

An Overview of the SysML-Modelica
Transformation Specification

Christiaan J.J. Paredis1, Yves Bernard2, Roger M Burkhart3. Hans-Peter de Koning4, Sanford Friedenthal5,

Peter Fritzson
6
, Nicolas F Rouquette

7
, Wladimir Schamai

8

1
Georgia Institute of Technology,

2
Airbus,

3
Deere & Co.,

4
ESA/ESTEC,

5
Lockheed Martin Corp.,

6
Linköping University,

7
Jet Propulsion Laboratory,

8
EADS Innovation Works.

Contact info: chris.paredis@me.gatech.edu

Copyright © 2010 by Christiaan J.J. Paredis. Published and used by INCOSE with permission.

Abstract.

This paper provides an overview of the formal transformation between the two complementary
languages: OMG SysMLTM and Modelica. SysML is a standardized general purpose graphical
modeling language for capturing complex system descriptions in terms of their structure, behavior,
properties, and requirements. Modelica is a standardized general purpose systems modeling
language for analyzing the continuous and discrete time dynamics of complex systems in terms of
differential algebraic equations. Integrating the descriptive power of SysML models with the
analytic and computational power of Modelica models provides a capability that is significantly
greater than provided by SysML or Modelica individually. A standardized bi-directional
transformation between the two modeling languages is being developed that will support
implementations to transfer efficiently and automatically the modeling information between
SysML and Modelica models without ambiguity. In addition to an overview of this bi-directional
transformation approach, the paper provides a simple example to clarify the transformation
principles and to illustrate the important synergies resulting from the integration between these
two languages.

Introduction
The objective of the SysML-Modelica Transformation Specification (OMG SE DSIG
SysML-Modelica Working Group, 2009) is to provide a bi-directional mapping between OMG
SysMLTM (Object Management Group, 2008) and Modelica (Modelica Association, 2009) and to
leverage the benefits of both languages. By integrating SysML and Modelica, SysML's strength in
descriptive modeling can be combined with Modelica's formal executable modeling capability to
support analyses and trade studies.

SysML is a general-purpose systems modeling language that can be used to create and manage
models of systems using well-defined, graphical constructs with underlying semantics (Object
Management Group, 2008). SysML reuses a subset of UML 2 (Object Management Group, 2009)
constructs and extends them by adding new modeling elements and two new diagram types. These
SysML diagrams are shown in Figure 1. The set of behavioral and structural diagrams combined
with the requirements diagram and parametric diagram provide an integrated view of a system.
But SysML represents much more than just a set of diagrams. Underlying the diagrams, there is an
abstract syntax model repository that formally represents all the modeling constructs. The

graphical model provides a mechanism to organize, enter, retrieve, and view the
system-descriptive data contained in the model repository. The diagrams provide multiple views
of the same system model; these multiple views can be maintained consistently due to the semantic
underpinning of the modeling language. In the context of SysML, the structure view primarily
refers to the hierarchy and interconnections among the parts of the system, and the
interconnections between the system and its external systems. The behavior view describes the
sequence of events and activities that the system must execute. The requirements diagram
captures text requirements in the model, and enables them to be linked to other parts of the model,
to provide unambiguous traceability between the requirements and system design. Parametrics
provide the bridge between the system descriptive model in SysML and other simulation and
engineering analysis models. While structure and behavior are heavily based on UML, both
requirements and parametrics are unique to SysML. Through these extensions, SysML is capable
of representing the specification, analysis, design, verification and validation of systems.

As indicated above, the system behavior in SysML is captured through a combination of activity
diagrams, state machine diagrams, and/or sequence diagrams and the associated semantics. The
Foundational Subset of the UML specification (Object Management Group, 2008) provides the
additional semantics to enable SysML activity diagrams to be executed in a standard way. In
addition, SysML includes parametric diagrams to capture models of constraint-based behavior,
such as continuous-time dynamics in terms of energy flow. However, the syntax and semantics of
such behavioral descriptions in parametrics have been left open to integrate with other simulation
and analysis modeling capabilities to support the execution of these models. Additional
information on SysML can be found at http://www.omgsysml.org.

