the additional semantics fipdddy the specialized classes. In addition,l@arty shown in
Figure 5, the stereotypes associated with the alismil classes derive from different SysML condswnd thus
cannot be mapped to a single common construct Kbodelicacl ass. The abstract stereotype «modelicaClass-
Definition» serves the purpose of grouping thakaites that apply to all the Modelica specializé&bsses. It stereo-
types UML.::Classifier, which is a common generaima for the stereotypes of all the specializedsies.

Just like UML Classifiers, a «modelicaClassDefmnitb can contain nested class definitions. Suctedetefinitions
can be of any restricted class type derived frordeticaClassDefinition». For instance, a «modé&manector»
can contain a «modelicaPackage».

Modelica classes are often defined using a shassdlefinition syntax. For example, the tifoe ce could be
defined as:

type Force = Real [3](unit={"N.m',"N.nt',"N.m'});

Rather than supporting such short class definitexqicitly, the SysML4Modelica profile supportslgithe longer
(but equivalent) form (Note: in the Modelica abstrsyntax the two forms are often represented idalh):

type Force
extends Real [3] (unit={"N.nd","N.n{","N.ni'});
end Force;

In the remainder of this section, all the commadritaites and associations for all the construcexispized from
Modelicacl ass are described. In subsequent sections for theidhal specialized constructs, only the con-
straints on these attributes and associationseitlescribed in detail.

Attributes
e [isFinal : Boolean [1]

In Modelica, the definition of a class can be diedito bef i nal (Modelica Specification 7.2.6). This
means that the declared class cannot be furtheifistbthrough (local) type modifications. Note thhis
is identical to the UML attribute isLeaf for redadible elements (UML Specification 7.3.46) whichtyife,
indicates that no further redefinitions are possibl
The isFinal attribute is true when thenal prefix is present in Modelica; false otherwists default
value isfalse This is derived fronsLeaft

e [isPartial : Boolean [1]
The Modelicgpar ti al construct has the same semantics as the isAbattebute in SysML. The is-
Partial attribute is true when tipar t i al prefix is present in Modelica; false otherwises default value
is false This is derived from isAbstract.

e isModelicaEncapsulated : Boolean [1]
As explained in Modelica Specification 5.3.2, thedélicaencapsul at ed construct limits the scope of
name lookup. Arncapsul at ed package can be moved within the package hierastimput affecting
the local name resolutions. These semantics #ezatit from the isEncapsulated attribute of Blorks
SysML (SysML Specification 8.3.2.2). An encapsedhblock is treated as a black box; no connectians
be made to its internal parts directly. A secoifigéibnce in semantics is that in Modelica grecapsu-
| at ed prefix can be applied tall classes, although it is most commonly appliedackpges. It is there-
fore necessary to introduce isModelicaEncapsulasea new attribute so that it becomes availabtefals
specialized class stereotypes that do not derora &t SysML Block.

* The isModelicaEncapsulated attribute is true winerencapsul at ed prefix is present in Modelica;
false otherwise. Its default valuefidse

« isReplaceable : Boolean [1]
As explained in Modelica Specification 7.3, the Mbch prefixr epl aceabl e is most commonly ap-
plied to components (see Section 11) , but cankasapplied to a Modelioal ass to indicate that a local
model definition can be redeclared when the coimtgimodel is used. The isReplaceable attributruis
when ther epl aceabl e prefix is present in Modelica; false otherwisés default value ifalse

e fromLibrary : String [0..1]
A model in SysML4Modelica often corresponds to aleidhat has already been defined in a Modelica lib
rary. Rather than duplicating the entire defimit@f such a model, the attribute fromLibrary isdise spe-
cify the fully qualified path to the model in theddelica library. When converting such a SysML4Mede
ica model to Modelica, the definition of the modsl®mitted and instead the fully qualified librgygth is
used as type. In addition, for such models, timdyports are defined in SysML4Modelica so thaf/tban
still be connected to other models. All other det@value properties and parts) are omitted bezdusy
are already defined in the corresponding Modellwaty. The fromLibrary attribute should only be
defined when a corresponding Modelica model exists.

Associations

No additional associations.

Constraints

[1] isFinal has the same value as isLeaf'
context SysML4Modelica::Classes::ModelicaClassOgin::isFinal : Boolean
derive: self.baseClassifier.isLeaf

[2] isPartial has the same value as isAbstract
isPartial = self.isAbstract

[3] Any generalization relationship to/from «modeli@lassDefinition» must be stereotyped to a «moalehe
tends» relationship.

[4] A «modelicaClassDefinition» can only contain teekClassifiers stereotyped to a restricted typeiafizing
«modelicaClassDefinition».

Additional Notes

The Modelicawi t hi n clause is explained in Modelica Spec. 3.1, Sed®f.2.3. It defines where in the package
hierarchy the subsequent class definitions ardddcarThis is important in Modelica to allow larngackage struc-
tures to be divided over multiple model files. l8rg as fully qualified type identifiers are uséiewi t hi n clause

is not relevant in SysML4Modelica and is therefoot supported in the SysML4Modelica profile.

9.3 «modelicaClass» and «modelicaModel»

Generalizations
* «modelicaClassDefinition» (from SysML4Modelica:aGes)
* «block» (from SysML)

Abstract Syntax
e See Figure 5.

Description

The Modelica specialized classdel is the most general specialized class; it is exjaitt to the general Modelica
cl ass construct. All the Modelica class elements alewadd in models: variables, connectors, sub-modgjsa-
tions and algorithm sections. A model can alstunhe state variables. Modelica does not diffeedatbetween a
nodel and acl ass. Although redundant, we therefore include bothetaivalent stereotypes «modelicaClass»
and «modelicaModel».

Attributes

No additional attributes.

Associations

No additional associations.

Constraints
(All constraints apply to both «modelicaClass» antbdelicaModel»)
[1] A «modelicaModel» must have a Name.
[2] A «modelicaModel» can only have Properties thet¢ stereotyped to «modelicaPart», «modelicaPort»,
«modelicaValueProperty».
[3] A «modelicaModel» can only contain Behaviorstthhae stereotyped to «modelicaFunction», or «model-
icaAlgorithm.
[4] A «modelicaModel» can only be contained in a delicaClassDefinition».
[5] A «modelicaModel» can only specialize other slfisrs derived from «modelicaBlock», or «modelieaR
cord». The stereotype «modelicaExtends» must pkegpto the generalization relationship.
[6] All other attributes or associations inherited frablock» or Classifier are not relevant and shdddset to
their default values. This includes the attribuieActive, isEncapsulated.

9.4 «modelicaRecord»

Generalizations
* «modelicaClassDefinition» (from SysML4Modelica:aGes)
* «block» (from SysML)

Abstract Syntax
e See Figure 5.

Description

The Modelica specialized clasgcor d is restricted to contain only public declaratiefi€omponents that in turn
also contain only public declarations. A complegscription of ecor d is available in Modelica Specification,
Section 4.6:

Only public sections are allowed in the definition or in any of its com
ponents (i.e., equation, algorithm initial equation, initial algorithm
and protected sections are not allowed). May not be used in connections.
The el ements of a record may not have prefixes input, output, inner

outer, or flow. Enhanced with inmplicitly available record constructor
function. Additionally, record conponents can be used as conponent refer-
ences in expressions and in the left hand side of assignments, subject to
normal type conpatibility rules.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] A «modelicaRecord» must have a Name.

[2] A «modelicaRecord» can only have Properties #natstereotyped to «modelicaValueProperty».

[3] Any «modelicaValueProperty» owned by an instanéexmodelicaRecord» must hawgsibility=public,
flowFlag=nonflow,causality=null scope=null

[4] A «modelicaRecord» can only be contained in @adeaticaClassDefinition.

[5] A «modelicaRecord» can only specialize othessifiers derived from «modelicaRecord». The stgreo
«modelicaExtends» must be applied to the genetalizeelationship.

[6] All other attributes or associations inheritedrfi «block» or Classifier may not be used. Thidudes the
attributes: isActive, isEncapsulated; and the aliilements: Behavior, Constraint.

9.5 «modelicaBlock»

Generalizations
« «modelicaClassDefinition» (from SysML4Modelica:aGes)
e «block» (from SysML)

Abstract Syntax
e See Figure 5.

Description
The Modelica specialized clabs ock is very similar to andel except that all its connectors must be eithemnan i

put or output making it similar to a Simulink block complete description dfl ock is available in Section 4.6 of
the Modelica Specification:

Sane as nodel with the restriction that each connector component of a Mod-
elica block nust have prefixes input and/or output for all connector vari-
abl es.

Attributes

No additional attributes.

Associations

No additional associations.

Constraints

[1] A «modelicaBlock» must have a Name.

[2] A «modelicaBlock» can only have Properties theg stereotyped to «modelicaPart», «modelicaPort»,
«modelicaValueProperty».

[3] Any «modelicaValueProperty» owned by an instaotemodelicaBlock» must haveusality=inputor out-
put

[4] A «modelicaBlock» can only contain Behaviorsttiase stereotyped to «modelicaFunction», «modelicaA
gorithm», or «modelicalnitial Algorithms.

[51 A «modelicaBlock» can only contain Constrairtstt are stereotyped to «modelicaEquation» or «model
calnitialEquation».

[6] A «modelicaBlock» can only be contained in a «@licaClassDefinition».

[71 A «modelicaBlock» can only specialize other eifisrs derived from «modelicaBlock» or
«modelicaRecord». The stereotype «modelicaExtermisst be applied to the generalization relationship

[8] All other attributes or associations inheritedrfi «block» or Classifier may not be used. Thidudes the
attributes: isActive, isEncapsulated.

9.6 «modelicaConnector»

Generalizations
« «modelicaClassDefinition» (from SysML4Modelica:aGes)
« «block» (from SysML)

Abstract Syntax
e See Figure 5.

Description

The Modelica specialized classnnect or is anpdel that cannot contain equations or algorithms in @fnys
components. A complete descriptioncafnnect or is available in Section 4.6 and Chapter 9 of tre®lica Spe-
cification:

No equations or algorithns are allowed in the definition or in any of its
conponents. Enhanced to all ow connect(..) to conmponents of connector
cl asses.

Attributes
e isExpandable : Boolean [1]
As explained in Modelica Specification 9.1.3, thedélicaexpandabl e prefix can be applied to a
connect or. The primary purpose of expandable connectais adlow for the convenient modeling of
bus interfaces. The isExpandable attribute iswihien theexpandabl e prefix is present in Modelica;
false otherwise. The default value is false.

Associations

No additional associations.

Constraints

[1] A «modelicaConnector» must have a Name.

[2] A «modelicaConnector» can only have Propertied are stereotyped to «modelicaPart», «modelitaPor
«modelicaValueProperty».

[3] None of the Properties owned by an instancenobeelicaConnector» can contain Behaviors or Coimésra
(at any level of containment).

[4] A «modelicaConnector» can only be contained imedelicaClassDefinition».

[5] A «modelicaConnector» can only specialize otblassifiers derived from «modelicaConnector», «ntode
icaType», or «modelicaRecord». The stereotype @fimaExtends» must be applied to the generalization
relationship.

[6] All other attributes or associations inheritedrii «block» or Classifier may not be used. Thidudes the
attributes: isActive, isEncapsulated; and the ovialechents: Behavior, Constraint.

9.7 «modelicaType»

Generalizations
» «modelicaClassDefinition» (from SysML4Modelica:aGes)
* «valueType» (from SysML)

Abstract Syntax
e See Figure 5.

Description

The Modelica specialized clasype is restricted to predefined types, enumeratiomaya of type or classes ex-
tending from type. It is enhanced to allow extensif predefined types. In the SysML4Modelica peotthe ex-
tension from predefined types is handled by makiegpredefined types instances of «modelicaTypee Ghapter
10).

The only additional distinct type for which a capending representation needs to be defined in S¢shddelica
is an enumeration. Enumerations are handled sepathrough the stereotype «modelicaEnumeration»

Attributes

No additional attributes.

Associations
No additional associations.

Constraints

[1] A «modelicaType» must have a Name.

[2] A «modelicaType» can only be contained in a «glimdClassDefinition».

[3] A «modelicaType» can only specialize other diéss derived from «modelicaType». The stereotypeod-
elicaExtends» must be applied to the generalizagtationship.

[4] All other attributes or associations inheritedrfi «block» or Classifier may not be used. Thidudes the
attributes: isActive, isEncapsulated; and the oviatechents: Property (including part, port and valueper-
ties), Behavior, Constraint.

9.8 «modelicaPackage»

Generalizations
« «modelicaClassDefinition» (from SysML4Modelica:aGes)
* «block» (from SysML)

Abstract Syntax
e See Figure 5.

Description

A Modelicapackage has broader semantics than just a container far ohodel elements as in SysML. Although
it may only contain declarations of classes andstaonis, these declarations can be replaceableaanidecinherited
from parent packages, so that the package itseifldlbe thought of as a model. The correspondirsMt4Mod-
elica construct, «modelicaPackage», therefore géimes «block» rather than Package. As compardibidelica

cl ass, a Modelicgpackage is enhanced to allow for the import of elementpatkages. (See also Modelica
Spec. 3.1, Chapter 13.)

Attributes
No additional attributes.
Associations

No additional associations.

Constraints

[1] A «modelicaPackage» must have a Name.

[2] A «modelicaPackage» can only have Propertiesatestereotyped to «modelicaValueProperty».

[3] Any «modelicaValueProperty» owned by an instaotemodelicaPackage» must haxariability=constant
(ref. Modelica Specification 4.6, package)

[4] A «modelicaPackage» can be contained in a «niza@glassDefinition» or in a UML4SysML::Package.

[5] A «modelicaPackage» can only specialize othassifiers derived from «modelicaPackage». The atype
«modelicaExtends» must be applied to the genetalizeelationship.

[6] All other attributes or associations inheritedrii «block» or Classifier may not be used. Thidudes the
attributes: isActive, isEncapsulated; and the ovialechents: Behavior, Constraint.

9.9 «modelicaFunction»

Extensions
¢ FunctionBehavior (from UML4SysML)

Generalizations
« «modelicaClassDefinition» (from SysML4Modelica:aGes)

Abstract Syntax
e See Figure 5.

Description

The Modelica specialized clabsinct i on represents a callable section of procedural dlyoic code. It is sim-
ilar to a SysML FunctionBehavior. Compared to aggal Modelicec| ass, quite a few restrictions and enhance-
ments apply; refer to the Modelica Spec. 3.1, $aci2.2 for details.

As described in the Modelica Spec. 3.1, Sectiof,12Modelica unct i on may refer to an external function spe-
cifier (e.g., an external C or Fortran function):

function I DENT string_conment

{ conponent _cl ause ";" }

[protected { component _clause ";" }]

external [language specification] [external function_call]
[annotation] ";"
[annotation ";"]

end | DENT,;
Several additional attributes are included in «nlicdEunction» to capture such semantics.

At this point, SysML4Modelica only allows for funch definitions; functions cannot be “called” exglly — they
can only be referred to in opaque Modelica syntatigns of the model.

Attributes

external: Boolean [1]

Indicates whether the opaque body of the FunctibaBer should be considered or whether the external
function definition should be linked. The isExtelattribute is true when ttext er nal keyword is
present in Modelica; false otherwisDefault value isfalse.

externalLanguage: String [1]

The language in which the external function specif defined. It should only be defined wtisExternal
= true. The externalLanguage attribihas the value of the string (without quotes) follogvtheex -

t er nal keyword in Modelica.Default value is “C”.

externalFunctionSpecification: String [0..1]

The complete specification of the externally dedifienction (see Modelica Spec. 3.1, Section 12r@é-»
tails). If is not defined, then the name of theodelicaFunction» is used. It should only be definden
isExternal = true:

externalAnnotation: String [0..1]
String containing a Modelica annotation associat#l the external function call. It should only be
defined wherisExternal = truc.

Associations

No additional associations.

Constraints

(1]
(2]
(3]

(4]
(5]

(6]
[7]
(8]

(9]

A «modelicaFunction» must have a Name.

A «modelicaFunction» can only have Parameteas dine stereotyped to «modelicaFunctionParameter».
Any «modelicaFunctionParameter» (owned by ataimse of «<modelicaPackage») for whizdusality=in-
put may not be assigned values in the body of thetimmdi.e., it is read-only).

A «modelicaFunction» can only have zero or boéyattribute.

If isExternal=falsethenexternalLanguage, externalFunctionSpecificatiangd externalAnnotatiormust not
be defined.

If isExternal=truethenbodyandlanguagemust not be defined.

A «modelicaFunction» must hal@nguage“Modelica” if the bodyattribute is defined.

The bodyof the function must be represented in the Modedigntax and must constitute a valid Modelica al-
gorithm section.

A «modelicaFunction» can only be contained knaodelicaClassDefinition».

[10] A «modelicaFunction» can only specialize otblassifiers derived from «modelicaFunction». Treretype

«modelicaExtends» must be applied to the genetalizeelationship.

