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Overview

 Motivation

 Objectives

 What needs to be represented?

 Thoughts on how to model uncertainty in SysML

 Some background on probability theory
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Motivation

 Decision making under uncertainty is ubiquitous in SE—
risk, safety/reliability, but...
– Current approaches are often ad-hoc and qualitative

» E.g., fever charts

– Engineers and other decision makers often lack a deep 
understanding of the underlying theory

– The cost of inference with uncertainty is high

» Both in cost of modeling and cost of computation

 To move toward more quantitative, theoretically rigorous 
approaches for decision making under uncertainty, we 
need to express/model uncertainty explicitly 

 Aim to make SysML 2.0 sufficiently expressive and 
precise to support rigorous inference under uncertainty
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Objectives

 Enable representation of uncertain information in 

SysML

– Rigorous, precise

– Explicit

– Useful (the most common constructs but not necessary all)

– Extensible

 Primary focus today:

– Make some strategic decisions about scope, approach, 

transformation path…  which will then inform technical 

implementation

 Warning:  more questions than answers…
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Rigorous — Some Background on Uncertainty
Based on Weatherford: “Phil. Found. of Prob. Theory” 

 Uncertainty relates to “asserting with less than certainty”

– Predicting a future event

– Supporting a conclusion based on available (limited) evidence

 Many formalisms have been proposed for characterizing and reasoning with 

uncertainty:

– Probability theory

– Fuzzy set theory, fuzzy number, fuzzy random numbers, random fuzzy numbers…

– Possibility theory, Dempster-Shafer theory, imprecise probability theory,…

– …

 Strong consensus in the philosophical/scientific community that reasoning 

under uncertainty should (always) be based on Probability Theory

– e.g. all NASA uncertainty and risk handbooks & best practices specify a probabilistic approach

 Other approaches have been shown to lead to inconsistencies

– e.g. Dutch book argument in support of Kolmogorov axioms, etc.

 Supporting other formalisms besides probability theory is a bad idea:  

we lose (all) rigor
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Rigorous — Some Background on Uncertainty
Based on Weatherford: “Phil. Found. of Prob. Theory” 

 This seems to be in stark contrast with the new OMG RFI on 
Uncertainty Modeling which proposes to include everything 
and the kitchen sink (http://www.omgwiki.org/uncertainty/doku.php?id=start)
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Rigorous — Some Background on Uncertainty
Based on Weatherford: “Phil. Found. of Prob. Theory” 

 The calculus of probability:
– A set of rules for manipulating numbers of a certain type in order to 

produce more numbers of the same type

– Kolmogorov’s axiomatization (1933)

 A theory of probability:
– An interpretation to the calculus which leads to probability judgments

– Subjective probability by Ramsey, de Finetti, Savage, etc. 

 Probability:
– An expression of belief — personal / subjective

– Belief is measured by willingness to bet

– Unfortunately, many engineers have been taught that a probability is a 
relative frequency — which is reasonable in some contexts, but is 
ultimately too limiting

 Conclusion: to be rigorous, we should limit ourselves to 
probability theory
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What Needs to be Represented? 
Recommended Modeling Choices

 Which mathematical formalism?

– Probability theory (and only probability theory)

 Which constructs?

– Probabilities

– Distributions: PDF, PMF, CDF, moments,…

– Joint distributions

– Random processes

 Meta-information?

– Author(s), pedigree, history, underlying data/models, etc. 
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Probability

 Motivating example:

– Probability of Loss of Mission — 𝑃 𝐿𝑜𝑀

– 𝐿𝑜𝑀 is an event — a subset of the sample space of mission 

outcomes

 Unitless value type:  𝑃 ∈ 0,1 ⊂ ℝ

 This will fit directly with the proposed ValueType

definition

 Questions

– Is it important for the “event” (and maybe even the 

corresponding sample space) to be modeled explicitly?  

– Or is it sufficient to be informally referenced in the name of 

the value property?
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Probability Distribution — Random Variable

 Discrete: can take on only certain separated values

– Number of possible values could be

finite or infinite

– Examples: colors, number of valves

of an engine

 Continuous: can take on any real value in some range

– Number of possible values is always

infinite

– Range could be bounded on both

sides, just one side, or neither

– Examples: weight of an object,

accuracy of machining

pmf – probability

values

pdf  units of 1/[value]

values
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Probability Distribution — Random Variable

 Motivating example:

– car.mass:kg = 1000

– car.mass 1000 [kg]

 Any physical quantity is uncertain and should 

therefore be modeled as a random variable

– The realized mass for a particular vehicle is unknowable

– E.g., predicted car mass, measured car mass

– car.mass Normal(1000,100) [kg]   (mean and stdev as params)

– The value specification is replaced by a distribution 

specification
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Probability Distribution — Random Variable

 Where does Distribution fit in?