Modelica is an object-oriented language for describing differential algebraic equation (DAE)
systems combined with discrete events (Fritzson, 2004). Such models are ideally suited for
representing the flow of energy, materials, signals, or other continuous interactions between
system components. It is similar in structure to SysML in the sense that Modelica models consist
of compositions of sub-models connected by ports that represent energy flow (undirected) or
signal flow (directed). The models are acausal, equation-based, and declarative. The Modelica
Language is defined and maintained by the Modelica Association (www.modelica.org), which
publishes a formal specification (Modelica Association, 2009) but also provides an extensive
Modelica Standard Library, which includes a broad foundation of essential models covering
domains ranging from (analog and digital) electrical systems, mechanical motion and thermal

Figure 1: An overview of the SysML diagrams and their relation to UML diagrams.

systems, to block diagrams for control (Modelica Association, 2009). Finally, it is worth noting
that there are several efforts within the Modelica community to develop open-source solvers, such
as in the OpenModelica Project (The Open Source Modelica Consortium, 2009).

In conclusion, SysML and Modelica are two complementary languages supported by two active
communities. By integrating SysML and Modelica, we combine the very expressive, formal
language for differential algebraic equations and discrete events of Modelica with the very
expressive SysML constructs for requirements, structural decomposition, logical behavior and
corresponding cross-cutting constructs. In addition, the two communities are expected to benefit
from the exchange of multi-domain model libraries and the potential for improved and expanded
commercial and open-source tool support.

Related work
Pop et al. (Pop, et al., 2007) have worked on issues regarding the integration of UML and
Modelica. They have created a UML profile called ModelicaML that enables users to depict a
Modelica simulation model graphically. The ModelicaML profile reuses several UML and
SysML constructs while adding several completely new language constructs. Such constructs are
the Modelica class diagram, the equation diagram, and the simulation diagram. The intent of the
ModelicaML profile is slightly broader than the SysML-Modelica Transformation described in
this paper; ModelicaML also aims to represent all of the Modelica language in a graphical form,
including equations and algorithms. The work on ModelicaML is still ongoing and has recently
extended by Schamai et al. (Schamai, et al., 2009). In parallel to the development of ModelicaML,
Johnson et al. (Johnson, et al., 2008) proposed a mapping between SysML and Modelica. They
built directly on the SysML language and introduced stereotypes only as necessary to capture the
Modelica semantics.

The SysML-Modelica Transformation Specification described in this paper grew out of the joining
of these two previous efforts. In December 2008, a formal working group was established within
the Systems Engineering Domain Specific Interest Group (SE DSIG) of the Object Management
Group (OMG). The working group is moving forward towards the adoption of the Transformation
Specification as a formal specification within OMG. More information about the most recent
progress of the working group can be found at (OMG SE DSIG SysML-Modelica WG, 2009).

Integration Approach
To develop a transformation between the SysML and Modelica languages, a formal, systematic
approach is used. As is illustrated in Figure 2, the transformation approach is to specify first an
extension to SysML called the SysML4Modelica profile which represents the most common
Modelica language constructs. This allows the Modelica concepts to be expressed in an extension
of SysML that supports round-trip transformation from SysML to Modelica and back. The profile
extends the UML4SysML subset of UML and the SysML extensions to that subset that are
required to capture the relevant Modelica concepts and enable the mapping between the two
languages.

The SysML-Modelica Transformation is then specified between the profile constructs and the
Modelica language constructs as captured in the Modelica meta-model. Introducing the profile
into the transformation approach is intended to simplify the transformation to Modelica, and
facilitate model reuse by more directly leveraging existing model libraries within Modelica. In

this way, the user first creates the system model in a SysML modeling tool as they would normally
do. The user then selects the part of the model to be analyzed by Modelica (e.g., a particular
subsystem) and applies the SysML4Modelica profile to create an analytic representation of that
part of the model. The SysML modeling tool is expected to include this profile. The analytic
representation expressed in the SysML4Modelica profile is then transformed to a Modelica model,
where it can be executed by a Modelica solver.

