
Structural Context Pattern
Synopsis

A structural context is the setting in which modelers may assert and
describe the paths of interchange between internal components.
The structural context pattern provides semantic support for the
goal of defining traversable connections within the scope of the
context under study. The context element, participating internal
components, and asserted connections fall in the domain;structural
this pattern does not address or aspects. Thisfunctional behavioral
pattern is concerned with asserting the , , and aspewho what where
cts of exchanges while functional contexts tend to address anwhen
d connectivity may be exercised.why

For example, the umbilical connection between a
launch tower and a rocket exists only in a "pre-launch
configuration" context. The purpose of the Structural
Context Pattern is to show how a modeling element
can establish a context for other elements and
connections that exist in that context. Specifically, a
context-providing element owns a set of references to
those other elements and connections. A context can
be a mission phase or system configuration, an
assembly (where we want to design or capture its
inner workings), a logical system (a distributed
system like a thermal subsystem, for example), or
even a cross-cutting view for analysis (end-to-end
information flow, fault containment regions, etc.). Use
the Structural Context Pattern to specify the
connections that are in scope for a particular situation
or state.

Structural Context Icon

Pattern Status Updates:

 Some of the links to other patterns will appear to be broken - this will happen if we are linking to a pattern that is still in work!

Pattern Overview

Pattern Status Tool Version

In Work

Line Organization Owner Submitter Point of Contact

3101 IMCE Pattern Consolidation
Working Group

Dan Dvorak

Related Patterns

Interconnection Pattern: For creating the connections internal to a context.
Structural Decomposition Pattern: For describing structural decomposition.
Interface Definition Pattern: For specifying interfaces and junctions between interfaces
Reconciliation/Abstraction Pattern: For constructing and reasoning across multiple levels
of abstraction (logical/physical, conveyance of data across networks, etc.)
Characterization Pattern: For describing values related to the analysis of an interface.
This is useful when the specification is not yet determined and there are trades to be
explored.

: For requirements specification, including specification of interfaceRequirements Pattern
requirements
Interconnection Pattern: For describing interconnections.
Structural Context Pattern: For describing the contexts in which interconnection can
occur.

: For describing values related to the analysis of an interface.Characterization Pattern
This is useful when the specification is not yet determined and there are trades to be
explored.

 : For constructing and analyzing deployments of your interfaces inMeta-pattern Notes
specific contexts (scenarios, mission phases, testbeds, etc.)

Go directly to SysML Examples...

Table of Contents:

Synopsis
Pattern Overview
Applicability

Content Concerns
Artifact Concerns
Generic Reasoning
Questions
Assumptions

Pattern Implementation
Generic/Ontology
Implementation
SysML Implementation
SysML Examples
Validation/Well-Formedne
ss Reasoning
Supporting Scripts/Tooling
Tooling Tricks

Open Questions
References and Pattern
Resources
Further Examples
Community Page

Applicability

To help users assess the applicability of this pattern to their work (i.e., to the problem they want to solve or their area of interest), we describe
the way in which this pattern addresses a few kinds of common concerns. In particular, we address:

Content concerns: the kind of content users can capture in this pattern
Artifact concerns: the kinds of artifacts (documents and views) that can come from this pattern
Reasoning concerns: the kind of reasoning (analysis) that this pattern is meant to support
Assumptions: what we expect to be true about the user's situation that is relevant to whether they can or should use the pattern.

Content Concerns

The Context Pattern addresses identification and population of those settings and circumstances in which we wish to
define interconnectivity. Moreover, the pattern accounts for the definition of multiple sets of settings and
circumstances in which the system interconnections may differ from those of other settings and circumstances.
That is, the Structural Context Pattern adds an additional set of concerns to those of Interconnection, namely, the
partition of the system description into disjoint sub-descriptions that may correspond to the evolution of the
system over time, to distinct aspects of the system, or some combination of the two.

