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Abstract.   

This paper provides an overview of the formal transformation between the two complementary 
languages: OMG SysMLTM and Modelica.  SysML is a standardized general purpose graphical 
modeling language for capturing complex system descriptions in terms of their structure, behavior, 
properties, and requirements.  Modelica is a standardized general purpose systems modeling 
language for analyzing the continuous and discrete time dynamics of complex systems in terms of 
differential algebraic equations.  Integrating the descriptive power of SysML models with the 
analytic and computational power of Modelica models provides a capability that is significantly 
greater than provided by SysML or Modelica individually.  A standardized bi-directional 
transformation between the two modeling languages is being developed that will support 
implementations to transfer efficiently and automatically the modeling information between 
SysML and Modelica models without ambiguity.  In addition to an overview of this bi-directional 
transformation approach, the paper provides a simple example to clarify the transformation 
principles and to illustrate the important synergies resulting from the integration between these 
two languages. 

Introduction 
The objective of the SysML-Modelica Transformation Specification (OMG SE DSIG 
SysML-Modelica Working Group, 2009) is to provide a bi-directional mapping between OMG 
SysMLTM (Object Management Group, 2008) and Modelica (Modelica Association, 2009) and to 
leverage the benefits of both languages.  By integrating SysML and Modelica, SysML's strength in 
descriptive modeling can be combined with Modelica's formal executable modeling capability to 
support analyses and trade studies. 

SysML is a general-purpose systems modeling language that can be used to create and manage 
models of systems using well-defined, graphical constructs with underlying semantics (Object 
Management Group, 2008).  SysML reuses a subset of UML 2 (Object Management Group, 2009) 
constructs and extends them by adding new modeling elements and two new diagram types.  These 
SysML diagrams are shown in Figure 1.  The set of behavioral and structural diagrams combined 
with the requirements diagram and parametric diagram provide an integrated view of a system.  
But SysML represents much more than just a set of diagrams.  Underlying the diagrams, there is an 
abstract syntax model repository that formally represents all the modeling constructs.  The 



  

graphical model provides a mechanism to organize, enter, retrieve, and view the 
system-descriptive data contained in the model repository.  The diagrams provide multiple views 
of the same system model; these multiple views can be maintained consistently due to the semantic 
underpinning of the modeling language. In the context of SysML, the structure view primarily 
refers to the hierarchy and interconnections among the parts of the system, and the 
interconnections between the system and its external systems. The behavior view describes the 
sequence of events and activities that the system must execute.  The requirements diagram 
captures text requirements in the model, and enables them to be linked to other parts of the model, 
to provide unambiguous traceability between the requirements and system design.  Parametrics 
provide the bridge between the system descriptive model in SysML and other simulation and 
engineering analysis models.  While structure and behavior are heavily based on UML, both 
requirements and parametrics are unique to SysML.  Through these extensions, SysML is capable 
of representing the specification, analysis, design, verification and validation of systems. 

As indicated above, the system behavior in SysML is captured through a combination of activity 
diagrams, state machine diagrams, and/or sequence diagrams and the associated semantics.  The 
Foundational Subset of the UML specification (Object Management Group, 2008) provides the 
additional semantics to enable SysML activity diagrams to be executed in a standard way.  In 
addition, SysML includes parametric diagrams to capture models of constraint-based behavior, 
such as continuous-time dynamics in terms of energy flow.  However, the syntax and semantics of 
such behavioral descriptions in parametrics have been left open to integrate with other simulation 
and analysis modeling capabilities to support the execution of these models.  Additional 
information on SysML can be found at http://www.omgsysml.org. 

Modelica is an object-oriented language for describing differential algebraic equation (DAE) 
systems combined with discrete events (Fritzson, 2004).  Such models are ideally suited for 
representing the flow of energy, materials, signals, or other continuous interactions between 
system components.  It is similar in structure to SysML in the sense that Modelica models consist 
of compositions of sub-models connected by ports that represent energy flow (undirected) or 
signal flow (directed).  The models are acausal, equation-based, and declarative.  The Modelica 
Language is defined and maintained by the Modelica Association (www.modelica.org), which 
publishes a formal specification (Modelica Association, 2009) but also provides an extensive 
Modelica Standard Library, which includes a broad foundation of essential models covering 
domains ranging from (analog and digital) electrical systems, mechanical motion and thermal 

 

Figure 1:  An overview of the SysML diagrams and their relation to UML diagrams. 