[11] All other attributes or associations inherifesin FunctionBehavior or Classifier may not be used

9.10

«modelicaExtends»

Extensions

Generalization (from UML4SysML)

Abstract Syntax

Page : 24 Line : 782 Author : Chris Paredis 03/@5(2
Update this to make consistent with Figure 5. Neddtroduce new type called
<<modelicaFunctionExternal>>

pkg [Profile] Clazses [Modelica Relations Sterectypes U

smetaclasss smetaclasss
Generalization Dependency
~ ¥
| |
wstereotypes gatereotypes ssterectypes
ModelicaExtends ModelicaConstrainedBy Modelicaler
[Generalization) [Dependency] [Dependency]
+modification : String [0..%] +modification : String [0..] +yatiable ; String [1..4]
+vizibility : VisibiltyKind [1] = public
+array=ize © String [0, *[ordered

Figure 6: Modelica Relations stereotype definitions

Description

Theext ends clause of Modelica is equivalent to a SysML Geliegiion. The only difference is that in Modelica
the type being extended can be locally modified d®liza Spec. 3.1, Section 7.1):

ext ends_cl ause :
extends name [class_nodification] [annotation]

constrai ning_cl ause :
extends nane [class_nodification]

Similar local type modifications can be used whefirdng usages (i.e., Modelica components — seg@tehdl). In
both cases the SysML4Modelica mapping currentlyzag the local modifications only as a text stimd/odel-
ica syntax. A separate modification can be defiioe@very component of a «modelicaClassDefinitian»Model-
ica these modifications are grouped, separatedbyr@as, and surrounded by parentheses. Each sudifigaiion
is represented in SysML4Modelica as a separategstiit corresponds thus to an argument as defiméte follow-
ing extract of the Modelica EBNF (Modelica Sped., 3ection 7.2):

class_nodification :
"(" [argument _list] ")"

argunent _|i st
argunent { ",

" argunent }
ar gunment
el ement _nodi fication_or_repl aceabl e
| elenent_redeclaration

el ement _nodi fication_or_repl aceabl e:
[each] [final] (elenent_nodification | el enent_repl aceabl e)

el enment _nodification :
component _reference [nodification] string_conment

el ement _redeclaration :
redeclare [each] [final]
((class_definition | conponent_clausel) | el ement_replaceable)

el ement _repl aceabl e:
repl aceable (class _definition | conponent cl ausel)
[constraining _cl ause]

conmponent _cl ausel :
type_prefix type_specifier conponent _decl arationl

component _decl arationl :
decl arati on coment

Multiple inheritance is supported in Modelica. Téfere, more than one «modelicaExtends» relatignishallowed
for a single «modelicaClassDefinition». Téwet ends clause can be applied to any of the restrictesseks (in-
cluding packages).

If the extends clause appears in a protected secfithe Modelica model, then all the elementsheftiase class be-
come protected elements of the specialized cligs therefore important to specify whether the
«modelicaExtends» relationpsiblic or protected

Not every restricted class can inherit from evaheorestricted class. Refer to Modelica Spec. Settion 7.1.3
for an overview table.

Attributes
« visibility: VisibilityKind [1]
When an extends statement appears in a proteatgdrsef a «modelicaClassDefinition», then all com-
ponents of the parent class are protected. Defalue ispublic.

« modification: String [0..*]
An inherited Modelica class can be locally modifigtie modifications are defined by this attribute i
Modelica syntax. Each modification (as specifiedhe Modelica concrete syntax as a comma-separated
expression) is specified as a separate instanitgsadittribute.

e arraySize: String [0..*] {ordered}
One can specify an array size for an inherited Modelass. This attribute is an ordered listtohgs,
each of which must be a Modelica expressions teltiates to an integer. TiHeelement in the ordered
list corresponds to size of the the multidimensi@meay in the™ dimension.

Associations

No additional associations.

Constraints
[1] Both thesourceandtarget of a «modelicaExtends» relation must be typedstainces of a specialization of
«modelicaClassDefinitions.
[2] Thevisibility attribute of «modelicaExtends» can only take dnesofpublic or protected

9.11 «modelicaDer»

Extensions
e Dependency (from UML4SysML)

Abstract Syntax
e See Figure 6.

Description

Theder clause in Modelica identifies a function as aipaderivative of another function (Modelica Sp8dl,
Section 12.7.2). It establishes a relationshigvben two functions and is therefore modeled asc<tamsion of De-
pendency in SysML4Modelica. It requires as atteélsia list of variables with respect to which thetial derivative
is taken.

Attributes
e variable: String [1..*]
A list of variables with respect to which the paltierivative is taken. At least one variable messpe-
cified. No default value is specified.

Page : 26 Line : 850 Author : Chris Paredis 03/Q52
Should this be [0..1]?

Associations

No additional associations.

Constraints
[1] Both thesourceandtargetof a «modelicaDer» relation must be typed to imsts of «modelicaFunction».

9.12 «modelicaConstrainedBy»

Extensions
e Dependency (from UML4SysML)

Abstract Syntax
e See Figure 6.

Description

In a replaceable declaration in Modelica, one gatidy aconst r ai nedBy clause. The semantics of this con-
struct are explained in more detail in the Modeligeec. 3.1, Section 7.3.2.

Attributes
« modification: String [0..*]
A Modelica class that constrains a replaceableadatibn can be locally modified. The modificaticare
defined by this attribute in Modelica syntax. Eaocbdification (as specified in the Modelica conersyn-
tax as a comma-separated expression) is spec#iadsaparate instance of this attribute. Defaallieris
null.

Associations

No additional associations.

Constraints
[1] Both thesourceandtargetof a «<modelicaConstrainedBy» relation must be dyjpeinstances of a specializa-
tion of «modelicaClassDefinition».

9.13 Short Class Definitions

Modelica provides a short-hand notation for defimitof classes. It is equivalent to an inheritaogestruct, and is
therefore redundant and not supported separaté¢hei®ysML4Modelica profile.

10 Predefined Types

10.1 Overview

The following predefined types are available in Mhedelica language (Modelica Spec. 3.1, Sectiox &R8al Type,
Integer Type, Boolean Type, String Type, Enumeraligpes, StateSelect, ExternalObject, and Graphicabta-
tion Type (See Chapter 13). These primitive typesdefined as predefined types in

SysML4Modelica:: Types::ModelicaPredefinedTypesthalgh these types have direct counterparts in &yshdy
are redefined to account for the additional attelsiassociated with them in Modelica. Note thdtflodelica, the
properties such as “start”, “quantity”, etc., ac# really equivalent to user-defined complex dafses. For in-
stance, if one defind®eal x;” then one cannot refer to “x.min” in anuadion. The only way one can specify a
value for these special properties is as parttgpa definition or local modification: e.g., “Reglstart=1,
unit="m");

pkg [Model] Types[Modelica Predefined Types LJ

smodelicaTypes NalueTypes
ModelicaReal Real.+Inf : Real
#valleTypes displaryUnit : String = String Empty
Real —min : Real = Real -Inf i wvalueTypes
max : Real = Real +Inf [Modelica 5.1, zec. 4.5.1] Real.-Inf : Real
fixed : Boolean
nominal : Real alnaT
start : Real = Real Zero s HLEIYPEs
stateSelect | ModelicaStateSelect = defautt Real.Zero : Real
amodelicaTypes NvalueTypes

avalueTypes Modelicainteger Integer.Zero : Integer

Integer L4 Imin: Integer = Integer.-Inf i T = 1
mar : Integer = Integer +inf [Modelica 3.1, sec. 4.8.2) sValueTypes

fixed : Boolean Integer.+inf : Integer
start ; Integer = Integer.Zero

101

NvalueTypes
smodelicaTypes Integer.-Inf : Integer
wvalueTypes ModelicaBoolean
Boolean [{q 20" Boolean =T T 7 |iModelica 31, sec. 4.8.3]

start ; Boolean = false

wvalueTypes :‘mzdelljcagp_e» avalueTypes
String [ofeflicasting | — — — — [Madelica 3.1, s8c. 4.8.4] String.Empty : String
start ; String = String Empty

smodelicaTypes
ModelicaStateSelect

cefault
alweays == =
Vet
prefer
avoid

" |iModelica 3.1, sec. 487.1]

amodelicaType: | |
MbdelicaEcternal Object [Modelica 3.1, sec, 4 5.7.2]

!

Figure 7: Package diagram with an overview of the P redefined Modelica Types

10.2 ModelicaReal

Instantiation
e SysML4Modelica::Classes::ModelicaType

Generalizations
e SysML::Blocks::Real

Abstract Syntax
e See Figure 7.

Description

The predefined typReal in Modelica includes a variety of attributes besidts actual value (Modelica 3.1, section
4.8.1). In SysML4Modelica, these attributes arfingel in ModelicaReal, a specialization of the ptive type
SysML::Blocks::Real. As a result of this speciatisn, ModelicaReal, inherits the attributes: qitgind and unit,
which correspond to the Modelica attributpgant i t y anduni t , respectively. Additional attributes are listezt b
low.

Attributes
e displayUnit: String [0..1]
In addition to the actual units, a ModelicaReal bawe a units used for display in a tool's graghisar in-
terface or in plots. These units are defined is dftribute as a string.

* min: Real [1]

Page : 28 Line : 899 Author : Chris Paredis 03/@52
Create value specifications for default values

The minimum value the ModelicaReal variable cartak. Default value idnf.

* max: Real [1]
The maximum value the ModelicaReal variable cae tak Default value isInf.

e start: Real [1]
The value of the ModelicaReal variable at the beigig of a simulation. The meaning of this variatiée
pends on the value of the attribéitexed. If fi xed=f al se, then it is to be interpreted as an initial
guess from which may be deviated in order to satiifthe algebraic constraints. flf xed=t r ue, then
the variable is required to equal its start valDefault value i9.

« fixed: Boolean [1]
This attribute qualifies the meaning of the atttést art . If fi xed=f al se, thenst art is to be inter-
preted as an initial guess from which may be dediat order to satisfy all the algebraic constsaifft
fi xed=t r ue, then the variable is required to equakitsaar t value. Default value isue for parameters
and constants, arfdlsefor all other variables.

e nominal: Real [0..1]
The value of this attribute may be used by theesdier scaling purposes.

« stateSelect: StateSelect [1]
The value of this attribute determines how a Madetiolver should select state variables for theegy®f
Differential Algebraic Equations (Modelica Specl,3Section 4.8.7.1). Default valueStateSelect.default

Associations

No additional associations.

Constraints

No additional associations.

10.3 Modelicalnteger

Instantiation
e SysML4Modelica::Classes::ModelicaType

Generalizations
e SysML::Blocks::Integer

Abstract Syntax
e See Figure 7.

Description

The predefined typent eger in Modelica includes a variety of attributes besidts actual value (Modelica Spec.
3.1, Section 4.8.2). In SysML4Modelica, theseilaites are defined in Modelicalnteger, a specitiireof the
primitive type SysML::Blocks::Integer. As a resaftthis specialization, Modelicalnteger, inhethg attribute:
guantityKind, which correspond to the Modelicaibtitequant i t y. Additional attributes are listed below.

Attributes
e min: Integer [1]
The minimum value the Modelicalnteger variable tak® on. Default value is -Inf.

* max: Integer [1]
The maximum value the Modelicalnteger variable tedee on. Default value is +Inf.

e start: Integer [1]
The value of the Modelicalnteger variable at thgitbeing of a simulation. The meaning of this vhahea

depends on the value of the attribfitexed. If fi xed=f al se, then it is to be interpreted as an initial
guess from which may be deviated in order to satiifthe algebraic constraints. flf xed=t r ue, then
the variable is required to equal its start valDefault value i9.

« fixed: Boolean [1]
This attribute qualifies the meaning of the atttéost art . If fi xed=f al se, thenst art is to be inter-
preted as an initial guess from which may be dediat order to satisfy all the algebraic constsaintf
fi xed=t r ue, then the variable is required to equakitaar t value. Default value isue for parameters
and constants, arfdlsefor all other variables.

Associations

No additional associations.

Constraints

No additional associations.

10.4 ModelicaBoolean

Instantiation
* SysML4Modelica::Classes::ModelicaType

Generalizations
e SysML::Blocks::Boolean

Abstract Syntax
e See Figure 7.

Description

The predefined typBool ean in Modelica includes a variety of attributes besidts actual value (Modelica 3.1,
section 4.8.3). In SysML4Modelica, these attrilsudee defined in ModelicaBoolean, a specializatibtine primit-
ive type SysML::Blocks::Boolean. As a result atBpecialization, ModelicaBoolean, inherits thteilatite, quant-
ityKind, which correspond to the Modelica attribgigeant i t y. Additional attributes are listed below.

Attributes
e start: Boolean [1]
The value of the ModelicaBoolean variable at thgifiging of a simulation. The meaning of this vhtk&a
depends on the value of the attribfitexed. If fi xed=f al se, then it is to be interpreted as an initial
guess from which may be deviated in order to satifthe algebraic constraints. flf xed=t r ue, then
the variable is required to equal its start valDefault value idalse

« fixed: Boolean [1]
This attribute qualifies the meaning of the atttéost art . If fi xed=f al se, thenst art is to be inter-
preted as an initial guess from which may be dediat order to satisfy all the algebraic constsintf
fi xed=t r ue, then the variable is required to equakitar t value. Default value isue for parameters
and constants, arfdlsefor all other variables.

Associations

No additional associations.

Constraints

No additional associations.

10.5 ModelicaString

Instantiation
« SysML4Modelica::Classes::ModelicaType

Generalizations
e SysML::Blocks::String

Abstract Syntax
e See Figure 7.

Description

The predefined typ&t r i ng in Modelica includes a variety of attributes besidts actual value (Modelica 3.1, sec-
tion 4.8.4). In SysML4Modelica, these attributes defined in ModelicaString, a specializationtod primitive

type SysML::Blocks::String. As a result of thisesfalization, ModelicaString inherits the attribug@antityKind,
which correspond to the Modelica attributpgant i t y. In addition, a start value can be specified.

Attributes
e start: String [1]
The value of the ModelicaReal variable at the beigig of a simulation. The meaning of this variatie
pends on the value of the attribéitexed. If fi xed=f al se, then it is to be interpreted as an initial
guess from which may be deviated in order to satifthe algebraic constraints. flf xed=t r ue, then
the variable is required to equal its start valDefault value i9.

Associations
No additional associations.

Constraints

No additional associations.

10.6 ModelicaStateSelect

Instantiation
e SysML4Modelica::Classes::ModelicaType

Generalizations
No generalizations.

Abstract Syntax
e See Figure 7.

Description

The predefined typbbdel i caSt at eSel ect is the type of the attribute stateSelect of Matidieal. It is an
enumeration used to provide guidance to the Modalatver tool for selecting appropriate state \@es (See Mod-
elica Spec. 3.1, section 4.8.7.1).

Associations

No additional associations.

Constraints

No additional associations.

10.7 ModelicaExternalObject

Instantiation
e SysML4Modelica::Classes::ModelicaType

Generalizations

No generalizations.

Abstract Syntax
e See Figure 7.

Description

The predefined typbbdel i caExt er nal Qbj ect is an abstract type used to indicate that a Mod@&lipe that
specializes it refers to an object defined in aemal language such as C or FORTRAN (See Mod&pec. 3.1,
section 12.9.7 for details).

Associations

No additional associations.

Constraints
[1] Thevalue of the attributesAbstract(and hencésPartial) must berue.

11 Component Declarations

11.1 Overview

In the Modelica language, instances (or usagea)atdss are referred to as “Components”. In Sysiiiése can be
mapped to Block Properties, such as Value Propeatt, Property, or Pott.Modelica does not distinguish explicitly
between Value Properties, Parts, or Ports. Instghether a component is interpreted as a Valupd?ty Part or

Port depends on the restricted type to which tlag@idias been typed. If the usage is of restrigfgelc| ass,

nodel , orbl ock then it is mapped to a «<modelicaPart»; if it isadtricted typ&onnect or then it is mapped to

a «modelicaPort»; and if it is of restricted typecor d ort ype then it is mapped to «modelicaValueProperty». In
addition, the stereotype «modelicaFunctionParaméseintroduced to represent components of resttittper e-
cord ort ype that are used infaunct i on (this is necessary because a Modelica functioraisped to a SysML
FunctionBehavior which has parameters rather thapegties). The restricted typpackage andf uncti on are
not considered here because they cannot be iregthti

Depending on the type of restricted type, a Mo@eGomponent declaration allows for a variety ofap (modi-
fications or additional specifications). Theseitiddal options are captured as attributes of threesponding
SysML4Modelica stereotypes, as show in Figure & ddfine the possible values these options canressseveral
enumerations are defined, as shown in Figure @ fallowing production rules define Modelica Compats de-
clarations:

conponent _cl ause:
type_prefix type_specifier [array_subscripts] conponent |ist

type_prefix :
[flow]
[discrete | paraneter | constant | [input | output]

type_specifier
nane

conmponent _|i st
conponent declaration { ",

conponent _decl aration }

conponent _decl aration :
declaration [conditional attribute] coment

conditional _attribute:
i f expression

! Note that Modelica does not have the equivalemt i&ference property — properties are never shared

decl aration
I DENT [array_subscripts] [nodification]

pkg [Package] Componerts [Modelica Component Sterectypes LJ
ametaclazss [l «metaclasss
Property Port
xstereatypes esterectypes «stereatypes
ModelicaValueProperty ModelicaPart ModelicaPort
[Property] [Praperty] [Fart]
+causalty : ModelicaCausalitykind [1] = none +zcope ModelicaSocopelind [1] = none +oausalty | ModelicaCausalityKind [1] = none
+variahility © ModelicaariakilityKind [1] = continuous +conditionalExpression : String [0..1] +conditionalExpression : String [0..1]
+flowwFlag : ModelicaFlowFlagkind [1] = none +modification : String [0..4] +hodification : String [0..%]
+zcope : ModelicaScopekind [1] = none +isFinal : Boolean [1] = falze +izFinal : Boolean [1] = falze
+izFinal : Boolean [1] = false +izReplaceabls : Boolean [1] = false +izReplaceable ; Boolean [1] = falze
+conditionalExpression @ String [0.1] +arraysize : String [0. *[fordered} +arraySize | String [0, *{ordered}
+modification ; String [0..%]
+isReplaceable : Boolean [1] = falze
+declarationEquation : String [0..1]
+arraysize : String [0. *[{ordered}

Figure 8: Package diagram with an overview of the s tereotypes for Modelica Components

pkg [Model] Types[Enumerations]J

senumerstions enumerstion: zenumerations senumerstions
ModelicaFlowFlagKind | |ModelicaScopeKind | |ModelicaCausalityKind | |ModelicaWariabilityKind
floy inner infut constant
stream outer output parameter
nang inner-auter nang discrete
T none T continuaLs

[Modelica Spec 3.1, [Modelica Spec 3.1, [Modelica Spec 31, [Modelica Spec 3.1,
Chapter 15] zection 5.4] zection 4.4.2.2] zection 4.4.4]

Figure 9: Package diagram with enumerations used in Modelica Component definitions

Table 2:The applicable attributes for Modelica Commnents.

