Representing Uncertainty in SysML 2.0

Chris Paredis
Director
Model-Based Systems Engineering Center
Georgia Tech
chris.paredis@me.gatech.edu
Overview

- Motivation
- Objectives
- What needs to be represented?
- Thoughts on how to model uncertainty in SysML
- Some background on probability theory
Motivation

- Decision making under uncertainty is ubiquitous in SE—risk, safety/reliability, but...
 - Current approaches are often ad-hoc and qualitative
 » E.g., fever charts
 - Engineers and other decision makers often lack a deep understanding of the underlying theory
 - The cost of inference with uncertainty is high
 » Both in cost of modeling and cost of computation

- To move toward more quantitative, theoretically rigorous approaches for decision making under uncertainty, we need to express/model uncertainty explicitly

- Aim to make SysML 2.0 sufficiently expressive and precise to support rigorous inference under uncertainty
Objectives

- Enable representation of uncertain information in SysML
 - Rigorous, precise
 - Explicit
 - Useful (the most common constructs but not necessary all)
 - Extensible

- Primary focus today:
 - Make some strategic decisions about scope, approach, transformation path… which will then inform technical implementation

- Warning: more questions than answers…
Uncertainty relates to “asserting with less than certainty”
 – Predicting a future event
 – Supporting a conclusion based on available (limited) evidence

Many formalisms have been proposed for characterizing and reasoning with uncertainty:
 – Probability theory
 – Fuzzy set theory, fuzzy number, fuzzy random numbers, random fuzzy numbers…
 – Possibility theory, Dempster-Shafer theory, imprecise probability theory,…
 – …

Strong consensus in the philosophical/scientific community that reasoning under uncertainty should (always) be based on Probability Theory
 – e.g. all NASA uncertainty and risk handbooks & best practices specify a probabilistic approach

Other approaches have been shown to lead to inconsistencies
 – e.g. Dutch book argument in support of Kolmogorov axioms, etc.

Supporting other formalisms besides probability theory is a bad idea: we lose (all) rigor
Rigorous — Some Background on Uncertainty

Based on Weatherford: “Phil. Found. of Prob. Theory”

- This seems to be in stark contrast with the new OMG RFI on Uncertainty Modeling which proposes to include everything and the kitchen sink (http://www.omgwiki.org/uncertainty/doku.php?id=start)
Rigorous — Some Background on Uncertainty

Based on Weatherford: “Phil. Found. of Prob. Theory”

- The calculus of probability:
 - A set of rules for manipulating numbers of a certain type in order to produce more numbers of the same type
 - Kolmogorov’s axiomatization (1933)

- A theory of probability:
 - An interpretation to the calculus which leads to probability judgments
 - Subjective probability by Ramsey, de Finetti, Savage, etc.

- Probability:
 - An expression of belief — personal / subjective
 - Belief is measured by willingness to bet
 - Unfortunately, many engineers have been taught that a probability is a relative frequency — which is reasonable in some contexts, but is ultimately too limiting

- Conclusion: to be rigorous, we should limit ourselves to probability theory
What Needs to be Represented?
Recommended Modeling Choices

- Which mathematical formalism?
 - Probability theory (and only probability theory)

- Which constructs?
 - Probabilities
 - Distributions: PDF, PMF, CDF, moments,…
 - Joint distributions
 - Random processes

- Meta-information?
 - Author(s), pedigree, history, underlying data/models, etc.
Probability

- Motivating example:
 - Probability of Loss of Mission — \(P(LoM) \)
 - \(LoM \) is an event — a subset of the sample space of mission outcomes

- Unitless value type: \(P \in [0,1] \subset \mathbb{R} \)

- This will fit directly with the proposed ValueType definition

- Questions
 - Is it important for the “event” (and maybe even the corresponding sample space) to be modeled explicitly?
 - Or is it sufficient to be informally referenced in the name of the value property?
Probability Distribution — Random Variable

- **Discrete**: can take on only certain separated values
 - Number of possible values could be finite or infinite
 - Examples: colors, number of valves of an engine