Not all SysML modeling constructs are expressed in the SysML4Modelica profile, nor will all
Modelica constructs be represented in the profile. In the definition of the Transformation, the
focus has been on including all the Modelica language features that are most common and,
together, cover the majority of the Modelica models in the Modelica Standard Library (Modelica
Association, 2009). Some Modelica concepts are not required for the mapping, such as graphical
annotations and certain concepts that are associated with pre-compilation. Changes to SysML and
Modelica may be recommended as a result of the Transformation Specification effort, but these
changes are subject to the adoption process for the respective specifications. Future changes could
also include the introduction of additional SysML constructs into the Modelica Language or
additional Modelica constructs in the SysML language; however, this is outside the scope of the
current SysML-Modelica Transformation effort.

The SysML-Modelica Transformation leverages the fundamental concepts of the Model-Driven
Architecture (MDA) (Object Management Group, 2009). Different transformation
implementations can be applied to implement this specification such as the QVT and others
(Object Management Group, 2008). The transformation can leverage an XMI formatted static file
transfer (Object Management Group, 2007) or other mechanisms such as API’s that support a
dynamic interchange capability.

To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica
Language Specification and identify for each Modelica language construct an equivalent construct
in SysML. If an equivalent construct does not exist, stereotypes are created to extend the SysML
language. The following naming convention is used to define each Modelica construct in the
SysML4Modelica profile: «modelicaConstruct», where Construct is the name of Modelica
language construct as defined in the Modelica abstract syntax definition (Modelica Association,

Figure 2: The SysML-Modelica Transformation in relation to SysML and Modelica.

2009).

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a
stereotype in order to distinguish the Modelica construct from the ordinary SysML construct when
supporting round-trip transformation. In addition, the concrete syntax of Modelica often provides
alternative representations to express the exact same semantics. In such cases, the intent is to
avoid duplicating this redundancy in SysML4Modelica without loss of expressivity. For mapping
purposes, one of the redundant representations is identified as the primary (most explicit)
representation, and SysML4Modelica constructs are preferably mapped onto this primary
representation. It should also be noted, that Modelica includes a graphical syntax using iconic
representations of block diagrams that maps to its textual syntax. An example of the Modelica
graphical syntax is shown in Figure 3 for a set of components connected together via Modelica
connectors and connections.

Initially, the SysML-Modelica Transformation Specification provides a textual description of the
mapping between Modelica and SysML4Modelica. However, it is the intent also to describe this
mapping formally by defining a Triple Graph Grammar (Königs, 2005), linking the Modelica and
SysML meta-models. Such a formal definition of the mapping has the additional advantage that
meta-CASE tools (such as MOFLON (Weisemöller, et al., 2009)) can be used to generate
executable transformations between SysML and Modelica modeling tools (assuming they support
some standardized interface such as JMI (Java Community Process, 2002)). An additional
implementation of the mapping is being developed as part of the OpenModelica project (The Open
Source Modelica Consortium, 2009).

Semantic Comparison between SysML and Modelica
Before focusing on the detailed modeling constructs, a high-level decision needs to be made
regarding the choice of SysML elements to represent Modelica modeling constructs. Although
Modelica is a textual language, it also supports a graphical view through its annotation
mechanism. This graphical view illustrates clearly the strong similarity that exists between
SysML and Modelica. Both languages support the decomposition of systems (or behavioral
models of systems) into subsystems or components and the interactions between them. For
instance, the Modelica model of a motor controller (shown in Figure 3) contains subcomponents
(such as motor, gearbox, and controller). The interactions between them are illustrated by edges
connecting the interface locations (called connectors in Modelica) of the components. Such

Figure 3: A Modelica model of a motor controller consisting of component models and
the connections between them. The connections include both causal signal

connections (e.g., in and out of the controller) and acausal energy connections (e.g.,
the rotational mechanical energy connections of the gearbox).

motor
gearbox

ratio=100

load

J=0.5*m*r*r

phiload

-

positione...
controller

PID

Ti=Ti

Step1

startTime=0

hierarchical compositions of Modelica models and the connections between them constitute the
primary modeling approach in Modelica. Before considering the details of the language, it is thus
important to consider carefully how these primary modeling constructs map to SysML.

As illustrated in Table 1, in SysML there are three types of diagrams that have a structure that is
similar to the hierarchical, connector-based composition of Modelica models: the Internal Block
Diagram (IBD), the Parametric Diagram, and the Activity Diagram. All three diagrams support
some sort of “ports”, some sort of connection of “port-based” objects through “port-connections,”
and hierarchical encapsulation through “port-delegation.” In the follow sub-sections, we use these
three diagrams to discuss the main question: What are the SysML elements that match the
Modelica semantics best?