In summary:

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interconnection+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307501
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Characterization+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Requirements+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interconnection+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Characterization+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Meta-pattern+Notes

Definition of disjoint system descriptions (parameterization by mission phase; by evolving system structural configuration, etc.) the
union of which make up the system description ("What contexts does my system provide?")
The mechanisms for asserting that components and connections participate in various system descriptions ("how do I build a
context?")
The consequences and rules that apply when you build a specific system description ("what have I asserted about each system
description?")
How to leverage inheritance, redefinition, and re-use to simplify the building of system descriptions ("how do I do it efficiently?")

We are fully covering all of structural decomposition - additional information can be found in the . Whilenot Structural Decomposition Pattern
the Structural Context pattern cannot be implemented without utilizing structural decomposition, the assumption is that most of the relevant
structural decomposition has already been captured using the . Here the focus is on techniques for cleanlyStructural Decomposition Pattern
describing rich internal connectivity for a given context.

This pattern provides guidance and structure for defining a context and subsequently asserting that a set of connections is in scope for that
context. Where the describes how to make the internal connections of the context, this pattern covers the mechanismInterconnection Pattern
for ensuring that the connections are properly scoped to the context. It also provides guidance and discussion about the motivations and
rationale for context selection, and ramifications to model structure and capabilities.

Artifact Concerns

This pattern supports the enumeration of content that is present in the following conceptual systems engineering artifacts :note

Functional Block Diagram (FBD)
Interface Requirements Document (IRD) (where there is context-specific information)
Interface Control Document (ICD) (where there is context-specific information)
System block diagram with interconnections
The following DODAF views (assuming context-specific information is present) (:)What is DoDAF?

DODAF SV-1 Systems Interface Description
DODAF OV-2 Operational Resource Flow Description
DODAF SV-2 Systems Resource Flow Description
DODAF SV-3 Systems-Systems Matrix

N-squared diagrams (assuming context-specific information)
Deployment Diagrams (Testbeds, etc.)

Note: we refer here to the underlying content present in these artifacts, rather than any particular paper examples. This pattern is not "how to
make an IRD;" instead, we assert that this pattern supports the capture of much of the content one would find if one examined many
examples of IRDs and retained the core attributes and concerns found therein.

Generic Reasoning Questions
What set of interfaces and junctions are present in this structural context? (Note - behavior models may be used to elaborate when,
why, and how these connections may be "active"; however, the scope of this pattern is limited to asserting which connections are
present physically or by design).
Does the union of all views associated with a context visually present, at least once, every connection scoped to that context?

Assumptions

To make use of this pattern, we assume the modeler is aiming to represent a multi-dimensional system, whether in time (mission
phases, scenarios, etc.), in location (deployment of components), or other concerns (security zones, component suppliers, design
authority, etc.)
We assume that the modeler has already done the predecessor work of selecting and building the decomposition trees, analysis
views, etc. that are to be used in the system model (via the). This pattern does not provideStructural Decomposition Pattern
guidance about doing that selection; rather; it supports the elaboration and assertion of detail about the interior of whatever
decomposition level you are working in. Note that the exercise of decomposition and context definition can happen iteratively; we
wish to emphasize here that doing the decomposition and construction of trees is not covered in this pattern.

Pattern Implementation

Here we describe the elements that make up the Structural Context Pattern, their relationships, responsibilities, and collaborations. The
solution does not describe a particular concrete design or implementation. Instead, the pattern provides an abstract description of the problem
of representing and maintaining context and how a general arrangement of elements solves it. The solution is presented first in modeling
language independent terms (in the) and then as a SysML embedding (in the).Ontology Description Section SysML Implementation Section

Generic/Ontology Implementation

The word "context" originates from the Latin words and which mean "together" and "to weave" respectively. We use the word tocon textere,
mean the collection and connection of elements that are relevant to some concern, goal, location, assembly, etc. Practically, any time an
element has internal structure, it implicitly provides a context in which that internal structure may be seen (and, to go back to our definition,
the context is where the internal structure is "woven" together).

