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Overview

= Motivation

= Objectives

= \What needs to be represented?

= Thoughts on how to model uncertainty in SysML
= Some background on probability theory
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Motivation

= Decision making under uncertainty is ubiquitous in SE—
risk, safety/reliability, but...

— Current approaches are often ad-hoc and gualitative
» E.g., fever charts

— Engineers and other decision makers often lack a deep
understanding of the underlying theory

— The cost of inference with uncertainty is high
» Both In cost of modeling and cost of computation

= To move toward more quantitative, theoretically rigorous
approaches for decision making under uncertainty, we
need to express/model uncertainty explicitly

= Aim to make SysML 2.0 sufficiently expressive and
precise to support rigorous inference under uncertainty
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Objectives

= Enable representation of uncertain information in
SysML
— Rigorous, precise
— EXxplicit
— Useful (the most common constructs but not necessary all)
— Extensible

= Primary focus today:

— Make some strategic decisions about scope, approach,
transformation path... which will then inform technical
Implementation

= Warning: more questions than answers...
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Rigorous — Some Background on Uncertainty
Based on Weatherford: “Phil. Found. of Prob. Theory”

= Uncertainty relates to “asserting with less than certainty”
— Predicting a future event
— Supporting a conclusion based on available (limited) evidence
= Many formalisms have been proposed for characterizing and reasoning with
uncertainty:
— Probability theory
— Fuzzy set theory, fuzzy number, fuzzy random numbers, random fuzzy numbers...
— Possibility theory, Dempster-Shafer theory, imprecise probability theory,...

= Strong consensus in the philosophical/scientific community that reasoning
under uncertainty should (always) be based on Probability Theory
— e.g. all NASA uncertainty and risk handbooks & best practices specify a probabilistic approach

= Other approaches have been shown to lead to inconsistencies
— e.g. Dutch book argument in support of Kolmogorov axioms, etc.
= Supporting other formalisms besides probability theory is a bad idea:
we lose (all) rigor
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Rigorous — Some Background on Uncertainty
Based on Weatherford: “Phil. Found. of Prob. Theory”

= This seems to be in stark contrast with the new OMG RFI on
Uncertainty Modeling which proposes to include everything
and the kitchen sink (http:/imww.omgwiki.org/uncertainty/doku.php?id=start)

UML UNCERTAINTY PROFILE (UUP): IMPLEMENTATION
OF U-TAXONOMY

«metaciass» rhetadass me(xlass metzcass «metaciass» «metaciass» ype: «sterectype «sterectype» «sterectype» «enumeration>
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f f 4 f 4 description : String description : String description : String description : String InsufficentResoiution
metaciass. metaciass» «stereotype» - Non-determarssm
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L—‘ 0.1 . descri String
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. DbeliefDegree : Measurement X measurement : Strng GeographicalLocaten
beliefAgent - String = > [ Sy o measurelnD TViaass o e
focality : String sskInDTViaClass sty ime
indeterminacySource : String > " Ocourrence
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IndeterminacySource «metaciass» effect - String Class 4 o
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description - String risk - RiskLevel > cification «enumeration»
indeterminacyDegree : Measurement riskLevel : String [ RiskLevel
«sterectype «enumeration» «enumeration: Low
«sterectype» metaciass: «sterectype» ype» Measurement TimeField MeasureKind  pom
MeasurementConstraint > Constraint IndeterminacyDegreeMeasure | > Measure description : String Past Probability High
description : String description : String Present Vagueness Extreme
kind : MeasureKind T Future Ambiguity
[ ] I | I I
«sterectype» «sterectype» «sterectype» «sterectype» «sterectype» «sterectype» «sterectype «sterectype» «sterectype

M. Zhang. S. Ali, T. Yue and P. H. Nguyen, Uncertainty Modeling Framework for the Integrafion Level V.1, hitps://www.simula.no/file/uupv | paf-
1/download
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Rigorous — Some Background on Uncertainty
Based on Weatherford: “Phil. Found. of Prob. Theory”

= The calculus of probability:

— A set of rules for manipulating numbers of a certain type in order to
produce more numbers of the same type

— Kolmogorov’s axiomatization (1933)
= A theory of probability:
— An interpretation to the calculus which leads to probability judgments
— Subjective probability by Ramsey, de Finetti, Savage, etc.
= Probability:
— An expression of belief — personal / subjective
— Belief is measured by willingness to bet

— Unfortunately, many engineers have been taught that a probabillity is a
relative frequency — which is reasonable in some contexts, but is
ultimately too limiting

= Conclusion: to be rigorous, we should limit ourselves to
probability theory
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What Needs to be Represented?

