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Abstract.

This paper provides an overview of the formal tfamsation between the two complementary
languages: OMG SysML and Modelica. SysML is a standardized genergbgse graphical
modeling language for capturing complex systemijgsans in terms of their structure, behavior,
properties, and requirements. Modelica is a stalmd general purpose systems modeling
language for analyzing the continuous and disc¢iete dynamics of complex systems in terms of
differential algebraic equations. Integrating thescriptive power of SysML models with the
analytic and computational power of Modelica mogeisvides a capability that is significantly
greater than provided by SysML or Modelica indiatly. A standardized bi-directional
transformation between the two modeling languagedeaing developed that will support
implementations to transfer efficiently and autaoaly the modeling information between
SysML and Modelica models without ambiguity. Irddibn to an overview of this bi-directional
transformation approach, the paper provides a sineplample to clarify the transformation
principles and to illustrate the important synesgiesulting from the integration between these
two languages.

Introduction

The objective of the SysML-Modelica Transformatidpecification (OMG SE DSIG
SysML-Modelica Working Group, 2009) is to providéiadirectional mapping between OMG
SysML™ (Object Management Group, 2008) and Modelica (Mode\ssociation, 2009) and to
leverage the benefits of both languages. By imtiyy SysML and Modelica, SysML's strength in
descriptive modeling can be combined with Modedidatrmal executable modeling capability to
support analyses and trade studies.

SysML is a general-purpose systems modeling largytiaat can be used to create and manage
models of systems using well-defined, graphicalstarcts with underlying semantics (Object
Management Group, 2008). SysML reuses a sub&#iaf2 (Object Management Group, 2009)
constructs and extends them by adding new modelergents and two new diagram types. These
SysML diagrams are shown in Figure 1. The seebfbioral and structural diagrams combined
with the requirements diagram and parametric dragpeovide an integrated view of a system.
But SysML represents much more than just a selagirdms. Underlying the diagrams, there is an
abstract syntax model repository that formally esents all the modeling constructs. The
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Figure 1: An overview of the SysML diagrams and their relation to UML diagrams.

graphical model provides a mechanism to organizeterge retrieve, and view the
system-descriptive data contained in the modelsiggry. The diagrams provide multiple views
of the same system model; these multiple viewseamaintained consistently due to the semantic
underpinning of the modeling language. In the cdnté SysML, the structure view primarily
refers to the hierarchy and interconnections amding parts of the system, and the
interconnections between the system and its extsyséems. The behavior view describes the
sequence of events and activities that the systerst mxecute. The requirements diagram
captures text requirements in the model, and eadbén to be linked to other parts of the model,
to provide unambiguous traceability between thesiregnents and system design. Parametrics
provide the bridge between the system descriptieeehin SysML and other simulation and
engineering analysis models. While structure aelkabior are heavily based on UML, both
requirements and parametrics are unique to SysMirough these extensions, SysML is capable
of representing the specification, analysis, designfication and validation of systems.

As indicated above, the system behavior in SysMtajgtured through a combination of activity
diagrams, state machine diagrams, and/or sequeageachs and the associated semantics. The
Foundational Subset of the UML specification (Objeanagement Group, 2008) provides the
additional semantics to enable SysML activity déags to be executed in a standard way. In
addition, SysML includes parametric diagrams toteagpmodels of constraint-based behavior,
such as continuous-time dynamics in terms of enffogy However, the syntax and semantics of
such behavioral descriptions in parametrics haea lbeft open to integrate with other simulation
and analysis modeling capabilities to support tkecation of these models. Additional
information on SysML can be found at http://www.@sygml.org.

Modelica is an object-oriented language for desuogikdifferential algebraic equation (DAE)

systems combined with discrete events (Fritzso®420 Such models are ideally suited for
representing the flow of energy, materials, signalsother continuous interactions between
system components. It is similar in structure ysNBL in the sense that Modelica models consist
of compositions of sub-models connected by porés thpresent energy flow (undirected) or
signal flow (directed). The models are acausalaéqgn-based, and declarative. The Modelica
Language is defined and maintained by the Modelssociation (www.modelica.org), which

publishes a formal specification (Modelica Assdoiat 2009) but also provides an extensive
Modelica Standard Library, which includes a broadnidation of essential models covering
domains ranging from (analog and digital) electregstems, mechanical motion and thermal



systems, to block diagrams for control (Modelicasddation, 2009). Finally, it is worth noting
that there are several efforts within the Modetioemnmunity to develop open-source solvers, such
as in the OpenModelica Project (The Open Sourced\iial Consortium, 2009).