 

  

systems, to block diagrams for control (Modelica Association, 2009).  Finally, it is worth noting 
that there are several efforts within the Modelica community to develop open-source solvers, such 
as in the OpenModelica Project (The Open Source Modelica Consortium, 2009). 

In conclusion, SysML and Modelica are two complementary languages supported by two active 
communities.  By integrating SysML and Modelica, we combine the very expressive, formal 
language for differential algebraic equations and discrete events of Modelica with the very 
expressive SysML constructs for requirements, structural decomposition, logical behavior and 
corresponding cross-cutting constructs.  In addition, the two communities are expected to benefit 
from the exchange of multi-domain model libraries and the potential for improved and expanded 
commercial and open-source tool support. 

Related work 
Pop et al. (Pop, et al., 2007) have worked on issues regarding the integration of UML and 
Modelica. They have created a UML profile called ModelicaML that enables users to depict a 
Modelica simulation model graphically.  The ModelicaML profile reuses several UML and 
SysML constructs while adding several completely new language constructs.  Such constructs are 
the Modelica class diagram, the equation diagram, and the simulation diagram.  The intent of the 
ModelicaML profile is slightly broader than the SysML-Modelica Transformation described in 
this paper;  ModelicaML also aims to represent all of the Modelica language in a graphical form, 
including equations and algorithms.  The work on ModelicaML is still ongoing and has recently 
extended by Schamai et al. (Schamai, et al., 2009).  In parallel to the development of ModelicaML, 
Johnson et al. (Johnson, et al., 2008) proposed a mapping between SysML and Modelica.  They 
built directly on the SysML language and introduced stereotypes only as necessary to capture the 
Modelica semantics. 

The SysML-Modelica Transformation Specification described in this paper grew out of the joining 
of these two previous efforts.  In December 2008, a formal working group was established within 
the Systems Engineering Domain Specific Interest Group (SE DSIG) of the Object Management 
Group (OMG).  The working group is moving forward towards the adoption of the Transformation 
Specification as a formal specification within OMG.  More information about the most recent 
progress of the working group can be found at (OMG SE DSIG SysML-Modelica WG, 2009). 

Integration Approach 
To develop a transformation between the SysML and Modelica languages, a formal, systematic 
approach is used.  As is illustrated in Figure 2, the transformation approach is to specify first an 
extension to SysML called the SysML4Modelica profile which represents the most common 
Modelica language constructs.  This allows the Modelica concepts to be expressed in an extension 
of SysML that supports round-trip transformation from SysML to Modelica and back.  The profile 
extends the UML4SysML subset of UML and the SysML extensions to that subset that are 
required to capture the relevant Modelica concepts and enable the mapping between the two 
languages. 

The SysML-Modelica Transformation is then specified between the profile constructs and the 
Modelica language constructs as captured in the Modelica meta-model.  Introducing the profile 
into the transformation approach is intended to simplify the transformation to Modelica, and 
facilitate model reuse by more directly leveraging existing model libraries within Modelica.  In 



  

this way, the user first creates the system model in a SysML modeling tool as they would normally 
do.  The user then selects the part of the model to be analyzed by Modelica (e.g., a particular 
subsystem) and applies the SysML4Modelica profile to create an analytic representation of that 
part of the model.  The SysML modeling tool is expected to include this profile.  The analytic 
representation expressed in the SysML4Modelica profile is then transformed to a Modelica model, 
where it can be executed by a Modelica solver. 

Not all SysML modeling constructs are expressed in the SysML4Modelica profile, nor will all 
Modelica constructs be represented in the profile.  In the definition of the Transformation, the 
focus has been on including all the Modelica language features that are most common and, 
together, cover the majority of the Modelica models in the Modelica Standard Library (Modelica 
Association, 2009).  Some Modelica concepts are not required for the mapping, such as graphical 
annotations and certain concepts that are associated with pre-compilation.  Changes to SysML and 
Modelica may be recommended as a result of the Transformation Specification effort, but these 
changes are subject to the adoption process for the respective specifications.  Future changes could 
also include the introduction of additional SysML constructs into the Modelica Language or 
additional Modelica constructs in the SysML language; however, this is outside the scope of the 
current SysML-Modelica Transformation effort. 