Attribute Name «modelicaValueProperty» «modelicaPart» «modelicaPort»
visibility . .
causality . .
variability .
flowFlag .
scope . .
conditionalExpression . . .
isFinal . . .
modification . . .
isReplaceable . . .
declarationEquation .
arraySize . . .
11.2 «modelicaValueProperty»

Extensions

Property (from UML4SysML)

Abstract Syntax

See Figure 8.

Description

If a Modelica Component is of restricted typecor d ort ype then it is mapped to a «modelicaValueProperty>,
which is the equivalent of a Value Property in SysM

Attributes

visibility: VisibilityKind [1]

This attribute is inherited from the meta-classperty. In the context of the SysML4Modelica prefilt is
limited to the valuegublic or protected A protected «modelicaValueProperty» cannot bdifieal or re-
placed in specializations or modifications. Thewbers of a protected «modelicaValueProperty» cannot
be accessed using the dot-notation. Default vislpablic.

causality: ModelicaCausalityKind [1]
A «modelicaValueProperty» can be defined as bemigput or output (Modelica Spec. 3.1, Section
4.4.2.2). Default value isone which means that the property is neither an impwutput.

variability: ModelicaVariabilityKind [1]
A «modelicaValueProperty» can be defined as beimgtant, parameter, discrete or continuous (Modelic
Spec. 3.1, section 4.4.3 and 4.4.4). Default vagentinuous

flowFlag: ModelicaFlowFlagKind [1]

This attribute can only be applied to variableg Hra a subtype of ModelicaReal. It can only bedus-
side «modelicaConnector» or to define a Type. attrébutecausalitymust benull whenflowFlag=flow or
stream Default value isione

scope: ModelicaScopeKind [1]

A Modelica element declared with the prefiut er references an element instance with the same name
but using the prefix nner , which is nearest in the enclosing instance hiéraof the outer element de-
claration (Modelica Spec. 3.1, Section 5.4). Dkfealue isnone.

conditionalExpression: String [0..1]
When defined, this attribute contains an expressidviodelica syntax that must evaluaterae or false

Only if the expression evaluates to true is thectireesponding «modelicaValueProperty» instantiated
(Modelica Spec. 3.1, Section 4.4.5).

modification: String [0..*]

A «modelicaValueProperty» may have a type thatdally modified. Rather than capturing the dethile
semantics of such modifications in the SysML4AMoadkelprofile, currently, the modifications are ongpe
tured as a set of strings in the Modelica syntaghestring corresponds to a single modificatioa abm-
ponent declaration of the modified class (ModeSgec. 3.1, Section 7.2). Default valuausl.

isReplaceable: Boolean [1]

A «modelicaValueProperty» may be defined apl aceabl e. One can thenedecl ar e such a «mod-
elicaValueProperty» in extended classes or in neatibns (Modelica Spec. 3.1, Section 7.3). Ddfaul
value isfalse

declarationEquation: String [0..1]

When defined, this attribute contains an expressidviodelica syntax that must evaluate to the stype

as the «modelicaValueProperty» itself. A declaragquation refers to the shorthand notation in &fiod

in which an equation corresponding to a comporedefined in the equation section. The value ofathe
tribute is the right-hand-expression of the equegid’ he “=" sign is omitted, i.e., it is implicit.

isFinal: Boolean [1]
A Modelica element declared with the prefixnal cannot be modified in redeclarations or modificas
(Modelica Spec. 3.1, Section 7.2.6). Default vatifalse.

arraySize: String [0..*] {ordered}

This attribute is an ordered list of strings, eatwhich must be a Modelica expressions that evatit
an integer. Thé" element in the ordered list corresponds to siz@the multi-dimensional array in the
i™dimension.

Associations

No additional associations.

Constraints

No additional constraints.

11.3

«modelicaPart»

Extensions

Property (from UML4SysML)

Abstract Syntax

See Figure 8.

Description

If a Modelica Component is of restricted typleass, nodel , orbl ock, it is mapped to a «<modelicaPart», which
is the equivalent of a Part Property in SysML.

Attributes

visibility: VisibilityKind [1]

This attribute is inherited from the meta-classpgerty. In the context of the SysML4Modelica prefilt is
limited to the valuegublic or protected A protected «modelicaPart» cannot be modifieteptaced in
specializations or modifications. The members pfaected «modelicaPart» cannot be accessed t&ng
dot-notation. Default value mublic.

scope: ModelicaScopeKind [1]

A Modelica element declared with the prefiut er references an element instance with the same name
but using the prefix nner , which is nearest in the enclosing instance hiéraof the outer element de-
claration (Modelica Spec. 3.1, Section 5.4). Difaalue isnone

« conditionalExpression: String [0..1]
When defined, this attribute contains an expressidviodelica syntax that must evaluatenae or false
Only if the expression evaluates to true is thecthreesponding «modelicaPart» instantiated (Modelic
Spec. 3.1, Section 4.4.5). Default valuaud.

« modification: String [0..*]
A «modelicaPart» may have a type that is locallyified. Rather than capturing the detailed sencardf
such modifications in the SysML4Modelica profileyreently, the modifications are only captured agt
of strings in the Modelica syntax; each string esponds to a single modification of a componeniadac
tion of the modified class (Modelica Spec. 3.1,tec7.2). Default value isull.

« isReplaceable: Boolean [1]
A «modelicaPart» may be definedraspl aceabl e. One can thenedecl ar e such a «<modelicaPart»
in extended classes or in modifications (Modelipa& 3.1, Section 7.3). Default valuddtse

e isFinal: Boolean [1]
A Modelica element declared with the prefixknal cannot be modified in redeclarations or modificas
(Modelica Spec. 3.1, Section 7.2.6). Default vasfalse

e arraySize: String [0..*] {ordered}
This attribute is an ordered list of strings, eatlvhich must be a Modelica expressions that evaetut
an integer. Thé" element in the ordered list corresponds to sizeethe multi-dimensional array in the
i"dimension. The default valuensill.

Associations

No additional associations.

Constraints

No additional constraints.

11.4 «modelicaPort»

Extensions
e Port (from UML4SysML)

Abstract Syntax
e See Figure 8.

Description

If a Modelica Component is of restricted typennect or , it is mapped to a «modelicaPort», which is theia-
ent of a Port Property in SysML.

Attributes
e causality: ModelicaCausalityKind [1]
A «modelicaPort» can be defined as being an inpoutput (Modelica Spec. 3.1, Section 4.4.2.2) faDk
value isnull, which means that the property is neither an impwutput. Default value isone.

e scope: ModelicaScopeKind [1]

A Modelica element declared with the prefiut er references an element instance with the same name
but using the prefix nner , which is nearest in the enclosing instance hiéraof the outer element de-
claration (Modelica Spec. 3.1, Section 5.4). Difaalue isnone

conditionalExpression: String [0..1]

When defined, this attribute contains an expressidviodelica syntax that must evaluatenae or false
Only if the expression evaluates to true is thecthreesponding «modelicaPort» instantiated (Modelic
Spec. 3.1, Section 4.4.5).

isFinal: Boolean [1]
A Modelica element declared with the prefixnal cannot be modified in redeclarations or modificas
(Modelica Spec. 3.1, Section 7.2.6). Default vatifalse

modification: String [0..*]

A «modelicaPort» may have a type that is locallydified. Rather than capturing the detailed sencaruf
such modifications in the SysML4Modelica profileyently, the modifications are only captured agt
of strings in the Modelica syntax; each string esponds to a single modification of a componenltadac
tion of the modified class (Modelica Spec. 3.1,t®ec7.2).

isReplaceable: Boolean [1]
A «modelicaPort» may be definedraspl aceabl e. One can thenedecl ar e such a «modelicaPort»
in extended classes or in modifications (Modelipas 3.1, Section 7.3). Default valudatse

arraySize: String [0..*] {ordered}

This attribute is an ordered list of strings, eatlvhich must be a Modelica expressions that evaetut
an integer. Thé" element in the ordered list corresponds to sizeethe multi-dimensional array in the
i"dimension.

Associations

No additional associations.

Constraints

No additional constraints.

«modelicaFunctionParameter»

Extensions

Parameter (from UML4SysML)

Abstract Syntax

pkg [Fackage] Components [Modelica Function Parameter | I

ametackasss
Parameter

:

zstereatypes
ModelicaFunctionParameter
[Parameter]
+causalty ; ModelicaCausalitykind [1] = input
+yariabilty © Modelica®ariabiltyiind [1] = continuous
+modification ; String [0..%]
+izReplacesble ; Boolean [1] = false

+oeclarationEquation ; String [0..1]
+izFinal : Boolean [1] = false
+array=ize ; String [0, *Hordered}

Figure 10: Definition of the «<modelicaFunctionParam eter» stereotype

Description

A Modelica restricted class function, can also aontan contain Modelica component declarationses€ delcara-
tions must be of either restricted type «modelig@Ebyor «modelicaRecord». Because «modelicaFunctiors
not derive from «block» (as all the other restdctéasses do), the stereotype «modelicaValuePropeannot be
applied here. Instead, an equivalent (but moreicesd) stereotype for functions is created: «nligd€unction-
Parameter».

Attributes

causality: ModelicaCausalityKind [1]
A «modelicaFunctionParameter» can be defined agylsi input or output (Modelica Spec. 3.1, Section
4.4.2.2). Default value isput

isFinal: Boolean [1]
A Modelica element declared with the prefixknal cannot be modified in redeclarations or modificas
(Modelica Spec. 3.1, Section 7.2.6). Default vasfalse

modification: String [0..*]

A «modelicaFunctionParameter» may have a typeigiatally modified. Rather than capturing the de-
tailed semantics of such modifications in the SydMlodelica profile, currently, the modifications are
only captured as a set of strings in the Modeligdax; each string corresponds to a single moditioaof
a component declaration of the modified class (ModeSpec. 3.1, Section 7.2).

isReplaceable: Boolean [1]

A «modelicaFunctionParameter» may be definedegd aceabl e. One can thenedecl! ar e such a
«modelicaPort» in extended classes or in modificetiModelica Spec. 3.1, Section 7.3). Defaulugas
false

declarationEquation: String [0..1]

When defined, this attribute contains an expressidviodelica syntax that must evaluate to the stype
as the «modelicaFunctionParameter» itself. A datitn equation refers to the shorthand notatiol -
elica in which an equation corresponding to a camepi is defined in the equation section. The value
the attribute is the right-hand-expression of theations. The “:=" sign is omitted, i.e., it is ifigit.

arraySize: String [0..*] {ordered}

This attribute is an ordered list of strings, eatlvhich must be a Modelica expressions that evetut
an integer. Thé" element in the ordered list corresponds to siz@the multi-dimensional array in the
i"dimension.

Associations

No additional associations.

Constraints

No additional constraints.

12

12.1

Equation and Algorithm Sections

Overview

Equations and Algorithms are the main Modelica traiess for defining behavior of Modelica classédodelica
distinguishes between declarative equations, whielorganized ierquat i on sections (Modelica Spec. 3.1,
Chapter 8), and imperative algorithms, which agaoized irnal gor i t hmsections (Modelica Spec. 3.1, Chapter
11). The Modelica restricted classekass, nodel , andbl ock, can each have zero or more equation and al-
gorithm sections. Modelichunct i ons can only have one single algorithm sections (amdquations).

The equations and expressions in equation anditilgosections are enforced by the solver in evieng tstep ---
they must hold at every moment in time. In additione can specify equations or expressions thigth@ed do
hold at the start of the simulation; they are orgadhini ni ti al equati on andi nitial al gorithmsec-
tions.

pkg [Profile] Equations and Algorithms [Equations Sterectypes])

astereatypes
smetaclasss ModelicaEquation
Constraint | [Constraint] T |Modelca Spec 3.1, Chap. 8
+iglnitial : Boolean [1] = false

zsterectypes
emetaclasss ModelicaAlgorithm
Behavior | [Eehavior] “IModelca Spec 3.1, Chap. !ﬁ
+izlnitial © Boolean [1] = true

zsterectypes

ametaclasss ModelicaC cti]

Connector AEEca- Anesmn Modelca Spec 3.1, Chap. 9
[Connectar]

Figure 11: Package diagram with Equation and Algori thm definitions

12.2 «modelicaEquation»

Extensions
e Constraint (from UML4SysML)

Abstract Syntax
e See Figure 11.

Description

Modelicaequat i on sections contain declarative equations that moist & every moment in time. Each model
(of restricted class types ass, nodel orbl ock) may contain zero or more equation sections. Gthat the
equations in these equation sections are declardkiey could be combined into a single sectioe(rtbe order in
which declarative equations are defined does ndtiema However, the SysML4Modelica mapping alldaseach
equation section to be modeled by a separate «inafguation».

Modelicaequat i on sections may also contatmnnect statements (Modelica Spec., Chapter 9). Although
connect statements are treated just like other equatioiadelica, they require special attention in SygML
Modelica. Refer to Section 12.4 from details orodelicaConnection»s.

Attributes
e islnitial: Boolean [1]
This attribute igrue when the «<modelicaEquation» representsrart i al equat i on section in Model-
ica. The default value false

Associations

No additional associations

Constraints

No additional constraints

12.3 «modelicaAlgorithm»

Extensions
e Behavior (from UML4SysML)

Abstract Syntax
e See Figure 11.

Description

Modelicaal gori t hmsections contain imperative statements that azewt®d at every moment in time. Each
model (of restricted class typebass, nodel orbl ock) may contain zero or more algorithm sectionsaddi-

tion, af unct i on contains at most one algorithm section. Eachrélgn section is modeled by a separate «model-
icaAlgorithm». To capture the imperative naturalgforithm sections, a «modelicaAlgorithm» exteds-
L4SysML::Behavior. Only opaque behaviors are ently supported and the algorithm statements goeeszed in
Modelica syntax in th8odyof the «modelicaAlgorithm».

Attributes
e islnitial: Boolean [1]
This attribute igrue when the «modelicaAlgorithm» represents ant i al al gori t hmsection in Mod-
elica. The default value false

Associations

No additional associations

Constraints

No additional constraints

12.4 «modelicaConnection»

Extensions
e Connector (from UML4SysML)

Abstract Syntax
e See Figure 11.

Description

In Modelica, aconnect i on between two ports typically has Kirchhoff semasiice., across variables are equal,
through variables sum to zero), or an output-tasiripnding in the case of a signal connection (8edelica Spec.
3.1, Chapter 9). To capture these same semantcastly, a «modelicaConnection» is used. Thedvguments
of the connect statement correspond to the two ehtle «modelicaConnection». Note that the use @hodelic-
aConnection» is optional. The alternative is fresent the connection using a connect stateménodelica syn-
tax in a «modelicaEquation». If a «modelicaConiogctis used, then the corresponding connect seatemust be
removed from the «modelicaEquation».

As for all equations, Modelica alloveonnect statements to be used in a parametric fashiomn$tance, inside a
for loop. Since the parameter values are onlylvesioat the time of compilation of the Modelica nrefch paramet-
rically definedconnect statement cannot be modeled explicitly in SysML4felaca. The alternative is to repres-
ent such connect statements in Modelica syntaximadelicaEquation».

Attributes

No additional attributes
Associations

No additional associations

Constraints
[1] The start and end of a «modelicaConnection» must be a «icafei@it».

13 Other Related Constructs

13.1 «modelicaSimulation»

Generalizations
e Block (from SysML)

Abstract Syntax

pkg [Profile] Cther [Cther Related Constructs U

esterectypes
Block «metaclasss:
[Class] Comment
_|, k
sterectypes zsterectypes
ModelicaSimulation ModelicaAnnotation
[Class] [Comment]

+ztartTime : Real [1]=0
+ztopTime : Real [1] =1
+model . ModelicaClassDefinition [1]

Although this is not & Modelica
language construct, it is included
here to distinguish clearly
hetweeen & Modelica model and
its use in & (simulation)
experiment.