In conclusion, SysML and Modelica are two completagnlanguages supported by two active
communities. By integrating SysML and Modelica, s@mbine the very expressive, formal

language for differential algebraic equations amgtréte events of Modelica with the very

expressive SysML constructs for requirements, sirat decomposition, logical behavior and

corresponding cross-cutting constructs. In addjttbe two communities are expected to benefit
from the exchange of multi-domain model librariesl ahe potential for improved and expanded
commercial and open-source tool support.

Related work

Pop et al. (Pop, et al., 2007) have worked on issues regarthe integration of UML and
Modelica. They have created a UML profile calledddbicaML that enables users to depict a
Modelica simulation model graphically. The ModaldL profile reuses several UML and
SysML constructs while adding several completely tenguage constructs. Such constructs are
the Modelica class diagram, the equation diagrand,the simulation diagram. The intent of the
ModelicaML profile is slightly broader than the $4is-Modelica Transformation described in
this paper; ModelicaML also aims to represenbhthe Modelica language in a graphical form,
including equations and algorithms. The work ondelacaML is still ongoing and has recently
extended by Schametial. (Schamai, et al., 2009). In parallel to the depeient of ModelicaML,
Johnsoret al. (Johnson, et al., 2008) proposed a mapping bet@gshIL and Modelica. They
built directly on the SysML language and introduseeteotypes only as necessary to capture the
Modelica semantics.

The SysML-Modelica Transformation Specificationctésed in this paper grew out of the joining
of these two previous efforts. In December 200@yal working group was established within
the Systems Engineering Domain Specific Interesiu@1(SE DSIG) of the Object Management
Group (OMG). The working group is moving forwaosviards the adoption of the Transformation
Specification as a formal specification within OMGJore information about the most recent
progress of the working group can be found at (OM&EDSIG SysML-Modelica WG, 2009).

Integration Approach

To develop a transformation between the SysML amdiélica languages, a formal, systematic
approach is used. As is illustrated in Figureh2, transformation approach is to specify first an
extension to SysML called the SysML4Modelica pefivhich represents the most common
Modelica language constructs. This allows the Niodeoncepts to be expressed in an extension
of SysML that supports round-trip transformatioonfr SysML to Modelica and back. The profile
extends the UML4SysML subset of UML and the SysMiteasions to that subset that are
required to capture the relevant Modelica concepid enable the mapping between the two
languages.

The SysML-Modelica Transformation is then speciflestween the profile constructs and the
Modelica language constructs as captured in theelilmad meta-model. Introducing the profile
into the transformation approach is intended top$iim the transformation to Modelica, and
facilitate model reuse by more directly leveragexgsting model libraries within Modelica. In
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Figure 2: The SysML-Modelica Transformation in relation to SysML and Modelica.

this way, the user first creates the system maodelSysML modeling tool as they would normally
do. The user then selects the part of the modektanalyzed by Modelica (e.g., a particular
subsystem) and applies the SysML4Modelica problereate an analytic representation of that
part of the model. The SysML modeling tool is extpd to include this profile. The analytic
representation expressed in the SysML4Modelicalpnsfthen transformed to a Modelica model,
where it can be executed by a Modelica solver.

Not all SysML modeling constructs are expressethenSysML4Modelica profile, nor will all
Modelica constructs be represented in the profile.the definition of the Transformation, the
focus has been on including all the Modelica lagguéeatures that are most common and,
together, cover the majority of the Modelica modelthe Modelica Standard Library (Modelica
Association, 2009). Some Modelica concepts areauptired for the mapping, such as graphical
annotations and certain concepts that are assdaidtte pre-compilation. Changes to SysML and
Modelica may be recommended as a result of thestoamation Specification effort, but these
changes are subject to the adoption process foeipective specifications. Future changes could
also include the introduction of additional SysManstructs into the Modelica Language or
additional Modelica constructs in the SysML langeidgowever, this is outside the scope of the
current SysML-Modelica Transformation effort.