The SysML-Modelica Transformation leverages the fundamental concepts of the Model-Driven 
Architecture (MDA) (Object Management Group, 2009).  Different transformation 
implementations can be applied to implement this specification such as the QVT and others 
(Object Management Group, 2008).  The transformation can leverage an XMI formatted static file 
transfer (Object Management Group, 2007) or other mechanisms such as API’s that support a 
dynamic interchange capability. 

To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica 
Language Specification and identify for each Modelica language construct an equivalent construct 
in SysML.  If an equivalent construct does not exist, stereotypes are created to extend the SysML 
language.  The following naming convention is used to define each Modelica construct in the 
SysML4Modelica profile:  «modelicaConstruct», where Construct is the name of Modelica 
language construct as defined in the Modelica abstract syntax definition (Modelica Association, 

   

Figure 2:  The SysML-Modelica Transformation in relation to SysML and Modelica. 



 

  

2009). 

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a 
stereotype in order to distinguish the Modelica construct from the ordinary SysML construct when 
supporting round-trip transformation.  In addition, the concrete syntax of Modelica often provides 
alternative representations to express the exact same semantics.  In such cases, the intent is to 
avoid duplicating this redundancy in SysML4Modelica without loss of expressivity.  For mapping 
purposes, one of the redundant representations is identified as the primary (most explicit) 
representation, and SysML4Modelica constructs are preferably mapped onto this primary 
representation.  It should also be noted, that Modelica includes a graphical syntax using iconic 
representations of block diagrams that maps to its textual syntax.  An example of the Modelica 
graphical syntax is shown in Figure 3 for a set of components connected together via Modelica 
connectors and connections. 

Initially, the SysML-Modelica Transformation Specification provides a textual description of the 
mapping between Modelica and SysML4Modelica.  However, it is the intent also to describe this 
mapping formally by defining a Triple Graph Grammar (Königs, 2005), linking the Modelica and 
SysML meta-models.  Such a formal definition of the mapping has the additional advantage that 
meta-CASE tools (such as MOFLON (Weisemöller, et al., 2009)) can be used to generate 
executable transformations between SysML and Modelica modeling tools (assuming they support 
some standardized interface such as JMI (Java Community Process, 2002)).  An additional 
implementation of the mapping is being developed as part of the OpenModelica project (The Open 
Source Modelica Consortium, 2009). 

Semantic Comparison between SysML and Modelica 
Before focusing on the detailed modeling constructs, a high-level decision needs to be made 
regarding the choice of SysML elements to represent Modelica modeling constructs.  Although 
Modelica is a textual language, it also supports a graphical view through its annotation 
mechanism.  This graphical view illustrates clearly the strong similarity that exists between 
SysML and Modelica.  Both languages support the decomposition of systems (or behavioral 
models of systems) into subsystems or components and the interactions between them.  For 
instance, the Modelica model of a motor controller (shown in Figure 3) contains subcomponents 
(such as motor, gearbox, and controller).  The interactions between them are illustrated by edges 
connecting the interface locations (called connectors in Modelica) of the components.  Such 

 

Figure 3: A Modelica model of a motor controller consisting of component models and 
the connections between them.  The connections include both causal signal 

connections (e.g., in and out of the controller) and acausal energy connections (e.g., 
the rotational mechanical energy connections of the gearbox). 
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hierarchical compositions of Modelica models and the connections between them constitute the 
primary modeling approach in Modelica.  Before considering the details of the language, it is thus 
important to consider carefully how these primary modeling constructs map to SysML. 

As illustrated in Table 1, in SysML there are three types of diagrams that have a structure that is 
similar to the hierarchical, connector-based composition of Modelica models: the Internal Block 
Diagram (IBD), the Parametric Diagram, and the Activity Diagram.  All three diagrams support 
some sort of “ports”, some sort of connection of “port-based” objects through “port-connections,” 
and hierarchical encapsulation through “port-delegation.” In the follow sub-sections, we use these 
three diagrams to discuss the main question:  What are the SysML elements that match the 
Modelica semantics best? 