"Context" is a convenient word to refer to the arrangement of the internal structure of an element – and it turns out we don't need a special

element in the ontology to represent it. Certain types of elements may provide a context or be in a context, so when we

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interconnection+Pattern
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307275
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307283
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307279
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Glossary#Glossary-dodaf
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern

1.
a.
b.

2.
3.

a.

b.

c.

1.

2.

a.
b.
c.
d.

define the parts of the ontology that relate to contexts, we do it in terms of Containers (of other elements, which
necessarily means the container is/has a context) and ContainedElements, which are kinds of elements that can
"participate" in a context.

Summary

The idea behind a context is really useful. With context...
We can assert the existence of internal structure and how it is interconnected
The internal structure and interconnections are inherently bound by anything that binds the context - whether
that is lifetime (when the context is "active") or other composition rules (if the context element participates in
another structure, all internal parts and connectivity come with it).

The idea of a context is relevant for structure AND function, but in this pattern we are only addressing structure.
We an object in the ontology called "context." don't need

The ability to provide context (i.e., contain and interconnect other components) is inherent to the ontological
concept called Container.
The ability to participate in a context (i.e., be contained) is inherent to the ontological concept called Containe
dElement.
The assertion that a has a participating is called . Container ContainedElement Contains

Ontological Elements

As we mentioned before, we don't actually have an ontological concept called "Context." Instead, we have base:Container,
base:ContainedElement, and the base:contains relationship between them:

Image Description

 Note: we have omitted the "base" and "mission" prefixes on this
diagram.

Let's talk about the base:contains relationship. There are two ways
we can think of "containment":

Namespace containment - the definition of an element is within
the definition of another element, such as nested classes in
software. This form of containment is entirely scoped to the
definition level. Think the "circle-and-crosshairs" type of
nesting of SysML.
Composition containment - this is best described with some
qualitative heuristics about the container and the contained:

The elements have a part/whole relationship
They have the same life-cycle
When one is moved, the other moves with it
When one is destroyed, the other is also destroyed.

In this pattern, our focus is on the second kind of containment. We are not trying to define the package structure or class nesting; rather, we
are talking about how elements participate in the definition of other elements.

You may be wondering why only mission:Component is shown on this diagram, when it seems that Missions, Junctions, etc. could be a type
of . You're right! Those other elements are implementations of and . For the sake of abase:Container base:Container base:ContainedElement
simple diagram, we chose not to try to draw every "descendant" of and . For a full set, check out the base:Container base:ContainedElement d

 efinitions of Container and ContainedElement in the Base Ontology and look for those super classes asserted in the definitions of concepts in
the Mission Ontology.

Wait a minute, you're saying. I'm confused about this base:contains relationship! Can a be in multiple base:ContainedElement base:Container
? How do I handle my various kinds of structure and organization in my system!? Good news, everyone! We discuss that in the Structural

. In this pattern, we assume that you have solved that problem and are dealing with expressing the connections Decomposition Pattern within
the contexts you've created.

SysML Implementation

The concepts we described in the last section are mapped to concrete implementation in SysML so that they can be used to encode system
information in a model. In this section we describe first the embedding of the ontology into SysML (so that the user can understand how the
concepts are made concrete) and then provide examples.

Embedding

The following table describes how the elements in the ontology appear in SysML.

Ontology Classification SysML Metaclass Stereotype

http://imce.jpl.nasa.gov/documents/foundation/base#section00000004
http://imce.jpl.nasa.gov/documents/foundation/base#section00000004
http://imce.jpl.nasa.gov/documents/foundation/mission
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern

base:Container Concept base:Container does not
map precisely to one
SysML metaclass. base:

 Container most closely
matches any SysML
element that can own
properties; however, we
restrict base:Container's
presence in SysML to
exist through it's
"descendants": the IMCE
stereotypes listed at
right.

Structured Classifier «mission:Component»,
«mission:Junction»,
«mission:Item»,
«mission:Flow»

base:ContainedElement Concept Like basbase:Container,
doee:ContainedElement

s not map precisely to
one SysML metaclass. b

 ase:ContainedElement
most closely matches
any SysML element that
can be the type of a
property; however, we
restrict base:ContainedE

 presence inlement's
SysML to exist only
through it's
"descendants": the IMCE
stereotypes listed at
right.