The SysML-Modelica Transformation leverages thedamental concepts of the Model-Driven
Architecture (MDA) (Object Management Group, 2009). Different transformation
implementations can be applied to implement thiscgigation such as the QVT and others
(Object Management Group, 2008). The transformatan leverage an XMI formatted static file
transfer (Object Management Group, 2007) or othechanisms such as API's that support a
dynamic interchange capability.

To develop the SysML4Modelica profile in a systemadashion, we start from the Modelica
Language Specification and identify for each Mockelanguage construct an equivalent construct
in SysML. If an equivalent construct does not gxégereotypes are created to extend the SysML
language. The following naming convention is usediefine each Modelica construct in the
SysML4Modelica profile: «modeli€onstruct», whereConstruct is the name of Modelica
language construct as defined in the Modelica abssyntax definition (Modelica Association,



2009).

Even when an equivalent SysML construct existds isometimes necessary to introduce a
stereotype in order to distinguish the Modelicastarct from the ordinary SysML construct when
supporting round-trip transformation. In addititime concrete syntax of Modelica often provides
alternative representations to express the exace smantics. In such cases, the intent is to
avoid duplicating this redundancy in SysML4Modelrgighout loss of expressivity. For mapping
purposes, one of the redundant representationdeistiied as the primary (most explicit)
representation, and SysML4Modelica constructs amfepbly mapped onto this primary
representation. It should also be noted, that Moaléncludes a graphical syntax using iconic
representations of block diagrams that maps ttextial syntax. An example of the Modelica
graphical syntax is shown in Figure 3 for a seta@hponents connected together via Modelica
connectors and connections.

Initially, the SysML-Modelica Transformation Specétion provides a textual description of the
mapping between Modelica and SysML4Modelica. Haveit is the intent also to describe this
mapping formally by defining a Triple Graph Gramng6nigs, 2005), linking the Modelica and
SysML meta-models. Such a formal definition of thapping has the additional advantage that
meta-CASE tools (such as MOFLON (Weisemdller, et 2009)) can be used to generate
executable transformations between SysML and Mod@lodeling tools (assuming they support
some standardized interface such as JMI (Java CoitynBrocess, 2002)). An additional
implementation of the mapping is being developepaaisof the OpenModelica project (The Open
Source Modelica Consortium, 2009).

Semantic Comparison between SysML and Modelica

Before focusing on the detailed modeling construatigh-level decision needs to be made
regarding the choice of SysML elements to reprebodelica modeling constructs. Although
Modelica is a textual language, it also supportgraphical view through its annotation
mechanism. This graphical view illustrates cleatlg strong similarity that exists between
SysML and Modelica. Both languages support theoohposition of systems (or behavioral
models of systems) into subsystems or componerdsttan interactions between them. For
instance, the Modelica model of a motor controldrown in Figure 3) contains subcomponents
(such as motor, gearbox, and controller). Theau®ons between them are illustrated by edges
connecting the interface locations (called conmscto Modelica) of the components. Such

Stepl controller gearbox
positione... motor — load
_eTH _ L
O—d_ —Oo——
=
J - tioF10 TE==T
- — J=0.5*m’r*
startTime=0 Ti=Ti

peojyd

Figure 3: A Modelica model of a motor controller consisting of component models and
the connections between them. The connections include both causal signal
connections (e.g., in and out of the controller) and acausal energy connections (e.g.,
the rotational mechanical energy connections of the gearbox).



Table 1: A comparison between Modelica and SysML elements, semantics, and diagrams.

Diagram Modelica Internal Block Parametric Activity
Model Definition Model Block Constraint Block Activity
Model Usage Component Part Property Constraintd?tpgp  Action
Port Definition Connector BIoT:IT(,)V\\/IaISupee'(I:'.ype, Value Type Val?lljoegll;pe
Port Usage Component Flow Port Parameter ObjeceNod
Edge Connection Connector Binding Connectadbject Flow

hierarchical compositions of Modelica models anel tbnnections between them constitute the
primary modeling approach in Modelica. Before ¢desng the details of the language, it is thus
important to consider carefully how these primagdeling constructs map to SysML.

As illustrated in Table 1, in SysML there are thtgges of diagrams that have a structure that is
similar to the hierarchical, connector-based contjposof Modelica models: the Internal Block
Diagram (IBD), the Parametric Diagram, and the WitiDiagram. All three diagrams support
some sort of “ports”, some sort of connection ajrtgbased” objects through “port-connections,”
and hierarchical encapsulation through “port-detiegd’ In the follow sub-sections, we use these
three diagrams to discuss the main question: Vdhatthe SysML elements that match the
Modelica semantics best?