Modelica. In Modelica, ports are called connectors and the edges between ports are called
connections (Modelica Association, 2009). The ports (connectors) can include four types of
quantities: inputs, outputs, flows and non-flows. Inputs and output are used when the direction of
the flow is known and fixed, as for instance in signals flowing in a control system. Flow and
non-flow quantities are used to describe energy or material flow (they are also sometimes referred
to as through and across variables, respectively). When connecting two Modelica connectors with
a connection, the semantics for inputs and outputs are causal binding: the input is assigned the
value of the output to which it is connected. Input and output connecters must therefore be used in
conjugate pairs, and only one output can be connected to each input. For flow and non-flow
variables, the connection semantics correspond to Kirchhoff's Laws, namely, the value of the flow
variables add up to zero and the values of the non-flow variables are set equal (in an
equation-based, acausal fashion). When more than one connection is made to a connector
containing a flow variable, then an ideal, loss-less energy or material exchange is assumed by
imposing that the values of flow variables of all connected connectors add up to zero. To impose
the correct modeling of energy exchange, Modelica requires that the number of flow and non-flow
quantities of a connector be equal.

In addition to connectors, Modelica models can contain variables and sub-models (i.e., model
usage in Table 1). Although Modelica does not explicitly distinguish between these three
categories of “components” (i.e., connectors, variables, sub-models), it may still be useful and
desirable to distinguish explicitly among them when mapping to SysML.

SysML Internal Block Diagrams. The primary purpose of Internal Block Diagrams (IBD) in
conjunction with Block Definition Diagrams (BDD), is to express system structural
decomposition and interconnection of its parts. The SysML concepts used in the IBD/BDD

Table 1: A comparison between Modelica and SysML elements, semantics, and diagrams.

Diagram Modelica Internal Block Parametric Activity

Model Definition Model Block Constraint Block Activity

Model Usage Component Part Property Constraint Property Action

Port Definition Connector
Block, Value Type,

Flow Spec.
Value Type

Block,
ValueType

Port Usage Component Flow Port Parameter Object Node

Edge Connection Connector Binding Connector Object Flow

viewpoints have quite flexible semantics and may be used to establish logical and conceptual
decompositions, for instance, as in a context diagram. The Blocks in SysML are similar to Classes
in Modelica (specifically the specialized class types of Model, Block, Connector, etc.). Blocks can
be decomposed in the same way Modelica Classes can be decomposed.

The “ports” in IBDs are called Ports and the connections between ports are called Connectors.
There are two kinds of ports: Flow Ports and Standard Ports. The Standard Ports are particularly
geared towards service-based interactions by representing the interfaces (e.g., software methods)
that are provided or required by a particular block. Such service-based interactions are not
appropriate for modeling the connections found in Modelica. Flow Ports on the other hand do
provide semantics that reflect Modelica connectors more closely. A Flow Port describes an
interaction point through which input and/or output of items such as data, material, or energy may
flow in and out of a block. For Modelica-type interactions, the “items” could be either signals (for
input and output quantities) or energy/material (for flow and non-flow quantities). In Modelica
these interactions are modeled as instances of Modelica Connector types. Such instances do not
have a direction of flow associated with them directly, but should be interpreted as containing
either inputs, outputs, or energy/material flows based on the definition of the Connector type of
which they are an instance. This is similar to SysML nonatomic FlowPorts typed by
FlowSpecifications, although one may argue that the combination of a flow and non-flow variable
in a Modelica energy/material connector constitute one concept (i.e., one energy or material flow)
and should therefore be modeled as an atomic rather than non-atomic flow port. In addition, the
(acausal) connection between flow ports in SysML does not explicitly carry the Kirchhoff
semantics as for energy/material connections in Modelica.

An additional subtle difference in semantics lies in the fact that, in SysML, the type of a flow
property defined in a flow port specifies what can flow through that port; what actually flows must
be defined by associating an Item Flow to a SysML Connector (the connection between the flow
ports). In Modelica, no such differentiation between what can flow and what actually flows is
made. This makes sense because Modelica describes the behavior of what actually happens (what
flows) rather than a specification of an interface (what can flow).