Type «mission:Component», «
mission:Junction», «miss
ion:Item», «mission:Flow
»

base:contains Relationship A base:contains B if
there exists a property
typed by B in the
namespace of A.()what?

The
association/aggregation
relationship (black/white
diamond association
model element) is helpful
but not sufficient, as the
former rule can be
satisfied without an
association relationship.

Composite Aggregation
Association (optional)

n/a

Concept Mapping: base:Container and are abstract classes (signified with italics on diagrams), which means thatbase:ContainedElement
they are not implemented directly, but instead contribute meaning to their "descendants." The ability to provide a context for other elements (b

) is already inherent in the category of SysML elements that can own TypedElements. Similarly, alreadase:Container base:ContainedElement
y exists in SysML as Types (i.e., things that can become the type of a property).

Relationship Mapping: The base:contains relationship is not made explicit in SysML, as it is inferred by looking at the members of a base:C
. If the owns members (specifically, structural kinds of properties, such as Part Properties or Reference Properties)ontainer base:Container

whose type is a (rather than a String or a Value Type), then the the base:ContainedElement base:Container base:contains base:ContainedEl
 . ement

The addresses how hierarchies of contexts should be derived, projected into analysis space, and mappedStructural Decomposition Pattern
to each other. The rules we describe in this pattern are universal to contexts that describe groupings of elements according to analysis
concerns AND to more classical structural decomposition.

SysML Examples

Let's look at how our ontological concepts appear in SysML using a small set of elements (this is followed by a far more complex example):

Image Description

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Glossary#Glossary-namespace
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern

 Let's look at a small part of our system during the purple Translunar
Cruise phase. In this phase we have the crewed flight vehicle,1

which consists of the combined Command / Service Module (CSM)
and the Lunar Module (LM). (Don't worry, there are lots of other
parts but we're not showing them yet). We've highlighted the base:

and s found on in this smallContainers base:ContainedElement
structure.

1: We are representing mission phases as specializations of a
generic "Apollo 11 Mission." You will see the relationship between
this phase and the larger mission later in this pattern.

This kind of structure is probably not new to you, but we show it to illustrate two of our concepts of context: s and base:Container base:Contai
s. All the Mission»s or Component»s that are "made up of" other components (i.e., have part or referencenedElement «mission: «mission:

properties) inherently provide context for relating those components. A good test for whether something provides a structural context is
whether you can or would want to make an IBD of its internal structure.

A is generally something that you think you might want to put on an IBD: «mission:Component»s, for the most partbase:ContainedElement
(although Junctions, Items, and Flows are also s).base:ContainedElement

 So where does the base:contains relationship come in?

We have a contains relationship between two elementsbase:
(specifically between a and a base:Container base:ContainedElem

) if the owns (or nests, like an inner class inent base:Container
software or the circle-and-crosshairs in SysML) a that is property t

 by the .yped base:ContainedElement

Modelers usually assert this "A-owns-property-typed-by-B" pattern1

by drawing an aggregation relationship (black and white diamond)
between two elements. Using aggregation relationships like you
see at left automatically populates this pattern in the model: in the
example, drawing the association between "Flight Vehicle -
Crewed" and "LM - Cruise" caused the automatic creation of a
property called "lm" (typed by "LM - Cruise") in the namespace of
"Flight Vehicle - Crewed".

1: See the embedding for base:contains in the SysML embedding
table for more details.

The actual association relationship object is not mandatory in
SysML - you can manually create a property in a block and type it
with another block. When you do that, you assert that a
base:contains relationship exists even though there will be no
corresponding association relationship in the model. While it is
uncommon to create part or reference properties relationships
without using composite aggregation relationships (black diamond
association), it is semantically valid.

In the image at right, we have removed the association
relationships from the model and re-created the properties
manually. The assertion that the Flight Vehicle base:contains the
LM and CSM is still present due to the existence of the typed
properties in the Flight Vehicle.