- **Continuous**: can take on any real value in some range
 - Number of possible values is always infinite
 - Range could be bounded on both sides, just one side, or neither
 - Examples: weight of an object, accuracy of machining
Probability Distribution — Random Variable

- Motivating example:
 - car.mass:kg = 1000
 - car.mass 1000 [kg]

- Any physical quantity is uncertain and should therefore be modeled as a random variable
 - The realized mass for a particular vehicle is unknowable
 - E.g., predicted car mass, measured car mass

- car.mass Normal(1000,100) [kg] (mean and std dev as params)
- The value specification is replaced by a distribution specification
Probability Distribution — Random Variable

- Where does Distribution fit in?
 - Not a ValueType but a ValueElement
 - Should not be a stereotype (as in SysML1.x) but a model element that is defined in a library and is thus extensible
Probability Distribution — Random Variable

- **Distribution**
 - ValueType – must equal the type of the ValueElement
 - DistributionKind → continuous, discrete, mixed,… TBD
 - 1..* parameters
 » The number of parameters depends on the distribution type
 » The types of the parameters depends on the ValueType (but is not necessarily the same – depends on distribution type)
 - Some derived properties for all distributions…
 » \texttt{mean:ValueType}
 » \texttt{median:ValueType}
 » \texttt{mode:ValueType}
 » \texttt{stdDev:ValueType}
 » \texttt{skewness:Real}
 » \texttt{excKurtosis:Real}

Not sure how important all these are and whether they should be required. Not easily computed for some distribution types…
Probability Distribution — Random Variable

- Should every value property be probabilistic?
 - No. – e.g., a specified upper bound on car.mass is deterministic
 - car.maxMass Deterministic(1000) [kg]

- Should the default be a Deterministic distribution or a null/unspecified distribution?

- We need to distinguish between integer-valued and real-valued properties and constrain the allowed DistributionKind accordingly
Probability Distribution — Random Variable

- What does an instance specification look like?
 - Is it a sample of a distribution or an instance of the distribution with specific distribution parameters?

- Some parametrizations of distributions can be quite complicated – e.g., a PMF is defined as a set of (value, probability) pairs. What is the right balance between expressivity, extensibility and simplicity in the definition of Distribution?
Joint Probability Distributions

- Multiple random variables may be dependent
- This dependence is a relationship between random variables
- Motivating example:
 - Modeling the uncertainty of properties constrained by a model will require joint distributions

\[
y = f(x) + \epsilon
\]
Joint Probability Distributions

No correlation

Positive correlation

What about this one?
Joint Probability Distributions

- …to be completed

- Some ideas for representation:
 - Parametric joint distributions: e.g., multivariate Gaussian is characterized by a mean vector and a covariance matrix
 - Copulas
 - Joint sample sets
Random Process

- A stochastic process or random process is a collection of (dependent) random variables — one random variable, y, for each value of x (or t for time series).
- E.g., for a zero-mean Gaussian process, $y \sim \mathcal{N}(0, \sigma^2)$ for each x_i.
- In addition, the Gaussian process is characterized by its covariance function — $y(x)$, is characterized by a multivariate Gaussian distribution.
Random Process

- Motivating example:
 - Environment temperature as a function of time

- Representation
 - Parametric process models: e.g., Gaussian Process model is characterized by a covariance kernel and the corresponding parameters
Some Final Questions

- How about legacy representations?
 1. Representations that are mapable to probabilities
 2. Representations that are not rigorous

- How about meta-information?
 - To what extent should this be supported in the metamodel?
Backup Slides
Brief Introduction to Probability Theory

- Probability
- Random variables
- Distribution functions: PMF, PDF, CDF
- Some common distributions: uniform, triangular, …
- Covariance
- Frequentist vs Bayesian Subjective
Basic Definitions

- **Experiment**: Activity or process with an uncertain outcome (e.g. coin flip, rolling dice, ...)