In conclusion, although IBDs seem to have very similar constructs to Modelica, there are some
subtle differences in semantics so that new stereotypes will have to be introduced to adequately
capture the Modelica semantics of Connectors and Connections.

SysML Parametric Diagrams. The purpose of Parametric Diagrams is to express mathematical
relationships between parameters. In Parametric Diagrams, the “ports” are Constraint Parameters
and the “connections” are Binding Connectors. Inside a Constraint Block, mathematical
relationships are defined constraining its Constraint Parameters. A Constraint Property is a usage
of a Constraint Block. Its Constraint Parameters are then bound to other Constraint Parameters or
to Properties of Blocks. The semantics of a Binding Connector indicate a mathematical equality
between the (Block) Properties or Constraint Parameters being connected. This mathematical
equality is an acausal relationship.

Although the Binding Connectors share the acausal nature of energy-connections in Modelica,
they are currently missing the notions of a Modelica Flow variable and of causal inputs and outputs
(Note: an issue has been submitted requesting the addition of causality specifications in
parametrics to future versions of SysML). The equivalent of a Binding Connector does not
actually exist in Modelica, but can be captured in a non-graphical fashion by introducing an

equality equation between the two variables that are bound. Therefore, in order to capture the
semantics of a Modelica connection, one would have to introduce a new SysML connector element
that is equivalent to a Modelica Connector, and that reflects the semantics of Kirchhoff's laws.
Another possibility would be to make the equations for Kirchhoff’s laws, which are implicit in
Modelica connections, explicit as another SysML Constraint Property. This option is appealing
because it makes the semantics very explicit, but has the disadvantage that it makes the models
more cumbersome to create and more difficult to read.

Finally, unlike Blocks, Constraint Blocks do not have Value Properties that are not Constraint
Parameters. As a result, (local) variables in Modelica would have to be represented as Constraint
Parameters, making it difficult to distinguish them from “ports.”

In conclusion, the intent of Parametric Diagrams is similar to the intent of Modelica Models, and
they therefore deserve consideration. However, the types of connections that exist in Modelica do
not exist in Parametric Diagrams and vice versa. As a result, the use of Parametric Diagrams will
require the introduction of additional constructs (stereotypes).

SysML Activity Diagrams. The purpose of an Activity graph in SysML is to specify the
transformation of inputs to outputs through a controlled sequence of actions. An Activity
decomposes into Actions. In activity graphs, the Object Nodes (i.e., Pins and Parameter Nodes)
correspond to buffers to place input and output tokens. The connections between Object Nodes
correspond to Object Flows. These flows typically represent the transfer of one or more objects at
a discrete moment in time, although it is possible to specify a streaming flow that could be
continuous, i.e., the time between arrival of tokens (or “objects”) is zero. It is this latter case that
needs to be described in terms of differential equations and is also closest to the semantics of
Modelica's flows. However, the strict notion of flows from output to inputs in Activity graphs is
not imposed in Modelica (Note: this flow direction would correspond to a constraint on the sign of
a flow variable, but has nothing to do with mathematical causality).

In conclusion, only the special case of continuously streaming object flows seems to match the
Modelica semantics of energy flow, and even for that case, the semantics are quite different.
Activity graphs therefore are the least appropriate for a mapping from Modelica Class, although
they will be explored when mapping the Modelica Functions and Algorithms to SysML4Modelica.

Selected Diagram: SysML Internal Block Diagram with Embedded Constraints. It is clear
from the discussion in the previous sections that there is not a single viewpoint that embeds the
Modelica semantics perfectly. As a result, the use of more than one SysML viewpoint with
multiple stereotypes needs to be defined to extend the SysML semantics.

Blocks, ConstraintBlocks, FlowPorts, classical Connectors and BindingConnectors can be used to
map Modelica Models, Components, Connectors, and Connections to SysML, assuming an
extension of connector is defined to support the Kirchhoff semantics. This could be expected since
Constraint Blocks are restricted versions of regular Blocks. Actually, Constraint Blocks and
Parametric Diagrams are too restricted. For instance, Constraint Blocks cannot have value
properties (only constraint parameters), and the only connectors allowed in a Parametric Diagram
are binding connectors, which have semantics of equality constraints and can thus not be further
restricted to represent Kirchhoff’s laws as is needed for Modelica. Parametric Diagrams could be
useful to capture the semantics of Modelica if one wants to make explicit the equations that are
implicit in Modelica connections. This is illustrated in the next section.