Does this mean that there is a base:contains relationship between a component and value properties? No - click here for an explanation. Why
did we use the directed composition? Click here for a discussion of navigability.

SysML Example: Investigating Contexts through the structural configuration changes of the Apollo
11 Mission

Over it's mission timeline, Apollo 11 demonstrated drastic structural configuration changes - not only as modules detached and reattached,

but as the three crew members physically moved about within the assembly structure of the mission. We examine some of those differences
here to illustrate context modeling.

 Expand to continue reading...

SysML Example: Review of Inheritance and Re-use in a Context

Use inheritance to define the features and structures that are common to entire categories of element at a higher level - one time.

 Expand to continue reading...

SysML Example: Review of Redefinition in a Context

We use redefinition to "override" generic attributes with context-specific ones.

 Expand to continue reading...

Fun with Reasoning Questions

 Expand to continue reading...

Rules/Axioms/Invariants

Potential Rules:

Existence of part property typed by ContainedElement implies contains relationships between classes
only part properties?

Part properties and connectors must be nested / in the namespace of element acting as the Container. For connectors, this means
the "lowest common denominator" container in the decomposition hierarchy in this scope. IBDs should also be within the namespace
of the block they describe, but that is not mandatory. MagicDraw enforces the property and connector nesting rule.

Model Implementation Concerns

Elements Appearing in Multiple Contexts

We will address, in the , the issue of maintaining model consistency when elements are contained by moreStructural Decomposition Pattern
than one other element (such as when elements actually change containment over the life-cycle of the mission, or when an element exists in
both a structural decomposition AND an an analysis context.

Please see the open questions section for a more detailed description of options for asserting disjointness in time.

Model Structure Implications

Something is only scoped to a context if it is within the namespace of the context. That means connectors and part properties must
be nested in the context block (container). MagicDraw enforces this rule for structural properties and connectors, but not diagrams.
Recommended practice is to also keep IBDs owned by their context (although it's possibly to navigate back to the context block
because IBDs have a "Context" attribute).

Defining and Inheriting Context "Invariants"

If some components in a system do not change throughout all phases or deployments, it is permissible to compose them into a
generic context and then specialize it to show variations.
When to use redefinition.

Modeling buses, broadcast, multicast, etc.

In the Interconnection Pattern we stated that one should avoid attaching multiple connectors to one port. Our rationale is that doing so creates
ambiguity - is information always sent on all connectors? If not, which connector is picked? How do you describe that? What is the behavior in
receiving multiple inputs simultaneously? To help clarify our guidance for dealing with this concern, we will look at three approaches and
discuss their pros and cons.

 Expand to continue reading...

Validation/Well-Formedness Reasoning

This section describes the set of assertions that relate to correct implementation (well-formedness) of the pattern.

The union of all views describing a context should show every property (part, connector) owned by the context at least once.
A view that displays all properties (parts, connectors, etc.) of a context must be "true" (if ugly).

Supporting Scripts/Tooling

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interconnection+Pattern

1.

2.

We do not currently provide any supporting scripts or tooling.

Tooling Tricks

Trick How to do it Why?

Quickly type Connectors with an
appropriate Junction

Right-click on the connector. You will see
"Association" in the menu, near the bottom.
When clicked, a list of available Junctions
will appear for selection.

Note: a Junction is only available if a) the
connected ports are typed by Interfaces
and b) a Junction exists between those
Interfaces.

Faster, easier modeling!

Open Questions

Question Discussion

What is methodology or rules for when to make something a
context?

Who is deciding where the boundaries are? What do we mean by
context change? Structural configuration change? Depends on the
stakeholder / engineer who needs to understand the distinctions.
Conversation with Nicolas R. about consistency of information
between IBDs in the same context. In this pattern we assert that if
IBDs share a context, they must be consistent views of a consistent
system. It appears that SysML allows an IBD to ALSO be a context,
meaning that two IBDs could have their own elements. This seems
very confusing and hard to manage (and would require BST
expansion to make it work), so we are proposing in this pattern that
people create a new context if they wish to create an IBD that
would introduce inconsistency.