Modelica.  In Modelica, ports are called connectors and the edges between ports are called 
connections (Modelica Association, 2009).  The ports (connectors) can include four types of 
quantities: inputs, outputs, flows and non-flows.  Inputs and output are used when the direction of 
the flow is known and fixed, as for instance in signals flowing in a control system.  Flow and 
non-flow quantities are used to describe energy or material flow (they are also sometimes referred 
to as through and across variables, respectively).  When connecting two Modelica connectors with 
a connection, the semantics for inputs and outputs are causal binding: the input is assigned the 
value of the output to which it is connected.  Input and output connecters must therefore be used in 
conjugate pairs, and only one output can be connected to each input.  For flow and non-flow 
variables, the connection semantics correspond to Kirchhoff's Laws, namely, the value of the flow 
variables add up to zero and the values of the non-flow variables are set equal (in an 
equation-based, acausal fashion).  When more than one connection is made to a connector 
containing a flow variable, then an ideal, loss-less energy or material exchange is assumed by 
imposing that the values of flow variables of all connected connectors add up to zero.  To impose 
the correct modeling of energy exchange, Modelica requires that the number of flow and non-flow 
quantities of a connector be equal. 

In addition to connectors, Modelica models can contain variables and sub-models (i.e., model 
usage in Table 1).  Although Modelica does not explicitly distinguish between these three 
categories of “components” (i.e., connectors, variables, sub-models), it may still be useful and 
desirable to distinguish explicitly among them when mapping to SysML. 

SysML Internal Block Diagrams.  The primary purpose of Internal Block Diagrams (IBD) in 
conjunction with Block Definition Diagrams (BDD), is to express system structural 
decomposition and interconnection of its parts. The SysML concepts used in the IBD/BDD 

Table 1: A comparison between Modelica and SysML elements, semantics, and diagrams. 

Diagram Modelica Internal Block Parametric Activity 

Model Definition Model Block Constraint Block Activity 

Model Usage Component Part Property Constraint Property Action 

Port Definition Connector 
Block, Value Type, 

Flow Spec. 
Value Type 

Block, 
ValueType 

Port Usage Component Flow Port Parameter Object Node 

Edge Connection Connector Binding Connector Object Flow 



 

  

viewpoints have quite flexible semantics and may be used to establish logical and conceptual 
decompositions, for instance, as in a context diagram.  The Blocks in SysML are similar to Classes 
in Modelica (specifically the specialized class types of Model, Block, Connector, etc.).  Blocks can 
be decomposed in the same way Modelica Classes can be decomposed. 

The “ports” in IBDs are called Ports and the connections between ports are called Connectors.  
There are two kinds of ports: Flow Ports and Standard Ports.  The Standard Ports are particularly 
geared towards service-based interactions by representing the interfaces (e.g., software methods) 
that are provided or required by a particular block.  Such service-based interactions are not 
appropriate for modeling the connections found in Modelica.  Flow Ports on the other hand do 
provide semantics that reflect Modelica connectors more closely.  A Flow Port describes an 
interaction point through which input and/or output of items such as data, material, or energy may 
flow in and out of a block.  For Modelica-type interactions, the “items” could be either signals (for 
input and output quantities) or energy/material (for flow and non-flow quantities). In Modelica 
these interactions are modeled as instances of Modelica Connector types. Such instances do not 
have a direction of flow associated with them directly, but should be interpreted as containing 
either inputs, outputs, or energy/material flows based on the definition of the Connector type of 
which they are an instance.  This is similar to SysML nonatomic FlowPorts typed by 
FlowSpecifications, although one may argue that the combination of a flow and non-flow variable 
in a Modelica energy/material connector constitute one concept (i.e., one energy or material flow) 
and should therefore be modeled as an atomic rather than non-atomic flow port.  In addition, the 
(acausal) connection between flow ports in SysML does not explicitly carry the Kirchhoff 
semantics as for energy/material connections in Modelica. 

An additional subtle difference in semantics lies in the fact that, in SysML, the type of a flow 
property defined in a flow port specifies what can flow through that port; what actually flows must 
be defined by associating an Item Flow to a SysML Connector (the connection between the flow 
ports).  In Modelica, no such differentiation between what can flow and what actually flows is 
made.  This makes sense because Modelica describes the behavior of what actually happens (what 
flows) rather than a specification of an interface (what can flow). 

In conclusion, although IBDs seem to have very similar constructs to Modelica, there are some 
subtle differences in semantics so that new stereotypes will have to be introduced to adequately 
capture the Modelica semantics of Connectors and Connections. 