Modedlica. In Modelica, ports are called connectors and dtiges between ports are called
connections (Modelica Association, 2009). The pddonnectors) can include four types of
guantities: inputs, outputs, flows and non-florsputs and output are used when the direction of
the flow is known and fixed, as for instance innsilg flowing in a control system. Flow and
non-flow quantities are used to describe energyaterial flow (they are also sometimes referred
to as through and across variables, respectivéiffjen connecting two Modelica connectors with
a connection, the semantics for inputs and outprgscausal binding: the input is assigned the
value of the output to which it is connected. In@od output connecters must therefore be used in
conjugate pairs, and only one output can be coedeat each input. For flow and non-flow
variables, the connection semantics correspondrthKoff's Laws, namely, the value of the flow
variables add up to zero and the values of the floon-variables are set equal (in an
equation-based, acausal fashion). When more tim@&nconnection is made to a connector
containing a flow variable, then an ideal, losslesergy or material exchange is assumed by
imposing that the values of flow variables of ahoected connectors add up to zero. To impose
the correct modeling of energy exchange, Modebkcmires that the number of flow and non-flow
guantities of a connector be equal.

In addition to connectors, Modelica models can awnvariables and sub-models (i.e., model
usage in Table 1). Although Modelica does not iekpl distinguish between these three
categories of “components” (i.e., connectors, \@es, sub-models), it may still be useful and
desirable to distinguish explicitly among them wimegpping to SysML.

SysML Internal Block Diagrams. The primary purpose of Internal Block Diagrams ()BB
conjunction with Block Definition Diagrams (BDD),sito express system structural
decomposition and interconnection of its parts. BysML concepts used in the IBD/BDD



viewpoints have quite flexible semantics and mayubed to establish logical and conceptual
decompositions, for instance, as in a context diagrThe Blocks in SysML are similar to Classes
in Modelica (specifically the specialized classdgmf Model, Block, Connector, etc.). Blocks can
be decomposed in the same way Modelica Classesecdacomposed.

The “ports” in IBDs are called Ports and the conioes between ports are called Connectors.
There are two kinds of ports: Flow Ports and Steshé®rts. The Standard Ports are particularly
geared towards service-based interactions by reptieg the interfaces (e.g., software methods)
that are provided or required by a particular blocBuch service-based interactions are not
appropriate for modeling the connections found iodelica. Flow Ports on the other hand do
provide semantics that reflect Modelica connectome closely. A Flow Port describes an
interaction point through which input and/or outptittems such as data, material, or energy may
flow in and out of a block. For Modelica-type irdgetions, the “items” could be either signals (for
input and output quantities) or energy/materiat ffow and non-flow quantities). In Modelica
these interactions are modeled as instances of IMadeonnector types. Such instances do not
have a direction of flow associated with them diggdout should be interpreted as containing
either inputs, outputs, or energy/material flowsdzhon the definition of the Connector type of
which they are an instance. This is similar to Mlysnonatomic FlowPorts typed by
FlowSpecifications, although one may argue thattmabination of a flow and non-flow variable
in a Modelica energy/material connector constitute concept (i.e., one energy or material flow)
and should therefore be modeled as an atomic rdtearnon-atomic flow port. In addition, the
(acausal) connection between flow ports in SysMlesdmot explicitly carry the Kirchhoff
semantics as for energy/material connections inédoal.

An additional subtle difference in semantics lieghe fact that, in SysML, the type of a flow
property defined in a flow port specifies wisah flow through that port; what actually flows must
be defined by associating an Item Flow to a SysMini@@ctor (the connection between the flow
ports). In Modelica, no such differentiation beémenvhatcan flow and whatactually flows is
made. This makes sense because Modelica desttrdbbshavior of what actually happens (what
flows) rather than a specification of an interfésat can flow).

In conclusion, although IBDs seem to have very lsingonstructs to Modelica, there are some
subtle differences in semantics so that new stgpestwill have to be introduced to adequately
capture the Modelica semantics of Connectors anmthé&aions.