Recommended Modeling Choices

= \Which mathematical formalism?
— Probability theory (and only probability theory)

= Which constructs?
— Probabillities
— Distributions: PDF, PMF, CDF, moments,...
— Joint distributions
— Random processes
= Meta-information?
— Author(s), pedigree, history, underlying data/models, etc.

2016 Copyright © Georgia Tech. All Rights Reserved. I I




Probability

= Motivating example:
— Probability of Loss of Mission — P(LoM)

- LoM is an event — a subset of the sample space of mission
outcomes

= Unitless value type: P € [0,1] c R

= This will fit directly with the proposed ValueType
definition

= Questions

— Is it important for the “event” (and maybe even the
corresponding sample space) to be modeled explicitly?

— Or is it sufficient to be informally referenced in the name of
the value property?
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Probability Distribution — Random Variable
= Discrete: can take on only certain separated values
— Number of possible values could be pmf — probability
finite or infinite
— Examples: colors, number of valves T I T T I
of an engine vglues

= Continuous: can take on any real value in some range
— Number of possible values is always

Infinite p(if - units of 1/[value]
— Range could be bounded on both /7<\
sides, just one side, or neither 7 =
_ _ ) _values
— Examples: weight of an object, >
accuracy of machining
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Probability Distribution — Random Variable

= Motivating example:
— car.mass:kg = 1000
— car.mass 1000 [kg]

= Any physical quantity is uncertain and should
therefore be modeled as a random variable
— The realized mass for a particular vehicle is unknowable
— E.g., predicted car mass, measured car mass

— car.mass Normal(1000,100) [kg] (mean and stdev as params)

— The value specification is replaced by a distribution
specification
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Probability Distribution — Random Variable

package SECM [ [ SECM-ValueType-Overview U

| Model element
L general BT _thatis typed by
+ iy i ) _ A
i ValueType type valueElement | T TR oy ValueType
: 1 0.+
+itemType. +type
llectionValueT: Io o ! Jo.*
+collectionValueType |0..* — 1
r pEs—T— CompoundValueTypeComponent -
| CollectionValueType valueElement |1
[+lowerBound : Integer [1] = 0 -
+upperBound : Integer [1] = +INF +component |1..
| {ordered}
+compoundValueType |1 ’ '
+specialized |0..* I Plsceho.ldefforagn:ﬁenc .
& e b T ] ' = ] expression type with support for
SpecializedValueType ’ ScalarValueType ‘ [ SampledFunctionValueType CompoundValueType | +valueExpression 0.1 _|itersl vaiue including NeN.
| | s >

= = = T itive and negative infinity
ValueExpression P i -

0:*
+computerDataType +val 0.*
ComputerDataType ¥ P yp T T alueExpression ~ .

L ArLayValueType
| | | +dimension : Integer [1..7]

compound and collection value types as well
as uncertsinties and reference to probability
density functions

+/rank : Integer [1]

‘ [ urivalueType ‘ "7§6Er{vsiuefype |

l

Supports one or more values of scalar,

= Where does Distribution fit in?
— Not a ValueType but a ValueElement

— Should not be a stereotype (as in SysML1.x) but a model
element that is defined in a library and is thus extensible
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Probability Distribution — Random Variable

= Distribution
— ValueType — must equal the type of the ValueElement
— DistributionKind = continuous, discrete, mixed,... TBD
— 1..* parameters
» The number of parameters depends on the distribution type

» The types of the parameters depends on the ValueType (but
IS not necessarily the same — depends on distribution type)

— Some derived properties for all distributions...
» \mean:ValueType

» \median:ValueType Not sure how important all these are
» \mode:ValueType and whether they should be required.

» \stdDev:ValueType N_ot gasi_ly computed for some
distribution types...
» \skewness:Real

» \excKurtosis:Real
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Probability Distribution — Random Variable

= Should every value property be probabilistic?