- **Simple (or elementary) event**: An individual, undecomposable outcome e_i of an experiment

- **Sample Space**: Set $S = \{e_1, e_2, \ldots \}$ containing all possible outcomes (simple events) of an experiment
 - Could be easy to characterize (e.g. rolling two dice) or hard (e.g. the voting mechanisms used for elections in 2020)
 - May not always be characterized explicitly
Basic Definitions (2)

- **Event**: A subset $E \subseteq S$ of the sample space, usually denoted by E, F, E_1, E_2, etc.
 - Set of simple events
 - E.g. “Sum of faces after rolling two dice is 4” is a set containing 3 simple events: $\{(1,3), (2,2), (3,1)\}$
 - If E and F are events, then so are $E \cap F$, $E \cup F$ and $E \setminus F$

- **Probability**: Relative likelihood (probability) $p(e_i)$ of an (simple) event e_i occurring when doing an experiment
 - For any $e_i \in S : 0 \leq p(e_i) \leq 1$
 - Furthermore: $\sum_{e \in S} p(e) = 1$
 - And with the definition for events: $\sum_{e \in E} p(e) = p(E)$
Some More Important Properties…

- $p(S) = 1$ must always be true
- Events $E \neq S$ with $p(E) = 1$ can exist
- If \emptyset is the empty event (empty set), then $p(\emptyset) = 0$
- There may be events $E \neq \emptyset$ with $p(E) = 0$
- If E^C is the complement of E, then $p(E^C) = 1 - p(E)$
- $p(E \cup F) = p(E) + p(F) - p(E \cap F)$
- If E and F are mutually exclusive (i.e., $E \cap F = \emptyset$), then $p(E \cup F) = p(E) + p(F)$
Venn Diagrams

- Useful for visualizing basic properties
- Sets denoted as bounded, 2-dimensional structures

- Mutual exclusivity:

- Intersecting events:
Conditional Probability

- Two or more events may be related
 - Knowing that an event F occurred might affect the probability that another event E also occurred
 - Reduce the effective sample space from S to F, then measure “size” of E relative to its overlap (if any) in F, rather than relative to S

 - Definition (assuming $p(F) \neq 0$): $p(E|F) = \frac{p(E \cap F)}{p(F)}$

- E and F are independent if $p(E \cap F) = p(E)p(F)$
 - Knowing that one event occurs tells you nothing about other
 - Implies $p(E|F) = p(E)$ and $p(F|E) = p(F)$
 - Not to be confused with mutual exclusivity! ($E \cap F = \emptyset$)
Random Variables

- A random variable (RV) is a numerically valued function representing the set of events that can result from an experiment
 - RV is a number whose value we don’t know for sure but we’ll usually know something about what it can be or what it is likely to be
 - Usually denoted using capital letters: X, Y, W_1, W_2, etc.
 - A RV is an assigned number to an event, not the event itself
 - Examples:
 - Coin toss: assign 0 to event “Heads“ and 1 to “Tails“
 - Measuring weight: $X = 2.305$ kg
- Probabilistic behavior described by a distribution
Discrete vs. Continuous RVs

- **Discrete**: can take on only certain separated values
 - Number of possible values could be finite or infinite
 - Examples: colors, number of valves of an engine

- **Continuous**: can take on any real value in some range
 - Number of possible values is always infinite
 - Range could be bounded on both sides, just one side, or neither
 - Examples: weight of an object, accuracy of machining
Discrete Distribution Functions

- Let X be a discrete RV with possible values (range) x_1, x_2, \ldots (finite or infinite list)

- **Probability mass function (PMF):**

 $$p(x_i) = p(X = x_i) \quad \text{for } i = 1, 2, \ldots$$

 - The statement “$X = x_i$” is an event that may or may not happen, so it has a probability of happening, as measured by the PMF

 - Since X must be equal to *some* x_i, and since the x_i’s are all distinct: $\sum_{all \ i} p(x_i) = 1$
Discrete Distribution Functions (2)

- **Cumulative distribution function (CDF)**

\[F(x) = p(X \leq x) = \sum_{\text{all } x_i \leq x} p(x_i) \]