– Not a ValueType but a ValueElement

– Should not be a stereotype (as in SysML1.x) but a model 

element that is defined in a library and is thus extensible
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Probability Distribution — Random Variable

 Distribution
– ValueType – must equal the type of the ValueElement

– DistributionKind  continuous, discrete, mixed,… TBD

– 1..*  parameters 

» The number of parameters depends on the distribution type

» The types of the parameters depends on the ValueType (but 
is not necessarily the same – depends on distribution type)

– Some derived properties for all distributions…

» \mean:ValueType

» \median:ValueType

» \mode:ValueType

» \stdDev:ValueType

» \skewness:Real

» \excKurtosis:Real

Not sure how important all these are

and whether they should be required.

Not easily computed for some 

distribution types…
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Probability Distribution — Random Variable

 Should every value property be probabilistic?

– No. – e.g., a specified upper bound on car.mass is 

deterministic

– car.maxMass Deterministic(1000) [kg]

 Should the default be a Deterministic distribution or a 

null/unspecified distribution?

 We need to distinguish between 

integer-valued and real-valued properties

and constrain the allowed DistributionKind

accordingly 
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Probability Distribution — Random Variable

 What does an instance specification look like?

– Is it a sample of a distribution or an instance of the 

distribution with specific distribution parameters?

 Some parametrizations of distributions can be quite 

complicated – e.g., a PMF is defined as a set of 

(value, probability) pairs.  What is the right balance 

between expressivity, extensibility and simplicity in 

the definition of Distribution?
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Joint Probability Distributions

 Multiple random variables may be dependent

 This dependence is a relationship between random 

variables

 Motivating example:

– Modeling the uncertainty of properties constrained by a 

model will require joint distributions

Model

𝒚 = 𝒇 𝒙 + 𝜺

𝑥1 𝑦1

𝜺𝑥2 𝑦2
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Joint Probability Distributions
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Joint Probability Distributions

 …to be completed

 Some ideas for representation:

– Parametric joint distributions: e.g., multivariate Gaussian is 

characterized by a mean vector and a covariance matrix

– Copulas  

– Joint sample sets
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Random Process

 A stochastic process or random process is a collection of 
(dependent) random variables — one random variable, 𝑦, for each 
value of 𝑥 (or 𝑡 for time series)

 E.g., for a zero-mean Gaussian process, 𝑦~𝒩(0, 𝜎2) for each 𝑥𝑖
 In addition, the Gaussian process is characterized by its covariance 

function — 𝑦 𝐱 , is characterized by a multivariate Gaussian 
distribution
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Random Process

 Motivating example:

– Environment temperature as a function of time

 Representation

– Parametric process models:  e.g., Gaussian Process model 

is characterized by a covariance kernel and the 

corresponding parameters
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Some Final Questions

 How about legacy representations?

1. Representations that are mapable to probabilities

2. Representations that are not rigorous

 How about meta-information?

– To what extent should this be supported in the metamodel?
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Brief Introduction to Probability Theory

 Probability

 Random variables

 Distribution functions: PMF, PDF, CDF

 Some common distributions: uniform, triangular, …

 Covariance

 Frequentist vs Bayesian Subjective
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Basic Definitions

 Experiment: Activity or process with an uncertain 

outcome (e.g. coin flip, rolling dice, ...)

 Simple (or elementary) event: An individual, 

undecomposable outcome 𝑒𝑖 of an experiment

 Sample Space: Set 𝑆 = 𝑒1, 𝑒2, … containing all 

possible outcomes (simple events) of an experiment

– Could be easy to characterize (e.g. rolling two dice) or hard 

(e.g. the voting mechanisms used for elections in 2020)

– May not always be characterized explicitly
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Basic Definitions (2)

 Event: A subset 𝐸 ⊆ 𝑆 of the sample space, usually 

denoted by 𝐸, 𝐹, 𝐸1, 𝐸2, etc.

– Set of simple events

– E.g. “Sum of faces after rolling two dice is 4” is a set 

containing 3 simple events: { 1,3 , 2,2 , 3,1 }

– If 𝐸 and 𝐹 are events, then so are 𝐸 ∩ 𝐹, 𝐸 ∪ 𝐹 and 𝐸 \ 𝐹

 Probability: Relative likelihood (probability) 𝑝(𝑒𝑖) of an 

(simple) event 𝑒𝑖 occuring when doing an experiment

– For any 𝑒𝑖 ∈ 𝑆 : 0 ≤ 𝑝 𝑒𝑖 ≤ 1

– Furthermore: σ𝑒∈𝑆 𝑝(𝑒) = 1

– And with the definition for events: σ𝑒∈𝐸 𝑝(𝑒) = 𝑝(𝐸)
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Some More Important Properties…