Figure 12: Package diagram with definitions of Mode

Description

A «modelicaSimulation» is not a Modelica languagestruct. However, it is introduced in order tatidiguish
between the model and its simulation. A simulatiefiers to the solution of the initial value probletime integration
of the model over a particular time period starfirgm a particular initial condition. Since thatial conditions are
already defined in the model itself, the only aibdial information that needs to be provided istthre over which

to integrate and the properties of the solver tade.

Attributes
e startTime: Real [1]

The time at which the simulation starts. DefaultieasO.

e stopTime: Real [1]

The time at which the simulation stops. Defaulteasl.

« model: «modelicaClassDefinition» [1]

The instance of a specialization of «modelicaCladsiilion» that is to be solved. Default valuenidl.

Associations

No additional associations.

Constraints

No additional constraints.

13.2 «modelicaAnnotation»

Extension
e« Comment (from UML4SysML)

Abstract Syntax
e See Figure 11.

lica-related constructs

Description

Any Modelica language construct can be annotatéld iwformation about its graphical representatiémaddition,

guidelines for the compiler can be specified. ysi8L4MModelica, these annotations are represemtédddelica
syntax as «modelicaComment»s.

Attributes
No additional attributes.
Associations

No additional associations.

Constraints
No additional constraints.

Part I1II - Modelica Abstract Syntax

14 Modelica Metamodeling Approach

The abstract syntax (AST = abstract syntax tredjadelica is not standardized. The abstract sydé&scribed in
this document is one possible definition, define@m extended subset of Modelica (also known asMetlelica)
and used in the OpenModelica specification/impleiaion of Modelica which originated as a Structudalera-
tional Semantics/Natural Semantics specificatiinst(f’ersion from 1998).

However, even if the abstract syntax of Modelicads standardized, given the structure of the lagguas de-
scribed in this document, the differences in alsssgntax between the different tools are likely#orelatively
small. Any difference in terminology or minor difésces in structure can be handled with tool-smet#nsforma-
tions that will be performed on the ASTs.

The abstract syntax used in OpenModelica has besigrkd with several goals in mind:

» Complete representation of all Modelica languamestructs.
* Reconstruction of the source code from the AST.
« Use for semantic specification, type checking, emehpilation.

Syntax type classes are defined usingutiientype construct. A union type is the union of all tleeord types it
contains. Recursive references to a union typalioeed. Components with optional values are dedat in-
stances of th@®ption<...> parametrized type constructor. In a few casesuiie<typel,type2,...type constructor is
used. A tuple type can be described as an anonymoasd type, where the record type name and éhe fiames
are not defined.

In the following all MetaModelica classes (includia short textual description) are listed (versbmt.2009 from

the OpenModelica SVN). This definition is transthtato an OMG MOF-based description (see
http://www.omg.org/moy/ using the Eclipse EMH(tp://www.eclipse.org/emfimplementation of a subset of the
OMG MOF standardThe .ecore and .ecorediag files are attached this document. Please see the files for details
and diagrams.

The mapping between the MetaModelica and the ExlifdF (ecore) is defined as follows:
— MetaModelicgpackage is translated t&Package
— MetaModelicauniontype is translated t&Class (isAbstract)

— MetaModelicarecord is translated t&Class which inherits from the respective EClass thatespnts the
uniontype)

— MetaModelicarecord attributes of primitive type are translated to EClass attrésubf primitive type

— MetaModelicarecord attributes of composite type are translated to EClass ERederamthe respective
EClass

— MetaModelicaypes are expanded and translated iRtolasses

2 Note: all MetaModelica-specific classes are removed

MetaModelicauples are expanded and translated iBtolasses with the prefix “tuple_”
MetaModelicaOption<...>implies the multiplicity 0..1

MetaModelicdist<...>implies the multiplicity 0..*

MetaModelica ype | dent =

String; is not translated. EString is used directly.

In order to avoid name clashes betwE€hasses representinginiontype or record eachEClass that rep-
resents ainiontype was given the prefix “u”.

In order to improve the structure and readabitityeach MetaModelicaniontype anEPackage is created
with the same name as thriontype. This EPackage includes thé=Class representing thaniontype and
EClasses representing theecords of theuniontype.

Figure 13 shows an example of the translationtferMetaModelicainiontype “program”. The MetaModelica
code, including comments and references to the M@d8pecification, is provided in the followingci®ns.

€ Resource - org, openmodelica.abstract. syntaximodel/OpenhodelicahbstactSyntax. ecorediag - Eclipse

HrE S 5 & o

v ¥|B I | A~ & .5 - Bi- af- B =R SIEED ¥ v
8% outine 2 2 5| 8|E 2 7 7 B| L) *openvodelicadbstactsyrtax 51 [Absyn.mo =0
| EEX T 4 < palete
& -
=8 absyn diit e~
=e “[’I”g’g'“ (= Objects ®
5 whrogram
% H FRosRAM -> uProgram @ FPaciae —
< Diagram diagram 5 Edlass H uProgram
i‘ Z g::;niﬂause & EDataType =
B udlass £ EEnum
® [cLass-» udlass ik EANMotation
< Diagram diagram
= 8@ ClassDef # EOperation
H uClassDef o1 EAttribute [=]
e e £ PROGRAM
[DERIVED - > uClassDef
& H ENUMERATION - uClassDef = Detalls Entry
& £] OVERLOAD -> uClassDet et g
[CLASS_EXTENDS -> uClassDef
[PDER -> uClassDef EERAIEEe
< Diagram diagram “¢. Tnheritance 3 i
4 Diagram ENUMERATION . 1| globalBuildTin
a o= EAnmotation link 0 * | 1 th C|
4 Diagram O¥ERLOAD ¥ | classes withinClause
< Diagram CLASS_EXTENDS
4 Diagram PDER. — = == = = =
< Diagram PARTS | uClass (2] | ulWithin 2] | uTimeStam#)
4 Diagram DERIVED T ne3 Eees =
& lass fi hin_Clause imeStamp,
i # EnumDef
@ 8 Enumliteral
8 ClassPart
@ # Elementltem
- # Element < 5
8 ConstrainClass -
@ # ElementSpec] Tasks | 5 Properties oY =8
- # InnerOuter .
B8 Inport B EClass
3 TRt odel Hare: [rogran
@ @ ComponentCondition
[8 Component: Aot on Instance Class lame:
& # Equationitem Extended Metadaka

mo

@ Algorithmitem
- # Equation
[8 Algorithmstatement

B # Modfications
& @ Elementérg

- 8 Redecarekeywords

Each

& # Elementitiributes
=@ variabilty

G Direction

= 8 o

Geniiode Dac
Appearance
advanced

~

[1s abstract

[lts Interface

15

15.1

Figure 13: The translation of a MetaModelica constr

public uni ontype Program
Programs, the top level construct. A program igobjma list of class definitions declared at topdkewn the source
file, combined with a within statement that ind&sthe hierarchical position of the program."

record PROGRAM

"PROGRAM the top |evel

uct in Eclipse.

Modelica Metamodel Constructs

Model Structure Definition

construct”

list<Cl ass> classes "List of classes" ;
W t hin within_"Wthin clause" ;
end PROGRAM
end Program

public uniontype Wthin "Wthin C auses”
//ISee Modelica specification 3Thapter 13.2.2.3 The within Clause.

record WTHIN "the within cl ause"
Path path "the path for wthin";
end WTHIN;

record TOP end TOP;

end Wthin;

uni ont ype Path
"The type "Path\', on the other hand, is usedaxeseferences to class names, or names inside dédisitions."

record QUALI FI ED
I dent nane "nane" ;
Path path "path" ;
end QUALI FI ED;

record | DENT
| dent nane
end | DENT;

nane’ |

record FULLYQUALI FI ED
"Used during instantiation for names that are fglhalified, i.e. the names are looked up from togpe directly
like for instance Modelica.Slunits.Voltage Note:tNoeated during parsing, only during instantatimn
speedup/simplify lookup."

Pat h pat h;
end FULLYQUALI FI ED;
end Pat h;

15.2 Class Definition

public uniontype d ass

"A class definition consists of a name, a flagndicate if this class is declared as partial, thelated class restric-
tion, and the body of the declaration.”

See Modelica specification 3Qhapter 4.5 Class Declarations.

record CLASS

| dent nane;

Bool ean partial Prefix "true if partial" ;

Bool ean final Prefix "true if final" ;

Bool ean encapsul atedPrefix "true if encapsul ated" ;

Restriction restriction "Restriction" ;
Cl assDef body;
end CLASS;

end d ass;

uni ontype Restriction

"These constructors each correspond to a diffédedtof class declaration in Modelica, except s four, which
are used for the predefined types. The parserrassigch class declaration one of the restrictiamd,the actual
class definition is checked for conformance dutiagslation. The predefined types are createddrBihiltin mod-
ule and are assigned special restrictions."

See Modelica specification 3Qhapter 4.6 Specialized Classes.

record R CLASS end R _CLASS;

record R MODEL end R_MODEL;

record R RECORD end R_RECORD;

record R BLOCK end R _BLOCK;

record R _ CONNECTOR "connector class" end R _CONNECTOR;
record R_EXP_CONNECTOR "expandabl e connector class" end R EXP_CONNECTOR;
record R TYPE end R TYPE;

record R PACKACGE end R _PACKAGE;

record R _FUNCTI ON end R_FUNCTI ON;

record R_ENUVERATI ON end R_ENUVMERATI ON,;

record R _PREDEFI NED_| NT end R_PREDEFI NED | NT;

record R _PREDEFI NED_REAL end R_PREDEFI NED_ REAL;

record R _PREDEFI NED_STRI NG end R _PREDEFI NED_STRI NG
record R _PREDEFI NED_ BOCOL end R_PREDEFI NED BOOL;

record R_PREDEFI NED_ENUM end R_PREDEFI NED_ENUM

end Restriction;

public uniontype d assDef

"The ClassDef type contains the definition paraaflass declaration. The definition is either eiplivith a list of
parts (public, protected, equation, and algorithon)t is a definition derived from another clagsao enumeration
type. For a derived type, the type contains threenaf the derived class and an optional array déieenand a list
of modifications."

See Modelica specification 3ahapter 4.5 Class Declarations.

record PARTS
| i st<C assPart> cl assParts;
Option<String> comment;
end PARTS;

record DERI VED
See Modelica specification 3Ghapter 4.5.1 Short Class Definitions.
TypeSpec typeSpec "typeSpec specification includes array dinen-
sions" ;
El ement Attributes attributes;
| i st<El enent Arg> argunents;
Opt i on<Conmment > comment ;
end DERI VED;

record ENUVERATI ON

See Modelica specification 3Qhapter 4.8.5 Enumeration Types.
EnunDef enunliterals;
Opt i on<Comment > conment ;
end ENUMERATI ON;

record OVERLOAD

See Modelica specification 3Ghapter 14 Overloaded Operators.

i st<Pat h> functi onNanes;
Opt i on<Comment > conment ;
end OVERLOAD;

record CLASS EXTENDS
See Modelica specification 3Qhapter 7.1 Inheritance—Extends Clause.

| dent based assNane "nane of class to extend" ;
list<Element Arg> nodifications "nodifications to be applied to the base
class";
Option<String> conment "coment";
list<d assPart> parts "class parts";
end CLASS EXTENDS;

record PDER
See Modelica specification 3Qhapter 4.5 Class Declarations.
Pat h functi onNane;
list<ldent> vars "derived vari abl es" ;
end PDER;
end C assDef;

public uni ontype TypeSpec
record TPATH
Pat h pat h;
Option<ArrayDi n» arrayDi m
end TPATH;

record TCOWPLEX
Pat h pat h;
| ist<TypeSpec> typeSpecs;
Option<ArrayDi nr arrayDi m
end TCOWPLEX;

end TypeSpec;

public uni ontype EnunDef

"The definition of an enumeration is either a tiftiterals or a colon, \":\', which defines a stppe of all enumera-
tions"

See Modelica specification 3Qhapter 4.8.5 Enumeration Types.

record ENUMLI TERALS

|i st<Enunliteral > enunLiterals;
end ENUM.I| TERALS;
record ENUM COLON end ENUM COLON;

end EnunDef;

public uniontype Enuniiteral

"EnumlLiteral, which is a name in an enumeration anaptional Comment."
See Modelica specification 3Thapter 4.8.5 Enumeration Types.

record ENUM.I TERAL
| dent literal;
Opt i on<Comment > conment ;
end ENUM.I TERAL;

end Enuniiteral;

public uniontype O assPart

"A class definition contains several parts. Thereemublic and protected component declarationg tgdfinitions
and “extends\' clauses, collectively called elemeiihere are also equation sections and algoststions. The
EXTERNAL part is used only by functions which camdeclared as external C or FORTRAN functions.”

record PUBLIC
See Modelica specification 3Ghapter 4.1 Access Control — Public and ProtecteHlements.

li st<El enentltenr contents;
end PUBLI C,

record PROTECTED
See Modelica specification 3Qhapter 4.1 Access Control — Public and Protectellements.

| i st<El enentlten> contents;
end PROTECTED,

record EQUATI ONS
See Modelica specification 3Ghapter 8 Equations.

i st<Equationlten> contents;
end EQUATI ONS;

record | NI TI ALEQUATI ONS
See Modelica specification 3Qhapter 8.6 Initialization, initial equation, and initial algorithm.

i st<Equationlten> contents;
end | NI TI ALEQUATI ONS;

record ALGORI THVS
See Modelica specification 3Ghapter 11 Statements and Algorithm Sections.

list<Algorithnltenr contents;
end ALGORI THVS;

record | NI TI ALALGORI THVS
See Modelica specification 3Ghapter 8.6 Initialization, initial equation, and initial algorithm.

list<Algorithnltenr contents;
end | NI TI ALALGORI THVS;

record EXTERNAL
See Modelica specification 3Ghapter 12.9 External Function Interface

Ext er nal Decl external Decl "external Decl" ;

Opti on<Annot ati on> annotati on_ "annotation"
end EXTERNAL;

end C assPart;

public uni ontype External Decl
"Declaration of an external function call — Extdiecl"
See Modelica specification 3Ghapter 12.9 External Function Interface.

record EXTERNALDECL

Opti on<l dent > funcNane "The nane of the external function" ;
Option<String> | ang "Language of the external function" ;

Opt i on<Conponent Ref > out put _ "out put paraneter as return val ue" ;
I'ist<Exp> args "only positional argunents, i.e. expression

list" ;
Opt i on<Annot ati on> annot ation_ ;
end EXTERNALDECL;

end External Decl ;

public uniontype Elenentltem
"An element item is either an element or an anraiat

record ELEMENTI TEM
El enent el enent;
end ELEMENTI TEM

record ANNOTATI ONl TEM
Annotati on annotation_ ;
end ANNOTATI ONI TEM

end El enentltem

public uniontype El enent
"Elements: The basic element type in Modelica"

record ELEMENT

Bool ean final Prefix;

Opt i on<Redecl ar eKeywor ds> redecl ar eKeywords "repl aceabl e, redecl are" ;

| nner Qut er i nnerQuter "inner/outer" ;

| dent name;

El enent Spec specification "Actual el enent specification" ;

Opti on<Constrai nC ass> constrai nC ass "constrainC ass ; only valid for
cl assdef and conponent” ;
end ELEMENT;

record DEFI NEUNI T

| dent nane;

| i st<NanedArg> args;
end DEFI NEUNI T;

record TEXT

Option<ldent> opt Nane "opt Nane : optional name of text, e.g. nodel with
syntax error. W need the name to be able to browse it..." ;
String string;
Info info;
end TEXT;

end El enent;

public uniontype | nnerCQuter

"One of the keyword inner and outer CAN be givenetierence an inner or outer component. Thus ther¢hree
disjoint possibilities.”

See Modelica specification 3ahapter 5.4 “Instance Hierarchy Name Lookup of Inne Declarations” for ex-
planations of inner/outer.

record I NNER end | NNER;

record OUTER end OUTER

record | NNEROUTER end | NNEROUTER,;
record UNSPECI FI ED end UNSPEC! Fl ED;

end | nnerQuter;

uni ont ype Conponent Ref
"A component reference is the fully or partiallyadjied name of a component. It is represented lest af identi-
fier- -subscript pairs. - Component referenceszattis”

record CREF_QUAL
| dent nanme "nanme" ;
| i st<Subscript> subScripts "subScripts" ;
Conponent Ref conponent Ref "comnponent Ref " ;
end CREF_QUAL;

record CREF_| DENT

| dent nane "nane" ;

| i st<Subscript> subscripts "subscripts" ;
end CREF_| DENT;

record WLD end WLD;

end Conponent Ref;

uni ont ype Subscri pt

"The Subscript uniontype is used both in array al@tions and component references. This might stemge, but
it is inherited from the grammar. The NOSUB constor means that the dimension size is undefineghwised in
a declaration, and when it is used in a comporefetence it means a slice of the whole dimensi@ubscripts"”
See Modelica specification 3hapter 10.5 Array Indexing.

record NOSUB end NOSUB;

record SUBSCRI PT
Exp subScript "subScript" ;

end SUBSCRI PT;

end Subscri pt;

public uniontype Constrai nC ass
"Constraining type, must be extends".
See Modelica specification 3Ghapter 7.3.2 Constraining Type.

record CONSTRAI NCLASS
El enent Spec el enent Spec "el enent Spec ; nust be extends" ;
Opti on<Comment > conment "comment" ;

end CONSTRAI NCLASS;

end Constrai nd ass;

public uni ontype El enent Spec

"An element is something that occurs in a publipmtected section in a class definition. Therenie constructor
in the "ElementSpec\' type for each possible elenype. There are class definitions ((CLASSDEFgxtends\'
clauses (EXTENDSY\) and component declaration© MEONENTS\). As an example, if the element "edten
TwoPin;\' appears in the source, it is represemtéde AST as 'EXTENDS(IDENT(\"TwoPin\"),{})\'."

record CLASSDEF
Bool ean repl aceabl e_ "repl aceabl e" ;
Class class_ "class" ;

end CLASSDEF;

record EXTENDS
See Modelica specification 3ahapter 7.1 Inheritance—Extends Clause.