SysML Parametric Diagrams. The purpose of Parametric Diagrams is to expreghematical
relationships between parameters. In ParametrigrBias, the “ports” are Constraint Parameters
and the “connections” are Binding Connectors. desa Constraint Block, mathematical
relationships are defined constraining its ConstrBarameters. A Constraint Property is a usage
of a Constraint Block. Its Constraint Parameteestiaen bound to other Constraint Parameters or
to Properties of Blocks. The semantics of a Bigdiionnector indicate a mathematical equality
between the (Block) Properties or Constraint Pataraebeing connected. This mathematical
equality is an acausal relationship.

Although the Binding Connectors share the acauatlra of energy-connections in Modelica,
they are currently missing the notions of a Modektow variable and of causal inputs and outputs
(Note: an issue has been submitted requesting doitian of causality specifications in
parametrics to future versions of SysML). The eglent of a Binding Connector does not
actually exist in Modelica, but can be capturedaimon-graphical fashion by introducing an



equality equation between the two variables thatkerund. Therefore, in order to capture the
semantics of a Modelica connection, one would hawatroduce a new SysML connector element
that is equivalent to a Modelica Connector, and thfiects the semantics of Kirchhoff's laws.
Another possibility would be to make the equatiémrsKirchhoff's laws, which are implicit in
Modelica connections, explicit as another SysML €int Property. This option is appealing
because it makes the semantics very explicit, batthe disadvantage that it makes the models
more cumbersome to create and more difficult td.rea

Finally, unlike Blocks, Constraint Blocks do notveaValue Properties that are not Constraint
Parameters. As a result, (local) variables in Micdevould have to be represented as Constraint
Parameters, making it difficult to distinguish thé&nmm “ports.”

In conclusion, the intent of Parametric Diagramsimsilar to the intent of Modelica Models, and

they therefore deserve consideration. Howevernyies of connections that exist in Modelica do
not exist in Parametric Diagrams and vice versa.aAesult, the use of Parametric Diagrams will
require the introduction of additional construcke(eotypes).

SysML Activity Diagrams. The purpose of an Activity graph in SysML is tpesify the
transformation of inputs to outputs through a colféd sequence of actions. An Activity
decomposes into Actions. In activity graphs, thgett Nodes (i.e., Pins and Parameter Nodes)
correspond to buffers to place input and outpuetsk The connections between Object Nodes
correspond to Object Flows. These flows typicadigresent the transfer of one or more objects at
a discrete moment in time, although it is posstiolespecify a streaming flow that could be
continuous, i.e., the time between arrival of takéor “objects”) is zero. It is this latter cabatt
needs to be described in terms of differential @goa and is also closest to the semantics of
Modelica's flows. However, the strict notion af\ils from output to inputs in Activity graphs is
not imposed in Modelica (Note: this flow directimmould correspond to a constraint on the sign of
a flow variable, but has nothing to do with math&ozd causality).

In conclusion, only the special case of continupssteaming object flows seems to match the
Modelica semantics of energy flow, and even fot tese, the semantics are quite different.
Activity graphs therefore are the least appropriatea mapping from Modelica Class, although
they will be explored when mapping the Modelica ¢tions and Algorithms to SysML4Modelica.

Selected Diagram: SysML Internal Block Diagram with Embedded Constraints. It is clear
from the discussion in the previous sections thatd is not a single viewpoint that embeds the
Modelica semantics perfectly. As a result, the obenore than one SysML viewpoint with
multiple stereotypes needs to be defined to extiea®&ysML semantics.

Blocks, ConstraintBlocks, FlowPorts, classical Gestors and BindingConnectors can be used to
map Modelica Models, Components, Connectors, andn&€udions to SysML, assuming an
extension of connector is defined to support theldioff semantics. This could be expected since
Constraint Blocks are restricted versions of regiecks. Actually, Constraint Blocks and
Parametric Diagrams are too restricted. For im&arConstraint Blocks cannot have value
properties (only constraint parameters), and thg @amnectors allowed in a Parametric Diagram
are binding connectors, which have semantics oél@gconstraints and can thus not be further
restricted to represent Kirchhoff's laws as is regefbr Modelica. Parametric Diagrams could be
useful to capture the semantics of Modelica if waats to make explicit the equations that are
implicit in Modelica connections. This is illusted in the next section.
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Figure 4: Descriptive model of a car suspension visualized as a BDD and IBD.

lllustrative Example

Consider the design of a car suspens As illustrated in Figure A4the suspension can
described in the context of a car using a desegp8ysML model, exprsed in a BDD and
corresponding IBD.