SysML Parametric Diagrams.  The purpose of Parametric Diagrams is to express mathematical 
relationships between parameters. In Parametric Diagrams, the “ports” are Constraint Parameters 
and the “connections” are Binding Connectors.  Inside a Constraint Block, mathematical 
relationships are defined constraining its Constraint Parameters. A Constraint Property is a usage 
of a Constraint Block.  Its Constraint Parameters are then bound to other Constraint Parameters or 
to Properties of Blocks.  The semantics of a Binding Connector indicate a mathematical equality 
between the (Block) Properties or Constraint Parameters being connected.  This mathematical 
equality is an acausal relationship. 

Although the Binding Connectors share the acausal nature of energy-connections in Modelica, 
they are currently missing the notions of a Modelica Flow variable and of causal inputs and outputs 
(Note: an issue has been submitted requesting the addition of causality specifications in 
parametrics to future versions of SysML).  The equivalent of a Binding Connector does not 
actually exist in Modelica, but can be captured in a non-graphical fashion by introducing an 



  

equality equation between the two variables that are bound.  Therefore, in order to capture the 
semantics of a Modelica connection, one would have to introduce a new SysML connector element 
that is equivalent to a Modelica Connector, and that reflects the semantics of Kirchhoff's laws. 
Another possibility would be to make the equations for Kirchhoff’s laws, which are implicit in 
Modelica connections, explicit as another SysML Constraint Property.  This option is appealing 
because it makes the semantics very explicit, but has the disadvantage that it makes the models 
more cumbersome to create and more difficult to read. 

Finally, unlike Blocks, Constraint Blocks do not have Value Properties that are not Constraint 
Parameters.  As a result, (local) variables in Modelica would have to be represented as Constraint 
Parameters, making it difficult to distinguish them from “ports.” 

In conclusion, the intent of Parametric Diagrams is similar to the intent of Modelica Models, and 
they therefore deserve consideration.  However, the types of connections that exist in Modelica do 
not exist in Parametric Diagrams and vice versa.  As a result, the use of Parametric Diagrams will 
require the introduction of additional constructs (stereotypes).  

SysML Activity Diagrams.  The purpose of an Activity graph in SysML is to specify the 
transformation of inputs to outputs through a controlled sequence of actions.  An Activity 
decomposes into Actions.  In activity graphs, the Object Nodes (i.e., Pins and Parameter Nodes) 
correspond to buffers to place input and output tokens.  The connections between Object Nodes 
correspond to Object Flows. These flows typically represent the transfer of one or more objects at 
a discrete moment in time, although it is possible to specify a streaming flow that could be 
continuous, i.e., the time between arrival of tokens (or “objects”) is zero.  It is this latter case that 
needs to be described in terms of differential equations and is also closest to the semantics of 
Modelica's flows.  However, the strict notion of flows from output to inputs in Activity graphs is 
not imposed in Modelica (Note: this flow direction would correspond to a constraint on the sign of 
a flow variable, but has nothing to do with mathematical causality). 

In conclusion, only the special case of continuously streaming object flows seems to match the 
Modelica semantics of energy flow, and even for that case, the semantics are quite different.  
Activity graphs therefore are the least appropriate for a mapping from Modelica Class, although 
they will be explored when mapping the Modelica Functions and Algorithms to SysML4Modelica. 

Selected Diagram: SysML Internal Block Diagram with Embedded Constraints.  It is clear 
from the discussion in the previous sections that there is not a single viewpoint that embeds the 
Modelica semantics perfectly.  As a result, the use of more than one SysML viewpoint with 
multiple stereotypes needs to be defined to extend the SysML semantics. 