How do you assert semantically that contexts are disjoint in
time?

This should probably be moved to the Structural Decomposition
.Pattern

How do we express in a query-able way that two contexts cannot
exist simultaneously? How to infer that a part is the same in two
contexts that are disjoint in time? There are a couple of options:

Convention: if we reserve black-diamond composition to mean
whole/part with existence/destruction semantics, and we
inspect (through code or by hand) trees to determine whether
they are members of contexts which ultimately specialize a
super-context (think of the mission phases specializing a
generic Apollo 11 mission context), then we can adopt a
convention that those elements are singleton classes and the
specializations of the super-context are disjoint in time.
Additional imposed semantics: a "Singleton" stereotype
combined with either "disjoint" relationships between contexts
or traversal of some "mission timeline" concept placing
contexts on a timeline could more rigorously assert
disjointness in time and continuity of elements throughout
contexts.

I am not ready to model in such detail, how much of the
pattern is actually required?

We do not provide (at this writing) a mechanism for "sketching"
patterns. In order to use reasoning and other tooling provided by
IMCE to support this pattern, it must be fully implemented.
However, there is nothing preventing modelers from "sketching"
patterns - perhaps with light weight dependencies, information
flows, or other model elements that are consistently used for
"sketching."

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Decomposition+Pattern

Why aren't Interfaces in the Ontology as ContainedElements
and Containers?

Interfaces do not "contain" other elements in the ontological sense
of contains. Interfaces "present" other interfaces; are "traversed" by
items, and cannot "contain" internal structure (recall that value
properties are not internal structure). Interfaces are therefore not a
kind of Container. They are also not contained by any of the
Containers (their relationship with other interfaces is "presents").
You wouldn't expect to see an interface on an IBD directly, for
example. Thus, interfaces are not a kind of ContainedElement
either.

Does "contains" go between ANY Container and ANY
ContainedElement?

We need more use cases to fully answer this - however, at the
moment Steve says that contains should be "homogenous" in the
sense that Items should contain other Items, Flows contain other
Flows, Components contain other Components, etc. The exception
is that Missions can contain Components, Missions, and Junctions
and Components and Junctions can contain other Components and
Junctions.

From Bjorn's comment... should contexts be defined by
composition of other elements, or should the context "be state
variables that constrain when a given relationship is active (or
we just don't care one way or the other). There are hints that
Functional or Behavioral constraints will find some merit in
being done the same way?"

We do not preclude people from modeling using that approach;
however, we find the expressivity provided through use of
composition to define contexts to be extremely valuable for many
problems encountered on projects (particularly in cases where
interconnection, routing, and paths are under inspection). We see
these alternatives providing different benefits under different
circumstances and this pattern is concerned with the composition
approach.

Advanced Questions
A container "contains" contained elements. Does that mean value properties are contained elements?
Do I have to use directed composition?
How do you encode role names in the ontology if part properties are not actual objects in the ontology?
How do we tell inherited properties apart? A.K.A. What the heck is a property path?
Modeling "degenerate" cases (A.K.A. "My dog only has THREE legs!")

References and Pattern Resources
Currently no Working Group approved references. See the Community Page: Structural Context Pattern references area for unofficial
references.

Modeling Guide (somewhat outdated): SysML Modeling Guide

Further Examples
Currently no Working Group approved examples. See the examples area for further examples.Community Page: Structural Context Pattern

Community Page
The has been set up to collect Frequently Asked Questions, Discipline Specific (and extended)Community Page: Structural Context Pattern
examples and reasoning, and References. Everyone should have write access and are free to discuss and contribute.

Copyright

Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Structural+Context+Pattern
https://sscae-help.jpl.nasa.gov/sysml/chunks/sysml_modeling_guide.html
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Structural+Context+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Structural+Context+Pattern
https://jira1.jpl.nasa.gov:8443/secure/CreateIssue.jspa?pid=11064&issuetype=1&Create=Create

	Structural Context Pattern