Consider the design of a car suspension.
described in the context of a car using a descriptive SysML model, expres
corresponding IBD.

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the
car body’s position as a function of time.
simulation models the suspension as a linear spring and the car body
is illustrated in Figure 5 in both Modelica and in
corresponding Modelica constructs.
of Kirchhoff’s laws have been introduced into SysML.

Figure 4: Descriptive model of a car suspension visualized as a BDD and IBD

Figure 5: A Mass-Spring model for a car suspension, in Modelica (left) and

Illustrative Example
Consider the design of a car suspension. As illustrated in Figure 4, the suspension can be
described in the context of a car using a descriptive SysML model, expres

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the
car body’s position as a function of time. A possible continuous dynamics model for such a
simulation models the suspension as a linear spring and the car body as a point mass.

in both Modelica and in the SysML4Modelica profile which represents the
responding Modelica constructs. By stereotyping SysML ports and connectors, the semantics

’s laws have been introduced into SysML.

Descriptive model of a car suspension visualized as a BDD and IBD

Spring model for a car suspension, in Modelica (left) and
SysML4Modelica (right).

, the suspension can be
described in the context of a car using a descriptive SysML model, expressed in a BDD and

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the
A possible continuous dynamics model for such a

as a point mass. This model
Modelica profile which represents the

By stereotyping SysML ports and connectors, the semantics

Descriptive model of a car suspension visualized as a BDD and IBD.

Spring model for a car suspension, in Modelica (left) and

The SysML parts are stereotyped as «modelicaPart» (i.e., mass1model, spring1model,
fixed1model), that correspond to usages of models from the Modelica Standard Library. For
instance, as illustrated in Figure 6, the library Modelica.Mechanics.Translational.Components
includes definitions of continuous dynamics models for a Spring and a Mass. Note that one could
apply stereotypes in SysML that include icons equivalent to the elements from the Modelica
library so that the SysML4Modelica representation in Figure 5 on the right could be almost
identical to the Modelica representation on the left.

Figure 6: Continuous dynamics models for Mass and Spring defined in the Modelica
Standard Library.

In Figure 6, the usages of these models, stereotyped as «modelicaPart» are connected to each other
at their «modelicaPort» by a «modelicaConnection». These connections carry the semantics of
Kirchhoff’s Laws (in this example—or, more precisely, the same semantics as an equivalent
Modelica connection). These semantics can be made more explicit by using a Parametric Diagram
as is shown in Figure 7. But, as one can see by comparing Figure 7 and Figure 5, this comes at a
cost of a much larger and less readable diagram. Similarly, one could have represented the internal
equations of the Mass model in a Parametric Diagram, as is illustrated in Figure 8, but again, the
more explicit semantics come at a cost of increased complexity. For this reason, only Blocks and
Internal Block Diagrams are used in the SysML4Modelica profile. The parametrics still provide
the underlying semantics for capturing the detailed equations, but this complexity can often be
abstracted and made invisible to the modeler.

Finally, it is worth illustrating how the SysML4Modelica continuous dynamics model in Figure 5
relates to the SysML descriptive model in Figure 4. Since both the descriptive and the continuous
dynamics models are views of the same system, they cannot be independent of each other.
Changes to the descriptive model are likely to require corresponding changes to the continuous
dynamics model and vice versa. Such dependencies can be modeled in an analysis context — the
context in which the analysis model (i.e., the continuous dynamic analysis in this case) is defined.

The analysis context is illustrated in Figure 9. It establishes the dependencies between the
descriptive model components and their corresponding analysis models. In addition, the detailed
bindings between the descriptive and analysis properties are defined in the Parametric Diagram
illustrated in Figure 10.

Figure 7: Mass-Spring model as represented in a Parametric Diagram.

Figure 9: The Block Definition Diagram for the Analysis Context of the continuous
dynamics analysis.

Figure 8: Mass model as it could be represented in a Parametric Diagram.