Path path "path" ;

|ist<El enment Arg> el enentArg "el enent Arg" ;

Opti on<Annot ati on> annotati onOpt "optional annotation”;
end EXTENDS;

record | MPORT
See Modelica specification 3Ghapter 13.2.1 Importing Definitions from a Package

| nport inport_ "inport" ;
Opti on<Comment > conment "comment" ;
end | MPORT,;

record COVPONENTS
El ement Attributes attributes "attributes” ;
TypeSpec typeSpec "typeSpec" ;
| i st<Conponent|tenr conponents "conmponents" ;
end COVPONENTS;

end El enent Spec;

15.3 Import

public uniontype I|nport
"Import statements, different kinds"

/I A named import is a import statement to aalalg ex;
I NAMED_IMPORT("SI",Absyn.QUALIFIED("Modelica",Asyn.IDENT("Slunits")));
See Modelica specification 3Ghapter 13.2.1 Importing Definitions from a Package

record NAMED | MPORT
| dent nane "nane" ;
Path path "path" ;
end NAMED | MPORT;

record QUAL_ | MPORT
Path path "path" ;
end QUAL_I MPORT;

record UNQUAL_ | MPORT
Path path "path" ;
end UNQUAL_I MPORT;

end | nmport;

15.4 Annotation and Comments

public uniontype Annotation
"An Annotation is a class_modification.- Annotation
See Modelica specification 3Qhapter 17 Annotations.

record ANNOTATI ON
|'i st<El enment Arg> el enent Args "el enent Args" ;
end ANNOTATI ON;

end Annot ati on;

public uni ontype Conment
See Modelica specification 3Qhapter 2.2 Comments.

record COMVENT
Opti on<Annot ati on> annotati on_ "annotation" ;
Option<String> conment "coment" ;

end COWVMENT;

end Comment ;

15.5 Component Definition

public uni ontype Conponentltem
"Collection of component and an optional comment"
See Modelica specification 3ahapter 4.4.1 Syntax and Examples of Component Dechtions.

record COVPONENTI TEM
Conponent conponent "conponent" ;
Opt i on<Conponent Condi ti on> condition "condition" ;
Opt i on<Conment > comment " coment "
end COVPONENTI TEM

end Conponentltem

public type Conmponent Condition = Exp
"A componentltem can have a condition that mudubféled if the component should be instantiated."

publ i c uni ontype Conponent
"Some kind of Modelica entity (object or variable)"

record COVPONENT
| dent nane "nane" ;
ArrayDimarrayDim "arrayDim; Array dinensions, if any" ;
Option<Modification> nodification "nodification ; Optional nodification"
end COVPONENT;

end Conponent;

public uniontype El enentAttributes
"Component attributes”
See Modelica specification 3Ghapter 4.4.1 Syntax and Examples of Component Dechtions.

record ATTR
Bool ean flowPrefix "flow' ;
Bool ean streanPrefix "streant ;
Variability variability "variability ; paranmeter, constant etc." ;
Direction direction "direction" ;
ArrayDimarrayDim "arrayDi ni' ;
end ATTR;

end El enent Attri butes;

public uniontype Variability
See Modelica specification 3Qhapter 3.8 Variability of Expressions.

record VAR end VAR

record DI SCRETE end DI SCRETE;
record PARAM end PARAM
record CONST end CONST;

end Variability;
public uniontype Direction
See Modelica specification 3Qhapter 4.4.1 Syntax and Examples of Component Dechtions and4.4.2.2 Pre-
fix Rules.
record | NPUT end | NPUT;
record QUTPUT end OUTPUT;
record BIDIR end BI D R;

end Direction;

public type ArrayDim = |ist<Subscri pt>

"Component attributes are properties of componehish are applied by type prefixes. As an examgéelaring a
component as “input Real x;\' will give the atttidmi” ATTR({},false,VAR,INPUT)\'. Components in Moliea can
be scalar or arrays with one or more dimensioni fhpe is used to indicate the dimensionality ebanponent or
a type definition. Array dimensions" ;

15.6 Modifications and Redeclarations

public uniontype Mdification

"Modifications are described by the “Modificatiotyybe. There are two forms of modifications: redeations and
component modifications. - Modifications"

See Modelica specification 3Ghapter 7.2 Modifications.

record CLASSMOD
| i st<El enment Arg> el enent ArglLst;

Opt i on<Exp> expOpti on;
end CLASSMOD;

end Modification;

public uniontype El enentArg
"Wrapper for things that modify elements, modifioat and redeclarations”

record MODI FI CATI ON
See Modelica specification 3Qhapter 7.2 Modifications.

Boolean finalltem"finalltent ;
Each each_ "each" ;
Conponent Ref conponent Ref "conponent Ref" ;
Option<Modification> nodification "nodification" ;
Option<String> conment "coment" ;

end MODI FI CATI ON;

record REDECLARATI ON
See Modelica specification 3Qhapter 7.3 Redeclaration.

Bool ean finalltem"finalltenm' ;

Redecl ar eKeywor ds redecl areKeywords "redeclare or replaceable " ;

Each each_ "each" ;

El enent Spec el enent Spec "el enent Spec" ;

Option<Constrai nCl ass> constrai nCl ass "class definition or declaration" ;
end REDECLARATI ON;

end El enent Ar g;

public uni ontype Redecl ar eKeywor ds

"The keywords redeclare and replacable can be givehree different kombinations, each one by thafrar the
both combined."

See Modelica specification 3Qhapter 7.3 Redeclaration.

record REDECLARE end REDECLARE;
record REPLACEABLE end REPLACEABLE;

record REDECLARE_REPLACEABLE end REDECLARE_REPLACEABLE;

end Redecl ar eKeywor ds;

public uni ontype Each
"The each keyword can be present in both MODIFIG2Wl's and REDECLARATION\'s. - Each attribute”
See Modelica specification 3Qhapter 7.2.5 Modifiers for Array Elements.

record EACH end EACH,
record NON_EACH end NON_EACH;

end Each;

15.7 Behavior

public uniontype Equationltem

"Several component declarations can be groupedhegi one "ElementSpec\' by writing them on thes line in
the source. This type contains the information sjgeto one component.”

See Modelica specification 3Ghapter 8 “Equations”.

record EQUATI ONI TEM
Equati on equation_ "equation" ;
Opt i on<Conment > coment "conment " ;
end EQUATI ONI TEM

record EQUATI ONI TEMANN
Annot ati on annotation_ "annotation" ;
end EQUATI ONI TEMANN,

end Equationltem

public uniontype Algorithmtem
"Info specific for an algorithm item."
See Modelica specification 3Qhapter 11 “Statements and Algorithm Sections”.

record ALGORI THM TEM
Algorithmalgorithm "algorithni ;
Opt i on<Conment > coment "conment " ;
end ALGORI THM TEM

record ALGORI THM TEMANN
Annot ati on annotation_ "annotation" ;
end ALGORI THM TEMANN;

end Al gorithmtem
public uniontype Equation

"Information on one (kind) of equation, differemtrestructors for different kinds of equations
See Modelica specification 3Qhapter 8 “Equations”.

record EQ IF
Exp ifExp "ifExp ; Conditional expression" ;
i st<Equationltenr equationTrueltenms "equationTrueltems ; true branch" ;

|'i st<tupl e<Exp, |ist<Equationltenr>> el selfBranches "el selfBranches" ;
i st<Equationltenr equationEl seltens "equati onEl seltens Standard 2-side
eqn” ;
end EQ I F;

record EQ EQUALS

Exp leftSide "leftSide" ;

Exp rightSide "rightSide Connect stnt" ;
end EQ EQUALS;

record EQ CONNECT
Conponent Ref connector1 "connectorl" ;
Conponent Ref connector2 "connector2" ;
end EQ CONNECT;

record EQ FOR

Forlterators iterators;

i st<Equationltenrs forEquations "forEquations" ;
end EQ FOR;

record EQ WHEN E
Exp whenExp "whenExp" ;
I i st<Equationlten> whenEquati ons "whenEquations" ;
|ist<tupl e<Exp, |ist<Equationltenm>> el seWhenEquations "el seWhenEqua-
tions" ;
end EQ WHEN E;

record EQ NORETCALL

Conponent Ref functi onNane "functi onNanme" ;

Functi onArgs functionArgs "functionArgs; fcalls w thout return value" ;
end EQ NORETCALL;

record EQ FAI LURE

Equati onltem equ;
end EQ FAI LURE;

end Equati on;

public uniontype Al gorithm
"The Algorithm type describes one algorithm statetie an algorithm section. It does not descrilpehale al-
gorithm. The reason this type is named like thighat the name of the grammar rule for algorithetesnents is “al-

gorithm\'.
See Modelica specification 3Ghapter 11 “Statements and Algorithm Sections”.

record ALG ASSI GN
Exp assi gnConponent "assi gnConponent" ;
Exp val ue "val ue" ;

end ALG ASSI G\

record ALG | F
Exp i fExp "ifExp" ;
list<Algorithnltenr trueBranch "trueBranch" ;
list<tupl e<Exp, list<Algorithntenr>> elselfAlgorithnBranch "elselfAl -
gorithnBranch" ;
list<Algorithnltenr el seBranch "el seBranch"
end ALG | F;

record ALG FOR
Forlterators iterators;
list<Algorithmtenr forBody "forBody" ;
end ALG FOR;

record ALG WHI LE
Exp bool Expr "bool Expr" ;
list<Algorithmtenr whil eBody "whil eBody" ;
end ALG WH LE;

record ALG WHEN A
Exp bool Expr "bool Expr" ;
list<Algorithnltenr whenBody "whenBody" ;
| i st<tuple<Exp, list<Al gorithntenr>> el seWhenAl gorithnmBranch "el seWen-
Al gorit hnBranch" ;
end ALG WHEN_A;

record ALG NORETCALL
Conmponent Ref functionCall "functionCall" ;
Functi onArgs functionArgs "functionArgs; general fcalls wthout return
val ue" ;
end ALG NORETCALL;

record ALG RETURN
end ALG RETURN;

record ALG BREAK
end ALG BREAK;

end Al gorithm

15.8 Expressions

public uniontype Exp
"The Exp uniontype is the container of a Modeligpression. - Expressions”
See Modelica specification 3Qhapter 3 Operators and Expressions.

record | NTEGER
I nt eger val ue;
end | NTEGER;

record REAL
Real val ue;
end REAL;

record CREF

Conponent Ref conponent Ref ;
end CREF;

record STRI NG
String val ue;
end STRI NG

record BOOL
Bool ean val ue;

end BOOL;

record Bl NARY
"Binary operations, e.g. a*b"
Exp expl;
Qper at or op;
Exp exp2;
end BI NARY;

record UNARY
"Unary operations, e.g. -(x)"
OQperat or op "op" ;
Exp exp "exp Logical binary operations: and, or" ;
end UNARY;

record LBI NARY
Exp expl "expl" ;
OQperator op "op" ;
Exp exp2 ;

end LBI NARY;

record LUNARY
"Logical unary operations: not"
Operator op "op" ;
Exp exp "exp Relations, e.g. a >= 0" ;
end LUNARY;

record RELATI ON
Exp expl "expl" ;
Operator op "op" ;
Exp exp2 ;

end RELATI ON;

record | FEXP

Exp i fExp "ifExp" ;

Exp trueBranch "trueBranch" ;

Exp el seBranch "el seBranch" ;

I'ist<tupl e<Exp, Exp>> elselfBranch "el sel fBranch Function calls" ;
end | FEXP;

record CALL
Conponent Ref function_ "function" ;

Functi onArgs functionArgs ;
end CALL;

record PARTEVALFUNCTION "Partially evaluated function"”
Conponent Ref function_ "function" ;

Functi onArgs functionArgs ;
end PARTEVALFUNCTI ON;

record ARRAY "Array construction using {, }, or array"
I'ist<Exp> arrayExp ;
end ARRAY;

record MATRI X "Matrix construction using {, } "
list<list<Exp>> matrix ;
end MATRI X;

record RANGE "Range expressions, e.g. 1:10 or 1:0.5:10"
Exp start "start" ;
Opt i on<Exp> step "step" ;
Exp stop "stop";

end RANGE;

record TUPLE " Tuples used in function calls returning several val ues”
| i st <Exp> expressions "conmma-separated expressions" ;
end TUPLE;

record END "array access operator for |last elenent, e.g. a{end}:=1;"
end END,

end Exp;

uni ont ype Functi onArgs

"The FunctionArgs uniontype consists of a list ofpional arguments followed by a list of nameduangnts (Mod-
elica v2.0)"

See Modelica specification 3Qhapter 12.4 Function Call.

record FUNCTI ONARGS

i st<Exp> args "args" ;

i st<NanedArg> argNanes "ar gNames" ;
end FUNCTI ONARGS;

record FOR | TER FARG
Exp exp "iterator expression";
Forlterators iterators;

end FOR_| TER FARG

end Functi onArgs;

public type Forlterator = tuple<ldent, Option<Exp>>
See Modelica specification 3Ghapter 11.2.2 For-statemenandChapter 8.3.2 For-Equations — Repetitive
Equation Structures.

"For Iterator -
these are used in:
* for loops where the expression part can be [EQ@iNd then the range
is taken from an array variable that the tmrés used to index,
see 3.3.3.2 Several Iterators from Modelicac8jzation.
*in array iterators where the expression shallchys be SOME(Exp),
see 3.4.4.2 Array constructor with iteratomsr Specification";

public type Forlterators = list<Forlterator>
"For Iterators -
these are used in:
* for loops where the expression part can be [R@iNd then the range
is taken from an array variable that the tmrés used to index,
see 3.3.3.2 Several Iterators from Modelicac8jcation.
* in array iterators where the expression shallehys be SOME(EXxp),
see 3.4.4.2 Array constructor with iteratemsr Specification";

uni ont ype NanmedAr g

"The NamedArg uniontype consist of an Identifier ttoe argument and an expression giving the valtleeoargu-

ment"

record

NAMEDARG

I dent argName "ar gNanme" ;
Exp argVal ue "argVal ue" ;
end NAMEDARG

end NanedAr g;

uni ont ype Oper at or
"Expression operators"
See Modelica specification 3Qhapter 3 Operators and Expressions.

[* arithnetic operators */

record ADD "addition"

record SUB "subtraction”

record MJL "mul tiplication”

record D'V "di vi si on"

record POW " power "

record UPLUS "unary plus"

record UM NUS "“unary ni nus"

/* elenent-wi se arithnetic operators */
record ADD EW "el enent -wi se addition"
record SUB EW "el enent -wi se subtraction”
record MJL_EW "el enent-wi se nultiplication”
record DIV_EW "el enent -wi se division"
record POW EW "el enent -wi se power"
record UPLUS EW "el ement-w se unary mi nus"
record UM NUS_EW "el ement -wi se unary pl us"
/* | ogical operators */

record AND "l ogi cal and"

record OR "l ogical or"

record NOT "l ogi cal not"

/* relational operators */

record LESS "l ess than"

record LESSEQ "l ess than or equal"
record GREATER "greater than"

record GREATEREQ "greater than or equal”
record EQUAL "rel ati onal equal"

record NEQUAL "rel ational not equal"

end Operator;

end
end
end
end
end
end
end

end
end
end
end
end
end
end

end
end
end

end
end
end
end
end
end

LESS;
LESSEQ
GREATER;
GREATEREQ
EQUAL;
NEQUAL ;

Part IV - Transformation

This document defines an incomplete mapping betwleeisysML4Modelica profile defined in Part 11 atié ab-
stract syntax defined in Part Ill. As the definitiofound in Part Il and Il evolve, this transfotina document will
also change. The majority of this mapping docunenbmposed of tables relating elements in the Sy8Wbdel-
ica profile to elements of the Modelica abstracttay. It is also intended to be implementation petelent.

Each mapping table may consist of 4 sections:

1. Ageneral statement describing which elemerthiénSysML profile is being mapped to which elemént o
the Modelica abstract syntax.

2. ARequired section describing the required conditions necgdsamake the transformation valid
3. AcConditional section describing possible links between attabdtased on conditional expressions

4. AnAttributes section describing the mapping between any additiattributes

16 Class Definition

16.1 Overview

Table 1: Overview of mapping from new SysML stereo types to Modelica specialized classes.