- Probability that the value of a RV will be less than or equal to a fixed value \(x \)

- Properties:
 1) \(0 \leq F(x) \leq 1 \) for all \(x \)
 2) \(\lim_{x \to -\infty} F(x) = 0 \)
 3) \(\lim_{x \to +\infty} F(x) = 1 \)
 4) \(F(x) \) is non-decreasing in \(x \)
 5) \(F(x) \) is a step function with jumps at the \(x_i \)'s of height \(p(x_i) \)
Moments of Discrete Distributions

- **Expected Value:** first moment M_1; “center“ of a RV

 $$M_1 = E\{X\} = \sum_{all\ i} p(x_i)x_i$$

 - Weighted average of the possible values x_i, with weights being their probability (relative likelihood) of occurring
 - The expected value (or expectation) is equivalent to the mean m
 - However, it is not the value of X that you “expect” to get - $E\{X\}$ may not even be among the possible values for X!
 - Example: data set (sample) has a “center“, i.e. an average
 » Repeat experiment many times, observe many X_i
 » \bar{X} then converges to $E\{X\}$ as $n \to \infty$
Moments of Discrete Distributions (2)

- **Variance**: measure of “dispersion“ of a RV

\[
M_2 = V\{X\} = \sum_{all \ i} p(x_i)(x_i - E\{X\})^2
\]

- Other common notation: \(\sigma^2, \sigma_X^2, \text{Var}(X)\)
- Weighted average of squared deviations of the possible values \(x_i\) from the mean
- Standard deviation of \(X\) is \(\sigma = \sigma_X = \sqrt{V\{X\}}\)
- Interpretation analogous to that for \(E\{X\}\)

- **Data set (sample) has a similar measure:**
 - Sample variance: \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2\)
 - Sample standard deviation: \(s = \sqrt{s^2}\)
Continuous Distributions

- No matter how small the range of possible values for X, the *number* of possible values for X is always infinite (and hence uncountable)

- $p(X = x_i)$ is always 0

- Observed X’s are denser in regions where the probability density function $f(x)$ is high

- Height of a density is not the probability of anything!
Continuous Distribution Functions

- Let X be a continuous RV

- Probability density function (PDF):

 $f(x) \geq 0$ for all real values x

 - Total area under $f(x)$ is 1:
 \[
 \int_{-\infty}^{+\infty} f(x) \, dx = 1
 \]

 - For any fixed a and b with $a \leq b$, the probability that X will fall between a and b is equal to the area under $f(x)$ between a and b:
 \[
 p(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx
 \]
Discrete Distribution Functions (2)

- **Cumulative distribution function (CDF)**

 \[F(x) = p(X \leq x) = \int_{-\infty}^{x} f(t)dt \]

 - Probability that the value of a RV will be less than or equal to a fixed value \(x \)

 - Properties:
 1. \(0 \leq F(x) \leq 1 \) for all \(x \)
 2. \(\lim_{x \to -\infty} F(x) = 0 \)
 3. \(\lim_{x \to \infty} F(x) = 1 \)
 4. \(F(x) \) is non-decreasing in \(x \)
 5. \(F(x) \) is a continuous function with slope equal to PDF: \(f(x) = F'(x) \)

 Same as discrete!
Moments of Continuous Distributions

- **Expected Value**: first moment M_1

 \[M_1 = E\{X\} = \int_{-\infty}^{+\infty} x f(x) \, dx \]

- The expected value (or **expectation**) is equivalent to the **mean** m
- Roughly, a weighted “continuous” average of possible values for X
- Same interpretation as in discrete case: average of a large number (infinite) of observations on the RV X
Moments of Continuous Distributions (2)

- **Variance**: measure of “dispersion“ of a RV

\[
M_2 = V\{X\} = \int_{-\infty}^{+\infty} (x - E\{X\})^2 f(x) \, dx
\]