Blocks, ConstraintBlocks, FlowPorts, classical Connectors and BindingConnectors can be used to 
map Modelica Models, Components, Connectors, and Connections to SysML, assuming an 
extension of connector is defined to support the Kirchhoff semantics.  This could be expected since 
Constraint Blocks are restricted versions of regular Blocks.  Actually, Constraint Blocks and 
Parametric Diagrams are too restricted.  For instance, Constraint Blocks cannot have value 
properties (only constraint parameters), and the only connectors allowed in a Parametric Diagram 
are binding connectors, which have semantics of equality constraints and can thus not be further 
restricted to represent Kirchhoff’s laws as is needed for Modelica.  Parametric Diagrams could be 
useful to capture the semantics of Modelica if one wants to make explicit the equations that are 
implicit in Modelica connections.  This is illustrated in the next section. 
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The SysML parts are stereotyped as «modelicaPart» (i.e., mass1model, spring1model, 
fixed1model), that correspond to usages of models from the Modelica Standard Library.  For 
instance, as illustrated in Figure 6, the library Modelica.Mechanics.Translational.Components 
includes definitions of continuous dynamics models for a Spring and a Mass. Note that one could 
apply stereotypes in SysML that include icons equivalent to the elements from the Modelica 
library so that the SysML4Modelica representation in Figure 5 on the right could be almost 
identical to the Modelica representation on the left. 

 

Figure 6: Continuous dynamics models for Mass and Spring defined in the Modelica 
Standard Library. 



 

  

In Figure 6, the usages of these models, stereotyped as «modelicaPart» are connected to each other 
at their «modelicaPort» by a «modelicaConnection».  These connections carry the semantics of 
Kirchhoff’s Laws (in this example—or, more precisely, the same semantics as an equivalent 
Modelica connection).  These semantics can be made more explicit by using a Parametric Diagram 
as is shown in Figure 7.  But, as one can see by comparing Figure 7 and Figure 5, this comes at a 
cost of a much larger and less readable diagram.  Similarly, one could have represented the internal 
equations of the Mass model in a Parametric Diagram, as is illustrated in Figure 8, but again, the 
more explicit semantics come at a cost of increased complexity.  For this reason, only Blocks and 
Internal Block Diagrams are used in the SysML4Modelica profile.  The parametrics still provide 
the underlying semantics for capturing the detailed equations, but this complexity can often be 
abstracted and made invisible to the modeler. 

Finally, it is worth illustrating how the SysML4Modelica continuous dynamics model in Figure 5 
relates to the SysML descriptive model in Figure 4.  Since both the descriptive and the continuous 
dynamics models are views of the same system, they cannot be independent of each other.  
Changes to the descriptive model are likely to require corresponding changes to the continuous 
dynamics model and vice versa. Such dependencies can be modeled in an analysis context — the 
context in which the analysis model (i.e., the continuous dynamic analysis in this case) is defined. 

The analysis context is illustrated in Figure 9.  It establishes the dependencies between the 
descriptive model components and their corresponding analysis models.  In addition, the detailed 
bindings between the descriptive and analysis properties are defined in the Parametric Diagram 
illustrated in Figure 10. 

 

Figure 7: Mass-Spring model as represented in a Parametric Diagram. 



  

 

 

Figure 9: The Block Definition Diagram for the Analysis Context of the continuous 
dynamics analysis. 

 

Figure 8: Mass model as it could be represented in a Parametric Diagram. 



 

  

For very simple problems, one could consider combining the descriptive and analysis views into 
one model; e.g., suspension and spring1model would be combined into one component that 
includes both the descriptive properties and the analysis constraints/equations.  However, for 
larger problems in which more than one analysis perspective needs to be considered (e.g., 
mechanical, electrical, controls, manufacturing, different levels of abstraction, etc.), combining all 
such analyses into one model would be difficult to manage.  One would likely encounter problems 
with naming conflicts or duplication of properties.  In addition, combining all the models severely 
limits the opportunity for model reuse because models from libraries (such as the Modelica 
Standard Library) would have to be combined with descriptive models rather than just included in 
an analysis context. 

Summary 
In this paper, we have introduced a formal transformation between the SysML4Modelica profile 
and the Modelica language.  This transformation is currently under development within the 
Systems Engineering DSIG of OMG.  The SysML-Modelica transformation is defined as a formal, 
bi-directional transformation as envisioned in the Model-Driven Architecture approach.  For each 
Modelica language construct as defined in the abstract syntax meta-model, a corresponding 
language construct in the SysML4Modelica profile is identified and a mapping relationship is 
established.  [Note to reviewers: Implementations of this transformation are currently under 
development and the authors plan to include a pointer to the reference implementations when 
submitting the final version of this paper]. 

 

Figure 10: The Parametric Diagram for the Analysis Context of the continuous 
dynamics analysis; the properties of the descriptive model are bound to the 

corresponding properties in the analysis model. 
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