' Modelica
SysMLaModelica Abstract Syntax Concrete Syntax Hlenizs
Classes::ModelicaClassDefinition Absyn.Class.Class A N/ See Below
Specializations:
Classes::ModelicaClass Absyn.Class.Class Class Sdiersec
Classes::ModelicaModel Absyn.Class.Class Model Setd®ee.3
Classes::ModelicaRecord Absyn.Class.Class Record &6 9.4
Classes::ModelicaBlock Absyn.Class.Class Block Sed¢i@ed.5
Classes::ModelicaConnector Absyn.Class.Class Connecto See Section 9.6
Classes::ModelicaType Absyn.Class.Class Type SeedBefr
Classes::ModelicaPackage Absyn.Class.Class Package Segten 9.8
Classes::ModelicaFunction Absyn.Class.Class Function ee Section 9.9
SysML4Modelica Modelica
Classes::ModelicaClassDefinition maps to Absyn.CGlsss
Attributes:
e IsFinal always maps to e finalPrefix
* IsModelicaEncapsulated always maps to e encapsuletégP

Page : 61 Line : 2156 Author : Chris Paredis 02010
This part still needs to be updated with QVT codeis-likely that the current mapping tables are i
need of updating too.

IsAbstract ‘ always maps to e PartialPrefix

16.2 «modelicaClass»
SysML4Modelica Modelica
Classes::ModelicaClass maps to Absyn.Class.Class
Required:
e restrictionequal to
Restriction.R_Class
Attributes same as SysML4Modelica::Classes::Modé€llassDefinition
16.3 «modelicaModel»
SysML4Modelica Modelica
Classes::ModelicaModel maps to Absyn.Class.Class
Required:
e restrictionequal to
Restriction.R_Model
Attributes same as SysML4Modelica::Classes::Modé€llassDefinition
16.4 «modelicaRecord»
SysML4Modelica Modelica
Classes::ModelicaRecord maps to Absyn.Class.Class
Required:
e restrictionequal to
Restriction.R_Record
Attributes same as SysML4Modelica::Classes::Modé€llassDefinition
16.5 «modelicaBlock»
SysML4Modelica Modelica
Classes::ModelicaBlock maps to Absyn.Class.Class
Required:

e restrictionequal to
Restriction.R_Block

Attributes same as SysML4Modelica::Classes::Mod€lassDefinition

16.6 «modelicaConnector»
SysML4Modelica Modelica
Classes::ModelicaConnector maps to Absyn.Class.Class
Conditional:
* IsExpandablequal tofalse maps to e restrictioequal to
Restriction.R_CONNECTOR
* IsExpandablequal totrue maps to « restrictioequal to Restriction.

R_EXP_CONNECTOR

Attributes same as SysML4Modelica::Classes::Modé€liassDefinition

16.7 «modelicaType»
SysML4Modelica Modelica
Classes::ModelicaType maps to Absyn.Class.Class
Required:
e restrictionequal to
Restriction.R_Type
Attributes same as SysML4Modelica::Classes::Modé€llassDefinition
16.8 «modelicaPackage»
SysML4Modelica Modelica
Classes::ModelicaPackage maps to Absyn.Class.Class
Required:
e restrictionequal to
Restriction.R_Package
Attributes same as SysML4Modelica::Classes::Mod€lassDefinition
16.9 «modelicaFunction»
SysML4Modelica Modelica
SysML4Modelica::Classes::ModelicaFunction maps|to yibGlass.Class
Required:
‘ ‘ » restrictionequal to Restriction.R_Function
Conditional:

e IsExternalequal totrue

Type of Class.bodyqual to
ClassDef.PARTS

Type of Class.blody.classPargual to
ClassPart. EXTERNAL

Type of Class.body.classParts.externalDec¢

L

equal to ExternalDecl. EXTERNALDECL

* ModelicaFunction::externalLanguage Always » Class.body.classParts.externalDecl.lang

maps to
» ModelicaFunction::externalFunctionAlways e Class.body.classParts.externalDecl.funcNam
pecification maps to e

Attributes same as SysML4Modelica::Classes::Mod€lassDefinition

16.10 «modelicaEnumeration»

Currently not covered in this draft.

16.11 «modelicaExtends»

Currently not covered in this draft.

Short Class Definitions

Currently not covered in this draft.

17 Predefined Types

17.1 Overview

The following primitive types are available in thkodelica language: Real Type, Integer Type, BoolBgre,

String Type, Enumeration Types, StateSelect, Eat@ject, Graphical Annotation Types. These privaitiypes are
defined as predefined types in SysML4Modelica::Bagbes. Although these types have direct countesjia
SysML, they are defined again to account for thaitaahal attributes associated with them in Modelic

SysML4Modelica Modelica

BasicTypes Predefined Type
ModelicaReal Real
Modelicalnteger Integer
ModelicaBoolean Boolean
ModelicaString String
ModelicaEnumeration Enumeration
ModelicaStateSelect StateSelect
ModelicaExternalObject ExternalObject

ModelicaAnnotation Annotation

18

Component Declarations

18.1 Overview
SysML4Modelica Modelica Attributes
Component::ModelicaComponent Absyn.Element.Element e S|mction 18.2
Component::ModelicaPart Absyn.Element.Element Set@et8.3
Component::ModelicaPort Absyn.Element.Element Sedi@et8.4
Component::ModelicaValueProperty Absyn.Element.Eleime See Section 18.5
18.2 «modelicaComponent»
SysML4Modelica Modelica
Component::ModelicaComponent maps to Absyn.ElemesEht
Required:
Type of specificationequal to Ele-
mentSpec. COMPONENTS
Type of specification.components
equal to ComponentltenCOMPON-
ENTITEM
Type of
specification.components.component
equal toComponenet. COMPONENT
Attributes:
* name always name
maps to specification.components.component.-
name(?)
e scope always Type ofinnerOuter
maps to
e conditionalExpression always specification.components.condition
maps to
* modification always specification.components.component.-
maps to modification
* redeclaration always redeclareKeywords
maps to
e arraySize always specification.components.compon-
maps to ent.arrayDim
18.3 «modelicaPart»

SysML4Modelica

Modelica

Component::ModelicaPart

maps to

Absyn.Element.Element

Required:

Type of specificatiorequal to Ele-
mentSpec. COMPONENTS
Absyn.Class.Clas®ferenced by
specification.typeSpec has Restric
tion not equal to R_Connector or
R_Type

Type of specification.components
equal to ComponentltenCOMPON-
ENTITEM

Type of
specification.components.component
equal to

Componenet. COMPONENT

Attributes:

. name

always maps to

* name
specification.components.compon
ent.name(?)

* Scope

always maps to

« Type ofinnerOuter

» conditionalExpression

always maps to

» specificaiomponents.condition

* modification

always maps to

» specification.composergmpon-
ent.modification

* redeclaration

always maps to

e redeclareKeywords

e arraySize

always maps to

» specification.componentspon-
ent.arrayDim

18.4 «modelicaPort»

SysML4Modelica

Modelica

Component::ModelicaPort

maps to

Absyn.Element.Element

Required:

Type of specificatiorequal to Ele-
mentSpec. COMPONENTS
Absyn.Class.Clas®ferenced by
specification.typeSpec has restriction
equal to R_Connector or

Type of specification.components
equal to ComponentltenCOMPON-
ENTITEM

Type of
specification.components.component
equal to

Componenet. COMPONENT

Attributes:

i name

always maps to

* name
specification.components.compon-

ent.name(?)

» conditionalExpression

always maps to

» specificaomponents.condition

* modification

always maps to

» specification.composergmpon-
ent.modification

* redeclaration

always maps to

« redeclareKeywords

» arraySize

always maps to

» specification.componemtspon-
ent.arrayDim

18.5

«modelicaValueProperty»

SysML4Modelica

Modelica

Component::ModelicaValueProperty

maps to

Absyn.EldarEdement

Required:

Type of specificatiorequal to Element-
Spec. COMPONENTS
Absyn.Class.Clas®ferenced byspe-
cification.typeSpec has restrictiegual
to R_Type

Type of specification.componenexjual
to Componentlten€COMPON-
ENTITEM

Type of
specification.components.component
equal toComponenet. COMPONENT
Type of
specification.components.component,
ributesequal to
ElementAttributes.ATTR

att

Attributes:

i name

always maps to

name
specification.components.component,
name(?)

e scope

always maps to

Type of innerOuter

» flowFlag

always maps to

specification.componentsiygonent.at-
tributes.flowPrefix

e causality

always maps to

Type of specification.components.com
ponent.attributes.direction

* variability

always maps to

Type of specification.components.com
ponent.attributes.variability

e conditionalExpression

always maps|to

e specificaiomponents.condition

* modification

always maps tp

specification.composartmponent.-
modification

» redeclaration

always maps to

redeclareKeywords

» arraySize

always maps to

specification.componemtsponent.ar-
rayDim

18.6 «modelicaFunctionParameter»

Currently not covered in this draft.

19 Equation and Algorithm Sections

19.1 Overview

SysML4Modelica Abs’éf;’gteg‘;itax Attributes
Equations and Algorithms::ModelicaEquation Absyn.&tipnltem.EQUATIONITEM | See Section 19
Equations and Algorithms::ModelicaConnection Absyuétion.EQ_CONNECT See Section 1
Equations and Algorithms::ModelicaAlgorithm — Absyniidionltem. ALGORITHMITEM See Section 19

19.2 «modelicaEquation»

SysML4Modelica

Modelica

Equations and Algorithms::ModelicaEquation maps to syxbEquationltem.EQUATIONITEM
Required:
e constraint.specification ‘ parsed #o e equation

Conditionals:

» If IslInitial equal tofalse

« EQUATIONITEMcontained in record
typed to ClassPart. EQUATIONS

» If IsInitial equal totrue

e EQUATIONITEMcontained in record
typed to ClassPart.INITIALEQUA-

TIONS

19.3 «modelicaAlgorithm»

SysML4Modelica

Modelica

Equations and Algorithms::ModelicaAlgorithm maps tq bsAn.Algorithmltem.ALGORITHMITEM
Required:
e constraint.specification parsed to e algorithm_

Conditionals:

» If IsInitial equal tofalse

» ALGORITHMITEM c contained in re-
cord typed to ClassPart. ALGORITHMS

e If IslInitial equal totrue

e ALGORITHMITEM contained in re-
cord typed to ClassPart.INITIALAL-

GORITHMS

19.4 «modelicaConnection»

).3

SysML4Modelica Modelica

Equations and Algorithms::ModelicaConnectjion ~ maps to Absyn.Equation.EQ_CONNECTOR

Required:

e ConnectorEndA.Role maps to e connectorl

e ConnectorEndB.Role maps to e connector2

Appendix A - Examples

20 A Car Suspension Model

The following example is intended to illustrate tancepts of how the transformation approach camskd to
provide a context for the normative specificatiorPart Il of this specification. Consider the gesof a car suspen-
sion. As illustrated in Figure 14, the suspensian loe described in the context of a car using erigtive SysML
model, expressed in a BDD and corresponding IBD.

bdd [Package] Structure [EQC&rS‘truc‘ture]J

==hlock==
Car

vales
mass © Mass

ibd [Bloc] Car [[igj Car]J

<<hlock== =
/ ‘\ -suspension sUspension : Suspension
-body p zzhlogks=
¥ = . i
=<hlocks=> s«block:_= . suspZbody : BodyConnection
Budy uspension N
valmes
vaires stiffness : Stiffness
mass : Mass EEE Meee
1
‘ <<hlock== = |
==FlowPropery=> :
-body2susp PErTY . body : Body
-suspZbody | e - 1
==hlock== ==hlocks= =<hlock== ;
SuspensionFlange BodyConnection body2susp : SuspensionFlange

Figure 14: SysML descriptive model of a car suspens ion visualized as a BDD and IBD

Assume now that one needs to evaluate the dynasponse of the suspension by simulating the carvpdsi-
tion as a function of time. A possible continuoysamics model for such a simulation models the snsipn as a
linear spring and the car body as a point mass Moidel is illustrated in Figure 15 in both Modal&nd in
SysML4Modelica profile which represents the cormesting Modelica constructs.. By stereotyping Sysbdlts
and connectors, the semantics of Kirchhoff’s laagehbeen introduced into SysML.

Page : 70 Line : 2227 Author : Chris Paredis 120269
This paragraph should be restricted to the desenimif the Modelica version of the model, with its

textual and graphical part. Showing the SysML cetxpiart based on stereotype that has not been
already defined provide more confusion than help.

fixed 1

<<ModelicaPart>>
fixedimodel : Fixed

1 |
! flange : Flange

==ModelicaConnection>=

i— ﬂang_e=b H Flang_

<<ModelicaPart>>
springimodel : Spring

spring1 E

[] :
T flange_a . Flange

==<ModelicaConnection>=

| |_fl_a_nge_b : Flange
= |

==ModelicaPart>>
massimodel : Mass
=

_Jﬂange_a : Flange

mass1
m=1

Figure 15: M ass-Spring model for a ¢ ar suspension, in Modelica (left) and SysML4Modelica (right).

The SysML parts are stereotyped as «modelicaR@ag»;.mass1imodel, springlmodel, fixedlmodel), toates-
pond to usages of models from the Modelica Stantém@ry. For instance, as illustrated in Figure tt® library
Modelica.Mechanics.Translational. Components incsudiefinitions of continuous dynamics models foipaii®)
and a Mass. Note that one could apply stereotyp8y$ML that include icons equivalent to the eletadiom the
Modelica library so that the SysML4Modelica repmrsgion in Figure 4 could be almost identical te tModelica
representation on the left.

Page : 71 Line : 2240 Author : Chris Paredis 120269

Could we give the Modelica textual representatiomg with or in place of the graphical one? As far
as | understand, Modelica diagrams are just annotatThey don’t provide all the information (cf
84.1.3). Then they should not be used as a referlenSysML mapping.

Page : 71 Line : 2246 Author : Chris Paredis 120269
Not so simple as discussed with Nerijus in San Aato.

sf. Once can still apply icons to individual mod&ments, so | think this is accurate. For exanysie,
could specify a stereotype called icon, that ineuthe image as a stereotype property and apgly thi
stereotype to selected model elements. Perhapbawddsinclude this as a recommendation or Nerijus
proposal.

bdd [Package] Components| EModeIOverview]J

<<ModelicaPort=> <<MoclelicaPort=>
flange_a: Flange— —flange_b: Flange
L LI
<=mocelicabodel=>
ModelicaStandardLibrary::Mechanics:: Translational: Interfaces::
PartialCompliant
{s_rel = flange_b s - flange_a.s;
flange_bif="1;
flange_af=-f}
vales
<=<modelicaValusProperty=>s_rel: Distance
==modelica\/alueProperty==f : Force
==ModelicaPort== ==mocelicabxtends== ==ModelicaPort>=
flange_a : Flange— — flange_b: Flange
]

==modelicablodel==
MadelicaStandardLibrary::Mechanics:; Translational;: Components::
Spring
{f=c*(s_rel- s_rell); }

values
==modelica’/alueProperty>=c : TranslationalSpringConstant{modelicaModification = “final min=0", "start = 1", variabilty = parameter}
==modelical/alueProperty=>s_rell : Distance{variabilty = parameter }

==ModelicaPort=> ==MoclelicaPort==
flange_a : Flange |—| —flange_b: Flange
- L]
r ==modelicallodel==
ModelicaStandardLibrary:: Mechanics:: Translational::Interfaces::
PartialRigid

{flange_as=g-L/2
flange_hs=s+Li2;}

vaiues
==madelical/alusProperty==s ; Position
==modelical/alueProperty==L : Length{variability = parameter }

==modelicabxiends==
{modelicaModification = "L=0", "star=0, state Select=state Select)'}
==ModelicaPort=> ==ModelicaPort==

flange_a: FlaE_E — flange_b : Flange
| L

<zmodelicaModel=>
ModelicaStandardLibrary.: Mechanics:; Translational:: Components::
Mass
{v = der{s);
a = der{v),
m*a = flange_a.f + flange_h 1}

vales
<<modelica’alueProperty=>m : Mass{variabilty = parameter }
<<modelica’/alusProperty==a: Acceleration
<<modelical/alusProperty==v : Velocty
<<modelicaV/alusProperty=>stateSelact : ModelicaStateSelect{variabilty = parameter}

Figure 16: Continuous dynamics models for Mass and Spring defined in the Modelica Standard Library.

In Figure 15, the usages of these models, steredtgp «modelicaPart» are connected to each otlteziatimodel-
icaPort» by «modelicaConnection». These connectiany the semantics of Kirchhoff’s Laws (in thisaenple—
or, more generally, the same semantics as an dgnivdodelica connection). These semantics can dgenmore
explicit by using a Parametric Constraint (Figurg. 1

par [Block] Mass [@Mass]J

==ValueType=>
s : Length

==constraints=

==hlocks>
flange_a : Flange

==ValueType=>
L : Length

==WalueType=>
s : Length

==\alueType=>

s_v : Derivative

f:Force

{der_x = der{x)}

x1 : Real x2: Real
|

<<Constraint=:=
sumi : Sum

cler_x|: Real

Hl. iResl ¥2: Real

[i

==constraint==
sum2 : Sum

==\alueType>>

v : Velocity {sum=x1+x2} {sum=x1+x2}
==hlocks> ;
% Feal flange_b : Flange sum : Real
s ==ValueType>>
_{de.r et newton : NewtonsLaw %
e | {m*a=f} ==ValueType=>
- T:Force
cer_x|: Real |—| ’_|

a: Acceleration m: Mass

==\alueTypes>
a: Acceleration

==ValueType==>
m: Mass

Figure 17: Mass model as it could be represented in a Parametric Diagram.