Assume now that one needs to evaluate the dyn@sponse of the suspension by simulating
car body’'s position as a function of tim A possible continuous dynamics model for suc
simulation models the suspension as a linear spmigthe car bodas a point mas: This model
is illustrated in Figure B both Modelica and ithe SysMLModelica profile which represents t
comresponding Modelica construc By stereotyping SysML ports and connectors, theaseics
of Kirchhoff's laws have been introduced into Sysl|
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Figure 5: A Mass-Spring model for a car suspension, in Modelica (left) and
SysML4Modelica (right).
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The SysML parts are stereotyped as «modelicaPare», (masslmodel, springlmodel,
fixedlmodel), that correspond to usages of models fthe Modelica Standard Library. For
instance, as illustrated in Figure 6, the librarpddlica.Mechanics.Translational.Components
includes definitions of continuous dynamics modetsa Spring and a Mass. Note that one could
apply stereotypes in SysML that include icons egleint to the elements from the Modelica

library so that the SysML4Modelica representationFigure 5 on the right could be almost
identical to the Modelica representation on the lef
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Figure 6: Continuous dynamics models for Mass and Spring defined in the Modelica
Standard Library.



In Figure 6, the usages of these models, steredtypemodelicaPart» are connected to each other
at their «modelicaPort» by a «modelicaConnectiofihese connections carry the semantics of
Kirchhoff’'s Laws (in this example—or, more precigethe same semantics as an equivalent
Modelica connection). These semantics can be made explicit by using a Parametric Diagram
as is shown in Figure 7. But, as one can see lpadng Figure 7 and Figure 5, this comes at a
cost of a much larger and less readable diagramila8y, one could have represented the internal
equations of the Mass model in a Parametric Diageanis illustrated in Figure 8, but again, the
more explicit semantics come at a cost of increaseaplexity. For this reason, only Blocks and
Internal Block Diagrams are used in the SysML4Ma#eprofile. The parametrics still provide
the underlying semantics for capturing the detadgdations, but this complexity can often be
abstracted and made invisible to the modeler.

Finally, it is worth illustrating how the SysML4Metica continuous dynamics model in Figure 5
relates to the SysML descriptive model in FigureSdnce both the descriptive and the continuous
dynamics models are views of the same system, thepot be independent of each other.
Changes to the descriptive model are likely to imegoorresponding changes to the continuous
dynamics model and vice versa. Such dependenaiesecenodeled in an analysis context — the
context in which the analysis model (i.e., the ourdus dynamic analysis in this case) is defined.

The analysis context is illustrated in Figure & establishes the dependencies between the
descriptive model components and their correspgndiralysis models. In addition, the detailed
bindings between the descriptive and analysis ptiegeare defined in the Parametric Diagram
illustrated in Figure 10.

par [Block] OscillatoriMoclel [ [F5) Oscillatorbocle! ]J

<<hblock=> = ==block== = |
fixedimodel : Fixed massimodel : Mass
=<blogk== = ‘ ‘ =<hloch>> = |
flange : Flange | flange_b : Flange
<=ValueType=> — I =<V alueType=> E-i =<ValueType=> | | ==\alueTypes= m |
5 : Length T:Force | 2 : Length f:Force
| ==l
|
v1: Real il: Real il
T | T v1: Real 2es
L |iE| T
<=constraint>= |_| ) .__|
node1 : KirchhoffsLaws “ct?nsiralnt»
i node? : KirchhoffsLaws
{i1+i2=0, T
wi=v2} | i +i2=0,
L) | wi=v2}
1 (1) . -
w2 : Real i2: Real 5
v2: Real i2: Real
=<hlock== Q
springimodel : Spring
s=block=> = | - "
‘ flange_b : Flange | <phlack== =
I 2= —+ ﬂangp_a : Flange
(P |

s:Len f:Force
| ath s : Length f: Force

<<ValueTypes> o | |=<ValieTypes> ‘ ‘ [<<ValueTypes> o | [==ValueTyper> ‘ ‘

Figure 7: Mass-Spring model as represented in a Parametric Diagram.