— No. — e.g., a specified upper bound on car.mass is
deterministic

— car.maxMass Deterministic(1000) [kg]

= Should the default be a Deterministic distribution or a
null/unspecified distribution? =

= We need to distinguish between i oriotiind

NaturalNumberSet

integerNumberSet

Integer-valued and real-valued properties  |raicnaniumberset
and constrain the allowed DistributionKind
accordingly

RealNumberSet
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Probability Distribution — Random Variable

= What does an instance specification look like?

— Is it a sample of a distribution or an instance of the
distribution with specific distribution parameters?

= Some parametrizations of distributions can be quite
complicated — e.g., a PMF is defined as a set of
(value, probabillity) pairs. What is the right balance
between expressivity, extensibility and simplicity in
the definition of Distribution?
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Joint Probability Distributions
= Multiple random variables may be dependent
= This dependence is a relationship between random
variables

= Motivating example:
— Modeling the uncertainty of properties constrained by a
model will require joint distributions
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Joint Probability Distributions

k Positive correlation ]
|—M

y No correlation
15 < ;f‘*‘ .
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What about this one?
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Joint Probability Distributions

= ...to be completed

= Some ideas for representation:

— Parametric joint distributions: e.g., multivariate Gaussian is
characterized by a mean vector and a covariance matrix

— Copulas
— Joint sample sets

2008-2012 Copyright © Chris Paredis. All Rights Reserved. ASE 6002: Systems Design and Analysis I I I



Random Process

= A stochastic process or random process Is a collection of
(dependent) random variables — one random variable, y, for each
value of x (or t for time series)

= E.g., for a zero-mean Gaussian process, y~N (0, c?) for each x;

= In addition, the Gaussian process is characterized by its covariance
function — y(x) , is characterized by a multivariate Gaussian
distribution

© uncorrelateo 15 correlate

y=f(x)
y=f(x)
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Random Process

= Motivating example:
— Environment temperature as a function of time

= Representation

— Parametric process models: e.g., Gaussian Process model
IS characterized by a covariance kernel and the
corresponding parameters
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Some Final Questions

= How about legacy representations?
1. Representations that are mapable to probabilities
2. Representations that are not rigorous

= How about meta-information?
— To what extent should this be supported in the metamodel?
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Brief Introduction to Probability Theory

Probability

Random variables

Distribution functions: PMF, PDF, CDF

Some common distributions: uniform, triangular, ...
Covariance

Fre quentist vs Bayesian Subjective




Basic Definitions

= Experiment: Activity or process with an uncertain
outcome (e.g. coin flip, rolling dice, ...)

= Simple (or elementary) event: An individual,
undecomposable outcome e; of an experiment

= Sample Space: Set S = {e;, e,, ... } containing all
possible outcomes (simple events) of an experiment

— Could be easy to characterize (e.g. rolling two dice) or hard
(e.g. the voting mechanisms used for elections in 2020)

— May not always be characterized explicitly
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Basic Definitions (2)

= Event: A subset E € S of the sample space, usually
denoted by E, F, E;, E,, etc.
— Set of simple events

— E.g. “Sum of faces after rolling two dice is 47 is a set
containing 3 simple events: {(1,3),(2,2),(3,1)}

— If E and F are events, thensoare ENF,EUF and E\ F

= Probability: Relative likelihood (probability) p(e;) of an
(simple) event e; occuring when doing an experiment
— Foranye; €S:0<p(e) <1
— Furthermore: ), csp(e) =1
— And with the definition for events: ), .z p(e) = p(E)
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Some More Important Properties...

= p(§) = 1 must always be true

= Events E + S with p(E) = 1 can exist

= |If @ is the empty event (empty set), then p(@) = 0
= There may be events E + @ with p(EF) =0

= If E¢ is the complement of E, then p(E¢) = 1 — p(E)
"p(EUF) =p(E)+p(F) —p(ENF)

= If E and F are mutually exclusive (i.e., E N F = @),
then p(EUF) =p(E) + p(F)
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Venn Diagrams

= Useful for visualizing basic | , s
properties 3 ST G

= Sets denoted as bounded, e EC
2-dimensional structures S % o

= Mutual exclusivity: = [ntersecting events:
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Conditional Probabillity