But, as one can see by comparing Figure 17 andd-ithi this comes at a cost of a much larger asgirleadable
diagram. Similarly, one could have representedrtteznal equations of the Mass model in a ParamBtiagram, as
is illustrated in Figure 18, but again, the morpl&it semantics come at a cost of increased coxitgld-or this
reason, only Blocks and Internal Block Diagramsfarther used in the SysML4Modelica profile, bug tharamet-
rics still provides the underlying semantics fopttaing the detailed equations. However, this clexify can often
be abstracted and made not visible to the modeler.

par [Block] OscillatorMadel [EEJ Oscillatarhocle!]J

= ==block== =

massimodel : Mass

<=hlock=>
Tixed1model ; Fixed

==hlock== =
flange : Flange

==block== =
flange_b : Flange

==\WalueType=> ==ValueType=> = <<ValueType=> ==<\alueType>>

s: Length f:Force s :Length f:Force
v1: Real i1: Real
[i1: Real
<=constraint>> o
node1 : HirchhoffsLaws <<c:?n rans
e node? : KirchhoffsLaws
{i1+2=0, 11412=0
vi=v2} {i v:I—\:z}
[1 1 - -
v2: Real 12 Real
v2: Real i2: Real
==hlock== =
springimodel : Spring
<block== =
flange_b : Flange ablachas =
flangg_a : Flange

<<\alueType>>

s:Length <=ValueType>>

1:Force

<=ValueType>>

f:Force
s:Length

<=\alueType>= — ‘

Figure 18: Mass-Spring model as represented in a Pa rametric Diagram.

Finally, it is worth illustrating how the SysML4Metica continuous dynamics model in Figure 15 rslétethe

Page : 73 Line : 2259 Author : Sanford Friedenfli#01/2009
Let's work on this wording so we are in agreementhe role of parametrics in this profile.

Page : 73 Line : 2263 Author : Chris Paredis 120269

Could we give the Modelica textual representatiomg with or in place of the graphical one? As far
as | understand, Modelica diagrams are just annotatThey don’t provide all the information (cf
84.1.3). Then they should not be used as a referfenSysML mapping.

SysML descriptive model in Figure 14. Since both descriptive and the continuous dynamics modelwiaws of
the same system, they cannot be independent ofagheh Changes to the descriptive model are likekequire
corresponding changes to the continuous dynamickehand vice versa. Such dependencies can be naoideda
analysis context — the context in which the analysodel (i.e., the continuous dynamic analysisis tase) is
defined.

The analysis context is illustrated in Figure 1®dtablishes the dependencies between the désenpbdel com-
ponents and their corresponding analysis modelsddition, the detailed bindings between the dpteea and ana-
lysis properties are defined in the Parametric Eiagillustrated in Figure 20.

bdd [Elock] CarDynamicsContext [E%j AnalysisContext]J

<<hlock=> ==hlock==
CarDynamicsContext ==modelicaModel==
+OEE gy OscillatorModel

vakies
testRigPosition : Length
=<ModelicaPart==
fixedimodel : Fixed

{modelicaModification = "s0=1"}

-car

==hlock==
Car
suspension : Suspension <=gllocatess | ==ModelicaPart==
____ T 7\‘| springimodel : Spring
susp2body : BodyConnection HmodelicaModification = "s_rel0=2", "c=10000"}
i _ _ ! e
| ! flange_a : Flange
e — R <=ModelicaPort==
<=allocates=
7 <<allocate== §
body : Body g s s <=ModelicaPort>>
I—_]'Iange_b: Flange
body?susp : SuspensionFlange ||| _ _ | | =
==ModelicaPart>>
locat massimodel : Mass
_=ealocae” L imodelicabMadification = "L=1", "m=1", "sistart=-0.5}"}

Figure 19: The Block Definition Diagram for the Ana lysis Context of the continuous dynamics analysis.

Page : 74 Line : 2270 Author : Chris Paredis 120269

The terminology in the text needs to be relatediey to the notation used in the diagrams.
What is an analysis context in the model?

(maybe we should have a stereotype)

What are descriptive elements in the model?

What are analysis models in the model?

-How are dependencies captured in the model?

(it may be not obvious for some readers to equég@éndency” in the text with a <<Describe>>
relationship in the model or an allocation relasioip as Sandy is suggesting)

Page : 74 Line : 2271 Author : Chris Paredis 120269

Perhaps we could use allocation for this dependenogpresent to the mapping between the two user
models.

par [Block] CarDynamicsContext [ﬁ& CarDynamicsContext])
oscimodel : OscillatorModel =i
==ModelicaPart=>]
fixedimodel : Fixed
=<Dimension=: @ | | ==mocelicaValuePropertys= |
testRigPosition : Length | | sl :Length
==ModelicaPart=>
———————————————— springimodel : Spring
| =<hlock=> = —_—
car : Car | <<modelica'/alueProperty=> |
= = = | s_rell : Distance
‘ suspension : Suspension | = =
Soovallatypen= oy | <<modelica\/alueProperty=> |
| stiffness : Stiffness | | e: TranslationalSpringConstant
|
<=ModelicaPart=>
¢ massimodel : Mass
| ==modelica'/alueProperty== |
| L:Length
| | Dbody : Body o
! R, | <<modelicaValueProperty>> |
| mass : Mass | m: Mass
I i -
|

Figure 20: The Parametric Diagram for the Analysis Context of the continuous dynamics analysis; the pr oper-
ties of the descriptive model are bound to the corr esponding properties in the analysis model.

For very simple problems, one could consider coimbithe descriptive and analysis views into one ahoelg.,
suspension and springlmodel would be combinedoinéocomponent that includes both the descriptiepgties
and the analysis constraints/equations. Howevetafger problems in which more than one analysisective
needs to be considered (e.g., mechanical, elelgttimatrols, manufacturing, different levels of astion, etc.),
combining all such analyses into one model wouldiffeeult to manage. One would likely encounteoplems
with naming conflicts or duplication of propertiés.addition, combining all the models severelyitgthe oppor-
tunity for model reuse because models from libeafseich as the Modelica Standard Library) wouldehavbe
combined with descriptive models rather than josluded in an analysis context.

21 A Robot Model

21.1 Introduction

The example in this section is intended to illustfaow a SysML model can be transformed to a Modetiodel in
accordance with the transformation approach sgekifi this document. In particular, the transfoliorats accom-
plished by first applying the SysML4Modelica prefihs described in Part Il of this document, and thapping the
SysML4Modelica model to the Modelica model as désctin Part IV of this document. The robot examiple
based on the robot model that is contained intdwedsrd Modelica library which can be found at wmadel-
ica.org. Refer to Part | of this document for abmntroduction to SysML and Modelica.

21.2 Integrating SysML Descriptive Models with Analy tical Models

This transformation specification will typically gport the system requirements analysis and desityitg as part
of a systems engineering process. A SysML modibeideveloped to specify the system requirements)itect
the system, and allocate the system requiremeritetbardware and software components of the syStken
SysML model serves as a descriptive model to captwiltiple aspects of the system of interest, iiclg its func-
tionality, inputs/output and control flow, strucalicomposition and interconnection, and traceatiditits text based
requirements as indicated in Figure 21. As pathefrequirements analysis and design effort, méffigreint engin-

eering analysis are often performed to evaluatextent that the system can satisfy its systenopaence, phys-
ical, reliability, maintainability, and cost regeiments.

traceability Structure Behavior analysis
rationale [™ [ea] needs

External J y . = b . . . __Q-n!‘w_:, LR _ 7
Requirements | " | - : -

(=] performance

viewpoint [] estimates discrete event
System 4 l 1)
Documentation | 4 i ()| £ .

—_] .

and Specifications A | — |

closed form

network
Regulrements Parametrics

System Model (SysML) Analysis Models
4 s o=

e

4
N A
N 2 s

em framework for Flﬁsi

gn

Mechanical Electrical Software Testing
Desian Models Design Design Methods and
9 Models Models Models

Figure 21: A SysML model in which models for multip le analysis tools are defined.

The SysML descriptive model can capture relevapeets of the system that can be used by many elifféypes of
analytical models and tools to support the abowyars. One mechanism is to use SysML paramewicgpture
the analysis as a network of equations, and thes thés analysis to an analytical tool. The anedytiool then per-
forms the computation and provides the quantifiaesilts back to the SysML model. A simple exanmpéey be for
a SysML parametric model to capture the systemativesiiability in terms of the mean time betweaildres of
each of its components. The reliability of each porrent may in turn be estimated based on someiegud@his
set of equations are passed to a reliability amatg® | to perform the computation, and returnrigl@bility values
back to the SysML model.

Sometimes, SysML parametrics is used in a moreadistay. In this case, the SysML model does nptuwra the
equations, but only the input and output parametetise analysis. When this is done,the equatibasrelate the
input and output parameters of the analysis aladed in the analytical tool or solver.

An alternative approach for providing relevant atp®f the descriptive model to an analytical magéb use the
transformation approach specified in this documienthis particular case, the SysML model is transfed to a
Modelica model in two steps. First, the SysML4Mackelprofile is applied to create an analytical esgntation
from the structural portion of the SysML modeltie second step, this SysML4Modelica analytical ehasl
mapped to the Modelica model where it can be execdthe additional step to apply the SysML4Modetioafile
to create the analytical model facilitates a maraightforward mapping from SysML to Modelica, asmpared to
mapping the SysML model to Modelica directly withagpplying the profile.

This transformation approach provides advantages ereating a parametric model and providing thaupatric
model to the Modelica model directly as describevab In particular, the approach enables the SydWtdkelica
analytical model to more effectively map to reusatmponents in the Modelica standard library. Wioelelica

model encapsulates the equations in its componamtisthen defines standard equations for connettigrg. The
detailed equations are generally assumed to bereabin the Modelica model using Modelica’s textuatation. It
is generally assumed that the SysML4Modelica artalymodel captures the structure, interconnectow, proper-
ties, but not the detailed equations. This trams&tion approach allows the modeler to provide astrabt descrip-
tion of the system in SysML and the SysML4Modebeelytical model, and then establish direct comadgence to
the Modelica model.

21.3 Robot Example

This robot example only highlights the aspecthefysML model that are used in the SysML4Moddliaas-
formation. The primary aspects of the SysML modtiat are used in the transformation are the bloéikitien dia-
grams (bdd’s) and the internal block diagrams §pdh a more typical case, the SysML model woaldude other
aspects of the model as described in Figure 21egland integrate with other analytical models adstas well as
the Modelica model.

For the robot example, the block definition diagsaend internal block diagrams are used to desthibsystem
composition and interconnection at increasing keweéldetail. This is typical of how SysML model® ateveloped
to support system specification and design. Theesponding Modelica analytical model may be creatatiffer-
ent levels of abstraction. The following paragrajtlustrate a sequence diagrams one may createnodzling and
design process. All figures are included at the @fithe section.

The SysML model organization for the Robot modedhiswn in the package diagram in Figure 22. Theehod
structure includes the SysML4Modelica Profile, Medelica Standard Library, and the Robot ModellitSehe Ro-
bot model includes packages for defining interfatgses, structure, and analysis.

As described above, a typical SysML model may idelintegration with a diverse set of analytical eledThe
analysis package captures the various types ofsinahat are being performed. In particular, Fig28 shows a
parametric model of the top level objective funitfor the robot. In particular, several key perfarmoe parameters
have been identified that characterize the overdlle to the end user, including the weight, powediability, cost
and trajectory performance in terms of the posigmor. Each of these performance parameters afgzed by dif-
ferent analytical models and tools. Note that tre®ica model will be used primarily to analyze treectory per-
formance. This is indicated by the refine relatlupdetween the Modelica robot model and the ttajggerform-
ance model.

The top level SysML block definition diagram is shoin Figure 24. The robot domain block serves asrdext for
the robot, which is the system of interest. Theotalmmain block is composed of the robot and themactors that
are external to the robot, and interact with ite Httors include the load the robot manipulatesptatform the ro-
bot is attached to, the power source that proyideger to the robot, and the driver that providesdhsired traject-
ory input to the robot. The trajectory input maydsevided in real time, such as might be done lygtjok control,
or prior to the robot actually executing the trégpey.

In Figure 25, the corresponding internal block daag is shown. In this diagram, the interconneckietween the
robot and the actors is shown. The ports on thetn@present the connection points to each extewctat.

The top level bdd and ibd are sometimes referrexbta black box view which specify the robot fromeaternal
perspective without any internal details. The cgponding Modelica model may be created to providatestract
analytical representation of the black box robathwmited or no internal detail. This analytiaabdel may be used
to assess required trajectory characteristics, asgrecision and response time to manipulatecadbapecified
mass, and perhaps the minimum power requiremeetedeof the robot, based on some assumptions avoé r
power efficiency factor. Again, this analysis nm@gyperformed without any consideration for therimé details of
the robot.

The standard Modelica library does not include thésk box model explicitly. However, it could beéded by creat-
ing the SysML4Modelica analytical model and deveigphe corresponding Modelica model. Although itbieot

model may be abstract, the models of the actoils as¢he Load, Power Source, and Driver could beifed in
detail and reused for the detailed robot analyticatiels.

The block definition diagram in Figure 26 decomsogee robot into its next level of components idahg the
PathPlanner, Control Bus, Actuators, and Arm. Qmig of the six actuators is shown in the bdd. Tti&tors are
all assumed to be of the same type, but each actoatild have been modeled as a subclass of ageoezic actu-
ator to represent a unique component type.

The internal block diagram in Figure 27 shows titericonnection among the robot parts. Note thablhek box
interfaces to the external actors are preservech Betuator is shown as a unique part. Once agaohot designer
may choose to perform an analysis of the robdtiatiével of abstraction, where all of the compdseén the ibd are
treated as black boxes without internal detailsuld further refine the black box analysis, anovide a basis
for allocating specific performance requirementth®s components. For example, the actuator effigie@ould be
estimated, and the trajectory could be analyzealfasction of different assumptions of actuatorcklox charac-
teristics. Again, the Modelica library does not koifly contain a model of these components at kel but the
Modelica model could be expanded to include thémso,|the SysML4Modelica analytical model woulddveated,
and then mapped to the corresponding Modelica model

The next diagrams include the block definition déag and internal block diagram for the actuator amd. The
path planner and control bus were not further dgmsad in the SysML model, although they could Hzeen. The
actuator block definition diagram and internal idaltagram are shown in Figures 28 and 29, respadgtiVhe actu-
ator includes the Controller, Motor Assembly, Gaad Sensor. The Motor Assembly is further decomgpase a
Motor and Drive Electronics on the bdd, but notiertinterconnection detail is shown. The level etiadl of the
SysML model typically corresponds to the level efall that the system is being specified by théesysdesigner.
Below this level, other domain specific hardware anftware models are used to model the systergmiesi

The Arm block definition diagram and internal bladikgram are shown in Figures 30 and 31, respégtiMete
that the black box interfaces for the actuator amd are preserved on their internal block diagrgomsyiding con-
sistency from the robot black box level to the comgnt | level.

The transformation to the Modelica model is perfednat this level of detail of the SysML model o tlobot. The
first step in the transformation is to create tigeNbL4Modelica analytical model. In Figures 32 arg] the SysML
structural model is allocated to corresponding elet® of the SysML4Modelica analytical model. (Ndibere is
currently an issue raised against SysML allocattorsupport the unambiguous allocation of nestedpaments.
This issue is included in section ?? of this spediion.) Based on these allocations, the SysMbd#lica analyt-
ical model for the robot is shown in Figure 34.