- Other common notation: \(\sigma^2, \sigma_X^2, Var(X) \)
- Standard deviation of \(X \) is \(\sigma = \sigma_X = +\sqrt{V\{X\}} \)
- Interpretation analogous to that for \(E\{X\} \)
Simple Continuous Distributions

- Uniform Distribution
 - Only lower and upper bound are known

- Triangular Distribution
 - Quick first guess (lower, upper bound and mode)

- Exponential Distribution
 - Time between random events – constant arrival rate

\[f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & x < 0 \end{cases} \]
Normal Distribution

- **Use:**
 - Errors of various types
 - Sum of a large number of other quantities (central limit theorem)
 - Maximum entropy distribution when only mean and variance are known
 - NOTE: when estimating mean μ and variance σ^2, use Student distribution (t-dist)

- **Parameters:** m (or μ), σ

\[f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}} \]
Lognormal Distribution

- **Use:**
 - Time to perform a task
 - Product of a large number of other quantities
 - Quantities that are always positive and the distribution is skewed towards zero
 - Analogy to normal distribution N:
 \[x \sim LN(m, \sigma^2) \Leftrightarrow \ln x \sim N(m, \sigma^2) \]

- **Parameters:** m (or μ), σ

\[
f(x) = \frac{1}{x \sqrt{2\pi \sigma^2}} e^{-\frac{(\ln x - m)^2}{2\sigma^2}}
\]
Beta Distribution

- **Use:**
 - When lower and upper bounds exist
 - Rough initial model – but more refined than triangular
 - Commonly used in Bayesian probability theory – easy to compute posterior distributions

- **Parameters:** α_1, α_2

\[
f(x) = \frac{x^{\alpha_1-1}(1-x)^{\alpha_2-1}}{B(\alpha_1, \alpha_2)} \quad (0 < x < 1)
\]
Weibull Distribution

- **Use:**
 - Time to complete a task
 - Time to failure for a piece of equipment
 - If the failure rate decreases over time, then $\alpha < 1$
 - If the failure rate is constant over time, then $\alpha = 1$
 - If the failure rate increases over time, then $\alpha > 1$

- **Parameters:** α, β

\[
f(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta} \right)^{\alpha - 1} e^{-(x/\beta)^\alpha} \quad (0 \leq x)
\]
Joint Distributions: More Than 1 RV

- Jointly distributed RVs or random vectors

Example:
- Input: \((P, W, S)\) = (type of part, weight, service time)
- Output: \(\{T_1, T_2, T_3, \ldots\}\) = total processing time of exiting parts

Are the individual RVs independent of each other or related?
- We will consider the special case of a pair of RVs \((X_1, X_2)\)
 Extends naturally (but messily) to higher dimensions
Joint Distributions: More Than 1 RV

- **Joint CDF** of \((X_1, X_2)\) is a function of two variables:

\[
F(X_1, X_2) = p(X_1 \leq x_1 \text{ and } X_2 \leq x_2) = p(X_1 \leq x_1, X_2 \leq x_2)
\]

- **Joint PMF** for two discrete RVs:

\[
p(x_1, x_2) = p(X_1 = x_1, X_2 = x_2)
\]

- **Joint PDF** for two continuous RVs with total volume below the resulting non-negative function equal to 1:

\[
p(a_1 \leq X_1 \leq b_1, a_2 \leq X_2 \leq b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x_1, x_2) dx_2 dx_1
\]
Covariance Between RVs

- Measures linear relation between RVs X_1 and X_2
- Covariance between X_1 and X_2 is

\[
\text{Cov}(X_1, X_2) = E \{(X_1 - E\{X_1\})(X_2 - E\{X_2\})\}
\]

- If large X_1 tends to go with large X_2, then covariance > 0
- If large X_1 tends to go with small X_2, then covariance < 0
- If there is no tendency for X_1 and X_2 to occur jointly in agreement or disagreement over being big or small, then $\text{Cov} = 0$

- Interpreting value of covariance is difficult since it depends on units of measurement
Correlation Between RVs

- **Correlation** (coefficient) between RVs X_1 and X_2 is:

 \[
 Cor(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}}
 \]

 - Has same sign as covariance
 - Always between -1 and $+1$
 - Numerical value does not depend on units of measurement
 - Dimensionless – universal interpretation

- Still only good for capturing *linear* relation between X_1 and X_2
Visualizing Correlations

No correlation

Positive correlation

What about this one?
Statistics vs. Probability Theory

Both deal with probabilities…
…but with different interpretations!