= Two or more events may be related

— Knowing that an event F occurred might affect the
probability that another event E also occurred

— Reduce the effective sample space from S to F, then
measure “size” of E relative to its overlap (if any) in F,
rather than relative to S

p(ENF)
p(F)
= F and F are independent if p(E N F) = p(E)p(F)
— Knowing that one event occurs tells you nothing about other
— Implies p(E|F) = p(E) and p(F|E) = p(F)
— Not to be confused with mutual exclusivity! (E N F = @)
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Random Variables

= A random variable (RV) is a numerically valued
function representing the set of events that can result
from an experiment

— RV is a number whose value we don’t know for sure but
we’ll usually know something about what it can be or what it
IS likely to be

— Usually denoted using capital letters: X, Y, W;, W,, etc.
— A RV is an assignhed number to an event, not the event itself
— Examples:

» Coin toss: assign 0 to event “Heads" and 1 to “Tails"

» Measuring weight: X = 2.305 kg

= Probabilistic behavior described by a distribution
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Discrete vs. Continuous RVs
= Discrete: can take on only certain separated values
— Number of possible values could be pmf
finite or infinite
— Exampleg: colors, number of valves T I T { T I .
of an engine >

= Continuous: can take on any real value in some range
— Number of possible values is always

Infinite pdf
— Range could be bounded on both /7<\
sides, just one side, or neither 7 L values
— Examples: weight of an object, ‘ —
accuracy of machining
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Discrete Distribution Functions

= Let X be a discrete RV with possible values (range)
X1, X,, ... (finite or infinite list)

= Probability mass function (PMF):

p(x;))=pX=x;) fori=1,2..

— The statement “X = x;" is an event that may or may not
happen, so it has a probability of happening, as measured
by the PMF

— Since X must be equal to some x,, and since the x;’s are all
distinct: ). ;;;p(x;) =1
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Discrete Distribution Functions (2)

= Cumulative distribution function (CDF)
F(x) =p(X <x) =2Xay Xi<X p(x;)

— Probability that the value of a RV will be less than or equal

to a fixed value x

— Properties: i
1)0<F(x)<1forall x a
2) lim F(x)=0 R
X——00 .
3) xl—l>rllooF(X) =1 0 :—

4) F(x) is non-decreasing in x
5) F(x) is a step function with jumps
at the x;’'s of height n(x;)
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Moments of Discrete Distributions

= Expected Value: first moment M,; “center” of a RV

My = E{X} = Xauip(x)x;

— Weighted average of the possible values x;, with weights
being their probability (relative likelihood) of occuring

— The expected value (or expectation) is equivalent to the
mean m

— However, it is not the value of X that you “expect” to get -
E{X} may not even be among the possible values for X!

— Example: data set (sample) has a “center”, i.e. an average
» Repeat experiment many times, observe many X;
» X then converges to E{X} as n —»
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Moments of Discrete Distributions (2)

= Variance: measure of “dispersion” of a RV

M, = V{X} = X p(x) (x;—E{X})*

] 2
— Other common notation: o2, oy, , Var(X)

— Weighted average of squared deviations of the possible
values x; from the mean

— Standard deviation of X iIs 0 = gy = +,/V{X}
— Interpretation analogous to that for E{X}

= Data set (sample) has a similar measure:

. 1 _
— Sample variance: s? = — n X, —X)?

— Sample standard deviation: s = +Vs2
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Continuous Distributions

= No matter how small the s}
range of possible values
for X, the number of
possible values for X is
always infinite (and hence
uncountable)

" p(X = x;) Is always O

= Observed X's are denser in regions where the
probabllity density function f(x) is high

= Height of a density is not the probability of anything!
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Continuous Distribution Functions

= Let X be a continuous RV

= Probability density function (PDF):

f(x) =0 forall real values x

— Total area under f(x) is 1:

[T f(x)dx = 1

— For any fixed a and b with a < b, the probability that X will
fall between a and b is equal to the area under f(x)
between a and b:

p(a<X<bh)= f;f(x)dx
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Discrete Distribution Functions (2)

= Cumulative distribution function (CDF)