Once the SysML4Modelica analytical model has bexfimdd, the mapping to the corresponding Modelicaleh
can be performed. The details of the mapping avevshin Table 2, where each element in the SysML4Modelica
analytical model contains a reference to the cpmeding Modelica component. Figure 35 shows theesponding
graphical representation of the Modelica model. @&miled equations are embedded in the Modelicdehale-
ments that are represented by the graphical element

In Figure 36, the results of the analysis are shfmwia specific simulation execution.

pko [Model] Data [Robot Model Crganization]J

g

==profile==

SysML4Modelica

M|

ModelicaStandardLibrary

RohotModel

1

Analysis

1

Interfaces

1

Structure

[1

Types

Figure 22: The package organization of the robot mo

del.

par [Block] Robot&nalysisContext [@Ovarall Effectiveness U

reoasmr totalh k mazs : kg
- Wei del altdass : ky :
wm:
]
<=conatraint=>
pm:PowerModel [[FYErageRower W povver ;W

rm : Reliabilit —teliahilty : Real reliability : Resl
= ==constraint== y g
em:C |7 cost: ush
© ceconstraintss

tm: TraiectoryErrorModelr miaxPostionErrar : m

trajectoryError : m

Refined by
modelicaRobot

==ohjectiveFunction==

obj : ObjectiveFunction

Ltility : Real

|—_|l effectiveness : Real m

Figure 23: A parametric model of the top level obje

ctive function for the robot.

bad [Package] Structure [|8 RobatDomein BOD]J

==hloctk==
RobotDomain

]

-rob -Inadl

[==tlock==
| Driver

==hlock==
Robot

==hlocks==
Load

-p=

-pf

==hlock==
PowerSource

==hlock==
Platform

Figure 24: The top-level block definition diagram f

or the robot domain.

ibd [Block] RobotDomain [RobotDomain [1=]0]]J

rob : Robot
dr : Driver load : Load
if <] lazcllF H
ps : PowerSource MechEnergyFlow
I . powverlF
i ElecEnergyFlow 'T‘ mountlF
techEneroyFlow
L+
pf : Platform

Figure 26: The block definition diagram for the dec

Figure 25: The internal block diagram of the robot

domain.

bdd [Package] Robot [@Robo{ EOD U

==hlock==
Robot

==comment==
axiz 2-6 not shown

! /
X /
PR -ch -axiE |, —arm
==hlock== ==hlock== ==hlock== ==hlock==
PathPlanner ControlBus Actuator Arm

omposition of the robot into its main subsystems.

ibd [Block] Raobat [@Robm IBC:]J

cb : ControlBus ,_! xis1:Actuator_| i arm : Arm

ol PathCmd [e

b

|| RotationalEner gy Flow
—_ 2

F4}—¢r'i32 : Actuator }j—’—F
out “emd kel
Pathicmd 4\1' FtationalEnergyFlow

| axis3 : Actuator

oLt =—P—E cinl

PathCmid I

Ll

RotationalEnergyFlow

i pp : PathPlanner |
= x| logdiF loadiF L

cortraln | in o__u_t_? PathCmd _]n a*is“m“““‘"a—l__ j > i4 & ¥ echEnergyFlow .
out PathCme B RotationaEnergyFlow |

| axis5 : Actuat |T|*I i g
- = PR s
PathCmdl RotationalEnergyFlow

¥ [

outh
I PathCmd

[T}
bazelF I
MechEneryFlow
31 mountlF =
L f [E8)
Figure 27: The internal block diagram for the robot , illustrating its decomposition into the path plan ner, the

control bus, the actuators and the mechanical struc ture of the robot arm.

bdd [Package] Actustor [Esg Actustor BOD]J

==hlock==
Actuator
-C J’ -ma J’ -gbl -85 J’

==hlock=» | ==hlock== ==hlocks= ==hlock==
Controller Motor bh Gear Sensor

[<=block=>
Motor

==hlock==
DriveElectronics

Figure 28: The block definition diagram for the str ucture of an actuator of the robot.

ibd [Block] Actustor [Al:‘tuatnr IBD]J

as : Sensor
as2c AngleSensorReading

b2 : RotationalEneroyFlofae

c2ma : MotarCmed

ma : MotorAssembly
o g
cimd . gear ma2gh . RotationalEnerayFlow
w
¥

poeverlF

ElecEnergyFlo

powerlF

|- H)

Figure 29: The internal block diagram for arobota ctuator.

bdd [Packsge] &rm[EiArm BOD U

==hlocks=
Arm

==hlock== ==hlock== ==hlock== ==hlock== ==block== ==hlocks== ==hlock== ==hlock==
Base UpperArm EndEffector LowerArm 'WristJoint3DOF Elbow Joint Joint BaseJoint

==block==

==hlocks==
i Joint1Axis
Link

’

==block==
Joint

Figure 30: The block definition diagram for the rob

Figure 31: The internal block diagram for the robot

ot arm's mechanical structure.

ibd [Block] Arm [@Arm IBD]J

: EndEffector

: WristJoint3DOF

: LowerArm
i3) I
E4 :ElbowJoint |
: UpperArm
L j2
Eal
et

| : Base |

: BaseJoint

InadiF e El

arm.

ibd [Block] Robat&nalysisContext [@J-Structural Miocel to Analvtical Model Correspondence]J

axis1: AxisTypel

. =sblocker j M aModeicaModels 7|
rd : RobotDomain | | i in : i i
I
rob : Robot ==allocate== | - podelicaPart>> |
| | I
.
|
|

|
axis1 : Actuator } 777777 | ML ModelicaPart==
——————— 22 = | axis2 : AxisType1
axisz PActuator || L — _ _ _ _Sdlocaters, e —J i
|
—) bt I <salocatess JEL<MﬂdehcaPan>>
ik s Actiee T f | aeis3 : axisTypet
is4 : Actuator 1 L& | -
AXigA Actitor | —‘ _____ =Tallocates= o =
gk AxisType2
axis5 : Actuator |. H——— |
axis6 : Actuator |- L — — — keslocetess | ML ModslicaPart==
‘ [e s jaxisﬁ:nxisTypeZ
arm: Arm |. =Tk e
detlerinintd |
pp : PathPlanner |-
cb : ControlBus I-

<<tdalica\alueProperty s>

%ass:kgﬂs |_ - - — — _ ssalogate== | | modification = "min=0"
L variahility = "parametar

|
| | | ssallocate== s ==hiodelicaPart=>
| S g ¥ et Mikhicsiucins
I | |
o | | :<alluca15=> | ==ModelicaPart==
| pf : Platform | | - T T T T T T 0= | i 1‘7‘|:aI.I1PIannin§|:Pail.hPIanningli
['ar : Driver | | |
! | oy M| tndelicavalusProperty==
load: Load ‘ | mLoad : Mass
| |

|
‘ relPos : PosVect e —-=—=-=-= =y |
T— | | <xaliocatess [M <=Modelica’/aluePropertys=
| | rLoad
| | <<hindelicalalue Property>>
—————— = arraySize ="3"
|

declarationEguation="{0.1,0.25.0.1}"
| | variahility = "parameter

Figure 32: The Analysis Context in which the descri ptive model of the robot domain is allocated to the
responding analytical model as expressed in the Sys ML4Modelica profile.

ibd [Block] RobatAnalysisCortext [@’I Strutural Model to Analytical Model Correspondence - Controller Propetties]J

<<block=> = | | T ==Modelicahodel==

| rd : RobotDomain | | delicaRobotDomain : RobotAnalyti

| 7 | |
rob :Bobot | |] =hodelicaPart== |

| axis1 : AxisType1

| axis1 : Actuator |
| | ﬂ«ModehcaValuaProper{y» |
| I kp |
| I <hdelicatalue Property >
| -—_— m m - | saallocates= declarationEquation ="10" |

c.positionGain : Real = — — — =t — — = variability = "parameter” |

| I |
| | M -hodelicatalueProperty=> |
I | | ks

| <<hadelica®alue Property >

| ¢.speedGain : Real |_ L[| ==elecste== | || geclarationEgquation = 1" |

| | wariability = "parameter” |

e

|] ==Modelica'/alueProperty==

= |
Ts
| i <eodelicatalus Froperty >
| | declarationEguation="0.01" |
| | variability ="parameter” |

Figure 33: A detailed diagram of the allocation of the robot actuator descriptive model to the analyti
SysML4Modelica Model.

cor-

cal

Mhd [] RohaotAnatyticalDomain | g ModelicaRabat U

==hodelicaPart==
pathPlanning : PathPlanningé

==ModelicaPart==
axish : AxisType2

==ModelicaConnection==: i axizControlBus £

M ==ModelicaPart=>

ucture

==ModelicaPart==
axis5 : AxisType2

o ==ModelicaPart==
axisd : AxisType2

==MoclelicaPart==
axis3 : AxisTypel

axizControlBus

icaConnection==

==hlodelicaConnection==,

axisControlBus

==hodelicaPart==
axis2 : AxisTypel

==hModelicaConnection==; i axisControlBus

Figure 34: The top-level robot problem shown as an ibd in the SysML4Modelica profile.

pathPianning
6 axes
axisb
axisControiBusB
axisControlBusS
6
5
g axisControBus4 4
o
©
£ 3
(o]
© axisControiBus3 2
1
axisControiBus2
axis1
axisControlBus1

Figure 35: The top-level Modelica model of the robo t.

(Wrotii] R (= .

taut (M)
2000+ tau2 [N.m]

— tau3 [N.m]
——— taud [N.m]
taus [MN.m]
—— taub [N.m]

motor torque
o
|

-3000 ! ; ; . r T T T T
00 04 08 12 18 20

Figure 36: The simulation results with the motor to rques as function of time.

Appendix B - Justification

22 Semantic Comparison between SysML and
Modelica

Before focusing on the detailed modeling constrectsigh-level decision needs to be made regatttieghoice of
SysML elements to represent Modelica models. AltfoModelica is a textual language, it also suppaigsaphical
view through its annotation mechanism. This graghitew illustrates clearly the strong similarityat exists
between SysML and Modelica. Both languages sughertiecomposition of systems (or behavioral mooksys-
tems) into subsystems or components and the inignadetween them. For instance, the Modelica moida mo-
tor controller (shown in Figure 3) contains sub-paments (such as motor, gearbox, and controllém®.ifiterac-
tions between them are illustrated by edges comgthie interface locations (called connectors iodelica) of the
components. Such hierarchical compositions of Modehodels and the connections between them cotesthe
primary modeling approach in Modelica. Before cdasing the details of the language, it is thus irteott to con-
sider carefully how these primary modeling congsumnap to SysML.

As illustrated in Table 3, in SysML there are thkaed of construct built on abstractions that haimilar semantics
compared to the hierarchical, connector-based csitipo of Modelica models: the hierarchical Blocgeown in
Internal Block Diagrams), the Parametric Constsa{shown in Parametric Diagrams), and the Actigitgphs. All
three constructs support some sort of "ports”, seaneof connection of "port-based" objects throtgbrt-connec-
tions", and hierarchical encapsulation through tygledegation”. In Sections 22.1 through 7.1.13use these three
constructs to discuss the main question: whatrer&ysML elements that match the Modelica semabgst?

SysML
Conceots Modelica Construct Availability in diagrams
P constructs abstractions < oo Modelica “like” -------- >
BDD IBD Parametric Activity
M_oc_i_el Model Block Yes Yes Restricted No
Definition
il L Component Property Yes Yes Restricted No
age (Part Property)
- Block Yes Yes Yes No
Por'f[i(l?ne ini= Connector ValueType Yes Yes No No
FlowSpecification Yes No No No
c Block Yes Yes Yes Ref. Only
. omponent
Properties (Variables) ValueType Yes Yes Yes Ref. only
FlowProperty Yes No No Ref. only
Port Component Port Yes Yes Yes Ref. only
. . Connector No Yes No No
Causal link | Connection i
ObjectFlow No No No Yes
Acausal link | Connection Connector No Yes Yes No

Table 3: A comparison between Modelica concepts an d SysML abstractions and diagrams

22.1 Modelica

In Modelica, ports are called connectors and tlgeedetween ports are called connections [Mod&ljzzsc,
Chapter 9]. The ports (connectors) can include fppes of quantities: inputs, outputs, flows and-flows. Inputs
and output are used when the direction of the folinown and fixed, as for instance in signals flayvin a control
system. Flow and non-flow quantities are used &zdiee energy or material flow (they are also sammes referred
to as through and across variables, respectivaliien connecting two Modelica connectors with a ewtion, the
semantics for inputs and outputs are causal bindieginput is assigned the value of the outputheh it is con-
nected. Input and output connecters must therdfengsed in conjugate pairs, and only one outpubeactonnected
to each input. For flow and non-flow variables, tomnection semantics correspond to Kirchhoff's $avamely,
the value of the flow variables add up to zero #edvalues of the non-flow variables are set e§uadn equation-
based, acausal fashion). When more than one caonégtmade to a connector containing a flow vdeathen an
ideal, loss-less energy or material exchange isnasd by imposing that the values of flow varialwéall connec-
ted connectors add up to zero. To impose the domedeling of energy exchange, Modelica requiras tie num-
ber of flow and non-flow quantities of a connedterequal.

In addition to connectors, Modelica models can amntariables and submodels (i.e., model usagaliteT3). Al-
though Modelica does not explicitly distinguishweén these three categories of “components” iannectors,
variables, submodels), it may still be useful aadible to distinguish explicitly among them wimeapping to
SysML.

22.2 SysML Hierarchical Blocks, ports and connectors

The primary purpose of the SysML hierachical Bleokistructs, is to express system structural deceitipo and
interconnection of its parts [SysML Spec, Chap&ahd 9]. The SysML concepts used in those cortsthave
quite flexible semantics and may be used to estalidigical and conceptual decompositions, for mstaas in a
context view [SysML Spec, Section B.4.2.1]. Thed®in SysML are similar to Classes in Modelicae(sfically
the specialized class types of Model, Block, Cotoreetc.). Blocks can be decomposed in the sanyeMaalelica
Classes can be decomposed.

The “ports” on the blocks are called Ports andcrenections between ports are called Connectoes€eldre two
kinds of ports: Flow Ports and Standard Ports. Staedard Ports are particularly geared towardscehased in-
teractions by representing the interfaces (e.@waoe methods) that are provided or required pguiicular block.
Such service-based interactions are not approgdataodeling the connections found in ModelicawIPorts on
the other hand do provide semantics that refleaiéioa connectors more closely.

A Flow Port describes an interaction point thromgtich input and/or output of items such as dataenw, or en-
ergy may flow in and out of a block. For Modeligg¢ interactions, the exchanged "items" could beeeisignals
(for input and output quantities) or energy/mald(fier flow and non-flow quantities). Modelica sigirexchanges
are causal and so the semantics of a SysML Flawtfmed by a Flow specification is convenient. I8isbinding
connectors provide acausal connections betweeregiep. They imply equality between connected priggeand
then does not carry the Kirchhoff laws semanti¢ge &quivalent of a Binding Connector does not digteaist in
Modelica, but can be captured in a non-graphicgilitan by introducing an equality equation betwdentwo vari-
ables that are bound. Therefore, in order to caphe semantics of a Modelica connection, oneisolwtould be
to introduce a new SysML connector element thagjisivalent to a Modelica Connector, and that rédléite se-
mantics of Kirchhoff's laws. Another possibility wld be to make the equations for Kirchhoff’s lawsjch are im-
plicit in Modelica connections, explicit as anoti&ysML Constraint Property. This option is appealcause it
makes the semantics very explicit, but has theddeatage that it makes the models more cumbersormeate and
more difficult to read.

In conclusion, although blocks seem to have vanjlar constructs to Modelica, there are some sutifferences
in so that new stereotypes will have to be intreduio adequately capture the Modelica semanti€oahectors
and Connections.

22.3 SysML Parametric Constraints

The purpose of Parametric Constraints is to expregbematical relationships between parametersrarRetric

Constraints is modeled through a special kind atBInamed “Constraint Block”. “Ports” of those bitgcare Con-
straint Parameters and the “connections” to th@sarpeters are made using Binding Connectors. Iras{den-
straint Block, mathematical relationships are dedigonstraining its Constraint Parameters. A CamgtProperty is
a usage of a Constraint Block. Its Constraint Patans are then bound to other Constraint ParameteosProper-
ties of Blocks. The semantics of a Binding Connettdicate a mathematical equality between the Bl roper-
ties or Constraint Parameters being connected.rftiematical equality is an acausal relationship.

22.4 SysML Activity Graphs

The purpose of an Activity graph in SysML is to sifethe transformation of inputs to outputs thrbwgcontrolled
sequence of actions. An Activity decomposes intboks. In activity graphs, the Object Nodes (iRins and Para-
meter Nodes) correspond to buffers to place inpdtautput tokens. The connections between Objedeblcorres-
pond to Object Flows. These flows typically repreg@e transfer of one or more objects at a disar@ment in
time, although it is possible to specify a streagrflow that could be continuous, i.e., the timewssn arrival of
tokens (or “objects”) is zero. It is this latterseathat needs to be described in terms of diffeleaquations.

It must be underlined that as defined in the candésysML activities “flows”, are they continuowas not, corres-
pond to the concept of “dataflow” which is relatedan asynchronous approach. Conversely, a Modidieaspe-
cifies the existence of relationships between tiaer of respectively flow and non-flow variableshmih sides of a
connection, as defined by Kirchhoff's laws. Thaslationships are mathematical equations and theresponds to
a synchronous approach.

In conclusion, SysML Activity Graphs can be conesttionly to model Modelica input/output variabl€bus
Activity graphs therefore seems to be the least@ppate for a mapping from Modelica Class, althotigey will be
explored when mapping the Modelica Function andAtgm to SysML4Modelica.

22.5 Selected foundation concept: SysML Hierachical Block with
Embedded Constraints
It is clear from the discussion in the previoudises that there is not a single concept that emibleel Modelica se-

mantics perfectly. As a result, the use of more thiee SysML concept with multiple stereotypes wikd to be
defined to extend the SysML semantics.

Blocks, ConstraintBlocks, FlowPorts, classical Gextors and BindingConnectors can be used to mapeltad
Models, Components, Connectors, and ConnectioBysbIL. This is illustrated in Annexe A.

Page : 88 Line : 2528 Author : Yves BERNARD 03/@3/@Q
Reply to Chris Paredis (10/25/2009, 19:35): "..."
This information is provided in table 1