- **Statistics:**
 Analysis of frequencies of past events

- **Probability Theory:**
 Predicting the likelihood of future events

- For a good overview of the meaning of probability see: “Philosophical Foundations of Probability Theory” by Roy Weatherford
Fundamental Interpretations of Probabilities

- Many interpretations argued throughout history

- You probably learned about the frequentist interpretation
 - Probability of an event is the limit value of long run frequency of outcomes
 - E.g., coin toss: \(p(\text{heads}) \approx \frac{\# \text{ heads}}{\# \text{ tosses}} \)

- Frequentist interpretation breaks down when accepting that every event is unique — no repetition ever occurs
 - Probability of rain tomorrow
 - Probability of GT winning against Virginia on Saturday

- Is probability meaningful beyond relative frequencies?
Subjective Probabilities

- **Probability** expresses your willingness to bet or act

- Probability of an event = relative amount you are willing to pay to engage in a bet that...
 - Pays $1 if the event occurs
 - Pays $0 otherwise

 \[\Rightarrow \text{Probability} = \frac{\text{$bet}}{\$1} \]

- You should determine the amount for which you are willing to both buy and sell the bet – the **fair price**

- Subjective, but:
 - Unambiguous, since the meaning is well defined and consistent across different events
 - Operational definition, which is especially important in support of decision making
Criteria for Acceptable Probability Values

- Beliefs must be internally consistent / coherent
- Example: GT plays against Virginia
 - I believe GT has a 50% chance of winning
 - I believe Virginia has a 40% chance of winning
- Are these acceptable probability values?
 - No! Must satisfy no-sure-loss criterion — see “Dutch book” argument in textbook Chapter 4.1
- Beliefs must adhere to Kolmogorov's axioms:
 - For any event E: $0 \leq p(E) \leq 1$
 - For the space S of all possible events: $p(S) = 1$
 - For disjoint events: $p(E_1 \cup E_2 \cup E_3 \ldots \cup E_n) = \sum_{i=1}^{n} p(E_i)$
Criteria for Acceptable Probability Values

- Rational beliefs must also be externally consistent.
- What is the wrong with the following belief: "I am willing to pay $0.6 for a bet that pays $1 if a fair coin flip results in heads, $0 otherwise?"
- What is the relationship between a frequentist interpretation of an inherently random event and a subjective probability of that event?
 - Beliefs should be consistent with scientific, factual information, i.e., observations of nature.
- How much would you be willing to pay for a coin flip with a bent coin?
What is a Stochastic/Random Process?

- A stochastic process or random process is a collection of random variables — in our case, one random variable, y, for each value of x (for time series, use t instead of x)
- x can be continuous or discrete
- y can be a multidimensional vector
- A specific sample of a random process is called a realization

Brownian motion: a realization of a 2-dimensional random process
What is a Gaussian Process?

- A stochastic process or random process is a collection of random variables — in our case, one random variable, y, for each value of x.
- For a Zero-Mean Gaussian Process, $y \sim N(0, \sigma)$ for each x.
- In addition, the Gaussian process is characterized by its covariance function.
- A vector, $y(x_i)$, is characterized by a multivariate Gaussian distribution.
Meaning of Correlation

No correlation

Positive correlation: If $f(x_1)$ is above the mean then $f(x_2)$ is more likely to be above the mean also

Typically: the closer x_2 is to x_1, the stronger the correlation between $f(x_2)$ and $f(x_1)$
Typical Correlation Kernels for Kriging

EXP

GAUSS

LIN

SPLINE
Influence of Gaussian Process Parameters

Increasing roughness (Decreasing kernel width)

Increasing variance