par [Block] Mass [ @Mass ]J

=<ValueType=>
s : Length

¥ Real
==constraint==
s_w: Derivative
{der_x =der(x)}

der_x|: Real

<<ValueType=>

<=hlocks==
flange_a : Flange

==ValueType=> —

==\aleType=> —
L : Length

5 : Length

<=ValueType=>
f:Force

x1: Real %2 Real
]

==constraint==
sum1 : Sum

%1 Real ¥2: Real

LT ]

<<constrairt>>
sum? : Sum

- i i {sum=x1+x2}
|_| ==hlock=>
3 : Feal sum:Real | ¢ Force flange_b : Flange s Rl
;I;T—rlmj N i <<ValueType>>
< w1 : Derivative <=constraint>= s : Length
_{de-r ¥ = derix)} newton : NewtonsLaw -_—
T {m*a = f} <<ValueType=>

|—| - T:Force

m: Mass

der_x|: Real |—|
a: Acceleration

==\/alueType>>
a: Acceleration

==\alueType>>
m : Mass

Figure 8: Mass model as it could be represented in a Parametric Diagram.

bdd [Block] CarDynamicsContext [ @Analysis(:ontext ]/I

==hlock== ==block=>=
CarDynamicsContext =emodelicaModel==
e oLk OscillatorModel

valies
testRigPosttion : Length

==ModelicaPart==
fixedimodel : Fixed
{modelicaModification = "s0=1"}

-car

<=hlock>=
Car

<<ModelicaPart==
springimodel : Spring
{modelicaModification = "s_rel0=2", "c=10000"}

suspension : Suspension ==gllocates=

susp2body : BodyConnection

1l —— Qﬂ"""FI""
ange_a: Flange
! ==ModelicaPort==

==glocate==

<=allocates=

body : Body

==ModelicaPort=>
ange b Flangs

body2susp : SuspensionFlange |

=<<ModelicaPart==
- massimodel : Mass
==gllocate>>
— — — — d{modelicaModification = "L=1", "m=1", "s(start=-0.5)"}

Figure 9: The Block Definition Diagram for the Analysis Context of the continuous
dynamics analysis.



par [Block] CarDynamicsContext [ @'&I CarDynamicsContext ]J

oscimodel : OscillatorModel =i
=<ModelicaPart== |
fixedimodel : Fixed
=<Dimension== fim| I ==modelica’/alusProperty== |
testRigPosition : Length | =s0: Length

<<ModelicaPart==
———————————————— springimodel : Spring
| =<hblocks= s | — —
car : Car | =<modelicaV/alueProperty== |
= = = | s_reld : Distance
| suspension : Suspension — i
==ValueType=> | <=moclelica‘/alueProperty== |
stiffness : Stiffness | | les Tr 1ati ISpringC
<=ModelicaPart==
massimodel : Mass
<<mode|icaVéL€Property>: |
| L : Length
[ body : Body | .

<<mode|icaVéi$Pl'operty>: |

mass : Mass
m: Mass

‘ =<<Dimension=>> rz | |

Figure 10: The Parametric Diagram for the Analysis Context of the continuous
dynamics analysis; the properties of the descriptive model are bound to the
corresponding properties in the analysis model.

For very simple problems, one could consider comigithe descriptive and analysis views into
one model; e.g., suspension and springlmodel wbalddombined into one component that
includes both the descriptive properties and thalyais constraints/equations. However, for
larger problems in which more than one analysispestive needs to be considered (e.g.,
mechanical, electrical, controls, manufacturinffedent levels of abstraction, etc.), combining all

such analyses into one model would be difficulihianage. One would likely encounter problems
with naming conflicts or duplication of propertiel addition, combining all the models severely
limits the opportunity for model reuse because n®d®m libraries (such as the Modelica

Standard Library) would have to be combined withatiptive models rather than just included in
an analysis context.

Summary

In this paper, we have introduced a formal tramatdgion between the SysML4Modelica profile
and the Modelica language. This transformatiorcugrently under development within the
Systems Engineering DSIG of OMG. The SysML-Modetiansformation is defined as a formal,
bi-directional transformation as envisioned in khedel-Driven Architecture approach. For each
Modelica language construct as defined in the abistsyntax meta-model, a corresponding
language construct in the SysML4Modelica profiladsntified and a mapping relationship is
established. [Note to reviewers: Implementatiohghss transformation are currently under
development and the authors plan to include a eoitat the reference implementations when
submitting the final version of this paper].
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