Fx) =p(X <x) = ["_ f(t)dt

— Probability that the value of a RV will be less than or equal

to a fixed value x
— Properties:
—1) 0<F(x)<1forallx
2) lim F(x) =0

Same as | X——00

discrete! 3) lim F(X) —1
X—00

4) F(x) is non-decreasing in x
5) F(x) is a continuous function
with slope equal to PDF: f(x) = F'(x)
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Moments of Continuous Distributions

= Expected Value: first moment M,

M, = E{X} = f_+:)o xf (x)dx

— The expected value (or expectation) is equivalent to the
mean m

— Roughly, a weighted “continuous” average of possible
values for X

— Same interpretation as in discrete case: average of a large
number (infinite) of observations on the RV X
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Moments of Continuous Distributions (2)

= Variance: measure of “dispersion” of a RV

My = V{x} = |7 (x — E(X})?f (x)dx

i 2
— Other common notation: o2, oy, , Var(X)

— Standard deviation of X iIs 0 = gy = +,/V{X}
— Interpretation analogous to that for E{X}
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Simple Continuous Distributions

Uniform Distribution - Exponential Distribution

— Only lower and upper — Time between random
bound are known events — constant arrival
I rate

a b
A
Triangular Distribution

— Quick first guess (lower,
upper bound and mode) r/le_“

a Cc b
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Normal Distribution

= Use: Pt
— Errors of various types
— Sum of a large number of

other quantities (central limit  °1
theorem)

— Maximum entropy distribution
when only mean and variance ™|
are known 5

04

02

— NOTE: when estimating

mean u and variance a2, use
Student distribution (t-dist) flx) =

= Parameters: m (or ), o
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Lognormal Distribution

= Use:
— Time to perform a task

— Product of a large number
of other quantities

— Quantities that are always
positive and the
distribution is skewed
towards zero

— Analogy to normal
distribution N

0

L 1
0.5 1.0

flx) =

xV2mo?

x~LN(m,0%) ©lnx ~N(m, c?)

= Parameters: m (or ), o

2008-2012 Copyright © Chris Paredis. All Rights Reserved.
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Beta Distribution

= Use:

— When lower and upper
bounds exist

— Rough initial model — but
more refined then

. f(x) 4
triangular e —oga g @ Ben03
— Commonly used in o N
Bayesian probability i

theory — easy to compute o= o...()o; TR
posterior distributions

x %1 —1(1 _ x)az -1

= Parameters: a4, a, |f(x) =

B(a, az)
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Weibull Distribution

= Use:

— Time to complete a task
— Time to failure for a piece ™\

of equipment
— If the falilure rate

decreases over time, then

a<l1
— If the failure rate iIs

constant over time, then

a=1

flx) 4
12F

0.8

06

04

0.2

1
0 0.5

— |If the failure rate increases

over time, then a > 1

= Parameters: a,
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Joint Distributions: More Than 1 RV

= Jointly distributed RVs or random vectors

= Example:
— Input: (P, W, S) = (type of part, weight, service time)
— Output: {T,T,, T, ... } = total processing time of exiting parts

= Are the individual RVs independent of each other or
related?

— We will consider the special case of a pair of RVs (X1, X,)
Extends naturally (but messily) to higher dimensions
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Joint Distributions: More Than 1 RV

= Joint CDF of (X4, X,) is a function of two variables:

F(X{,X,) =p(X{ <xyand X, < x5)
=p(X1 < x1, X3 < x3)

= Joint PMF for two discrete RVs:

p(x1,x3) = p(X1 = x1, X5 = x3)

= Joint PDF for two continuous RVs with total volume
below the resulting non-negative function equal to 1:

by (b
p(a; < Xy < bj,a; < X; < by) = fall fazz f (1, x2)dx, dxy

B | § B3



Covariance Between RVs

= Measures linear relation between RVs X; and X,
= Covariance between X; and X, Is

Cov(Xy,Xz) = E{(X; — E{X1D(X; — E{X2})}

— If large X, tends to go with large X,, then covariance > 0

— If large X; tends to go with small X,, then covariance <0

— If there is no tendency for X; and X, to occur jointly in
agreement or disagreement over being big or small, then
Cov=0

= Interpreting value of covariance is difficult since it
depends on units of measurement
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Correlation Between RVs

= Correlation (coefficient) between RVs X; and X, Is:

COT(Xl, Xz) —

Cov(Xy,X5)

O0x,0x,

— Has same sign as covariance

— Always between -1 and +1

— Numerical value does not depend on units of measurement
— Dimensionless — universal interpretation

= Still only good for capturing linear relation between X,

and X,
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Visualizing Correlations

l Positive correlation
_M

y No correlation
15 < ;f‘*‘ .
* 1, x
' 1 — w:&& %&%Z& :
: Fu
0.5 0.5 =
*x
0 0
X
X
-0.5 =
-0.5
-1
-1
-1.5
1.5 -2
-1.5 -1 -0.5 0 0.5 1 15 2 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5

What about this one?
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Statistics vs. Probability Theory

Both deal with probabillities...
...but with different interpretations!

= Statistics:
Analysis of frequencies of past events

= Probability Theory:
Predicting the likelihood of future events

= For a good overview of the meaning of probability see: “Philosophical
Foundations of Probability Theory” by Roy Weatherford
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Fundamental Interpretations of Probabilities

= Many interpretations argued throughout history

= You probably learned about the frequentist
Interpretation

— Probability of an event is the limit value of long run
frequency of outcomes

— E.g., coin toss: p(heads) = # heads / # tosses

= Frequentist interpretation breaks down when
accepting that every event is unigue — no repetition
ever occurs
— Probability of rain tomorrow
— Probability of GT winning against Virginia on Saturday

= |s probability meaningful beyond relative frequencies?
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Subjective Probabilities

= Probability expresses your willingness to bet or act
= Probabillity of an event = relative amount you are
willing to pay to engage in a bet that...
— Pays $1 if the event occurs
— Pays $0 otherwise
= Probability = $bet / $1
= You should determine the amount for which you are
willing to both buy and sell the bet — the fair price
= Subjective, but:

— Unambiguous, since the meaning is well defined and
consistent across different events

— Operational definition, which is especially important in
support of decision making
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Criteria for Acceptable Probability Values

= Beliefs must be internally consistent / coherent
= Example: GT plays against Virginia

— | believe GT has a 50% chance of winning

— | believe Virginia has a 40% chance of winning

= Are these acceptable probability values?

— No! Must satisfy no-sure-loss criterion — see “Dutch book”
argument in textbook Chapter 4.1

= Beliefs must adhere to Kolmogorov's axioms:
— ForanyeventE: 0 <p(E) <1
— For the space S of all possible events: p(S) =1
— For disjoint events: p(E; UE, UE5... UE,) = )i, p(E;)
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Criteria for Acceptable Probability Values

= Rational beliefs must also be externally consistent

= What is the wrong with the following belief: *| am
willing to pay $0.6 for a bet that pays $1 if a fair coin
flip results in heads, $0 otherwise”

= What is the relationship between a frequentist
Interpretation of an inherently random event and a
subjective probability of that event?

— Beliefs should be consistent with scientific, factual
Information, I.e., observations of nature

= How much would you be willing to pay for a coin flip
with a bent coin?
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What is a Stochastic/Random Process?

= A stochastic process or random process is a collection of
random variables — in our case, one random variable, y, for
each value of x (for time series, use t instead of x)

= x can be continuous or discrete
= y can be a multidimensional vector

= A specific sample of a random process
IS called a realization

Brownian motion: a realization of a
2-dimensional random process
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What i1s a Gaussian Process?

= A stochastic process or random process Is a collection of random
variables — in our case, one random variable, y, for each value of x

= For a Zero-Mean Gaussian Process, y~N (0, o) for each x

= |n addition, the Gaussian process is characterized by its covariance
function

= A vector, y(x;), iIs characterized by a multivariate Gaussian

distribution
© uncorrelateo 15 correlate

y=f(x)
y=f(x)
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Positive correlation: If f(x;) is above the mean
then f(x,) is more likely to be above the mean also

f(x)
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. is more likely than 9

Typically: the closer x, is to x4, the stronger
the correlation between f(x,) and f(x;)
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Ty

pical Correlation Kernels for Kriging
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Influence of Gaussian Process Parameters

15 15
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z W% Increasing z MM
) roughness o
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kernel width)
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y=f(x)
y=f(x)

Increasing
variance
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