For very simple problems, one could consider combining the descriptive and analysis views into
one model; e.g., suspension and spring1model would be combined into one component that
includes both the descriptive properties and the analysis constraints/equations. However, for
larger problems in which more than one analysis perspective needs to be considered (e.g.,
mechanical, electrical, controls, manufacturing, different levels of abstraction, etc.), combining all
such analyses into one model would be difficult to manage. One would likely encounter problems
with naming conflicts or duplication of properties. In addition, combining all the models severely
limits the opportunity for model reuse because models from libraries (such as the Modelica
Standard Library) would have to be combined with descriptive models rather than just included in
an analysis context.

Summary
In this paper, we have introduced a formal transformation between the SysML4Modelica profile
and the Modelica language. This transformation is currently under development within the
Systems Engineering DSIG of OMG. The SysML-Modelica transformation is defined as a formal,
bi-directional transformation as envisioned in the Model-Driven Architecture approach. For each
Modelica language construct as defined in the abstract syntax meta-model, a corresponding
language construct in the SysML4Modelica profile is identified and a mapping relationship is
established. [Note to reviewers: Implementations of this transformation are currently under
development and the authors plan to include a pointer to the reference implementations when
submitting the final version of this paper].

Figure 10: The Parametric Diagram for the Analysis Context of the continuous
dynamics analysis; the properties of the descriptive model are bound to the

corresponding properties in the analysis model.

Acknowledgments
The authors would like to acknowledge the support for the MagicDraw tool provided by NoMagic
Inc. In addition, the ideas presented in this paper benefitted from discussions with other members
of the Systems Engineering DSIG, including Michael Chonoles, Sébastien Gérard, Nerijus
Jankevicius, Steve Jenkins, Alek Kerzhner, Eldad Palachi, Russell Peak, and Ed Seidewitz.
Finally, we would like to acknowledge the students who did pioneering thesis work in this
direction at Linköping University and Georgia Tech: David Akhvlediani, Thomas Johnson, and
Adrian Pop.

References

Fritzson, P. 2004. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. New York,
NY: Wiley-IEEE Press.

Java Community Process. 2002. Javatm Metadata Interface (JMI) Specification. Sun Microsystems, Inc.

Johnson, T. A., Paredis, C. J. J., and Burkhart, R. M. 2008. Integrating models and simulations of
continuous dynamics into SysML. 6th International Modelica Conference, Modelica Association,
Bielefeld, Germany, pp. 135-145.

Königs, A. 2005. Model transformation with triple graph grammars. Model Transformations in Practice,
Satellite Workshop of MODELS 2005 Montego Bay, Jamaica.

Modelica Association, 2009, Modelica Standard Library 3.1, http://www.modelica.org/libraries/Modelica.

Object Management Group. 2007. XMI Mapping Specification, v2.1.1. OMG, Needham, MA.

———. 2008. OMG Systems Modeling Language (OMG SysML), v1.2. OMG, Needham, MA.

———. 2008. Semantics of a foundational subset for executable UML models. OMG, Needham, MA.

———. 2008. Query/View/Transformation, v1.0. OMG, Needham, MA.

———. 2009. UML 2.2 superstructure specification. OMG, Needham, MA.

———. 2009. Model-Driven Architecture. OMG, http://www.omg.org/mda/.

OMG SE DSIG SysML-Modelica Working Group. 2009. SysML-Modelica transformation specification.
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-modelica:sysml_and_modelica_integration.

Pop, A., Akhvlediani, D., and Fritzson, P. 2007. Towards unified systems modeling with the ModelicaML
UML profile. International Workshop on Equation-Based Object-Oriented Languages and Tools.
Linköping University Electronic Press, Berlin, Germany.

Schamai, W., Fritzson, P., Paredis, C. J. J., and Pop, A. 2009. Towards unified system modeling and
simulation with ModelicaML: Modeling of executable behavior using graphical notations. 7th Modelica
Conference 2009, ed. F. Casella. Linköping University Electronic Press, Como, Italy.

The Open Source Modelica Consortium. 2009. The Openmodelica Project. http://www.openmodelica.org.

Weisemöller, I., Klar, F., and Schürr, A. 2009. Development of tool extensions with MOFLON.
Model-Based Engineering of Embedded Real-Time Systems, Heidelberg: Springer Verlag.