 𝑝 𝑆 = 1 must always be true

 Events 𝐸 ≠ 𝑆 with 𝑝 𝐸 = 1 can exist

 If ∅ is the empty event (empty set), then 𝑝 ∅ = 0

 There may be events 𝐸 ≠ ∅ with 𝑝 𝐸 = 0

 If 𝐸𝐶 is the complement of 𝐸, then 𝑝 𝐸𝐶 = 1 − 𝑝 𝐸

 𝑝 𝐸 ∪ 𝐹 = 𝑝 𝐸 + 𝑝 𝐹 − 𝑝(𝐸 ∩ 𝐹)

 If 𝐸 and 𝐹 are mutually exclusive (i.e., 𝐸 ∩ 𝐹 = ∅), 

then 𝑝 𝐸 ∪ 𝐹 = 𝑝 𝐸 + 𝑝 𝐹
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Venn Diagrams

 Useful for visualizing basic 

properties

 Sets denoted as bounded,

2-dimensional structures

 Mutual exclusivity:

S

𝐸𝐶
Event 𝐸

𝑒1

𝑒2
𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

S

𝐴
𝐵

 Intersecting events:

S

𝐴
𝐵

𝐶

𝐴 ∩ 𝐶 𝐶 ∩ 𝐵
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Conditional Probability

 Two or more events may be related

– Knowing that an event 𝐹 occurred might affect the 

probability that another event 𝐸 also occurred

– Reduce the effective sample space from 𝑆 to 𝐹, then 

measure “size” of 𝐸 relative to its overlap (if any) in 𝐹, 

rather than relative to 𝑆

– Definition (assuming 𝑝(𝐹) ≠ 0):    𝑝 𝐸 𝐹 =
𝑝(𝐸∩𝐹)

𝑝(𝐹)

 𝐸 and 𝐹 are independent if 𝑝 𝐸 ∩ 𝐹 = 𝑝 𝐸 𝑝(𝐹)

– Knowing that one event occurs tells you nothing about other

– Implies 𝑝 𝐸 𝐹 = 𝑝 𝐸 and 𝑝 𝐹 𝐸 = 𝑝 𝐹

– Not to be confused with mutual exclusivity! (𝐸 ∩ 𝐹 = ∅)
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Random Variables

 A random variable (RV) is a numerically valued 

function representing the set of events that can result 

from an experiment

– RV is a number whose value we don’t know for sure but 

we’ll usually know something about what it can be or what it 

is likely to be

– Usually denoted using capital letters:  𝑋, 𝑌, 𝑊1, 𝑊2, etc.

– A RV is an assigned number to an event, not the event itself

– Examples:

» Coin toss: assign 0 to event “Heads“ and 1 to “Tails“

» Measuring weight: 𝑋 = 2.305 𝑘𝑔

 Probabilistic behavior described by a distribution
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Discrete vs. Continuous RVs

 Discrete: can take on only certain separated values

– Number of possible values could be

finite or infinite

– Examples: colors, number of valves

of an engine

 Continuous: can take on any real value in some range

– Number of possible values is always

infinite

– Range could be bounded on both

sides, just one side, or neither

– Examples: weight of an object,

accuracy of machining

pmf

values

pdf

values
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Discrete Distribution Functions

 Let 𝑋 be a discrete RV with possible values (range) 

𝑥1, 𝑥2, … (finite or infinite list)

 Probability mass function (PMF):

– The statement “𝑋 = 𝑥𝑖” is an event that may or may not 

happen, so it has a probability of happening, as measured 

by the PMF

– Since 𝑋 must be equal to some 𝑥𝑖, and since the 𝑥𝑖’s are all 

distinct: σ𝑎𝑙𝑙 𝑖 𝑝 𝑥𝑖 = 1

𝑝 𝑥𝑖 = 𝑝(𝑋 = 𝑥𝑖) for 𝑖 = 1, 2…
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Discrete Distribution Functions (2)

 Cumulative distribution function (CDF)

– Probability that the value of a RV will be less than or equal 

to a fixed value 𝑥

– Properties:

1) 0 ≤ 𝐹(𝑥) ≤ 1 for all 𝑥

2) lim
𝑥→−∞

𝐹 𝑥 = 0

3) lim
𝑥→+∞

𝐹 𝑥 = 1

4) 𝐹 𝑥 is non-decreasing in 𝑥

5) 𝐹 𝑥 is a step function with jumps

at the 𝑥𝑖 ’s of height 𝑝(𝑥𝑖)

𝐹 𝑥 = 𝑝 𝑋 ≤ 𝑥 = σ𝑎𝑙𝑙 𝑥𝑖≤𝑥
𝑝(𝑥𝑖)

cdf

x

1

0
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Moments of Discrete Distributions

 Expected Value: first moment 𝑀1; “center“ of a RV

– Weighted average of the possible values 𝑥𝑖, with weights 

being their probability (relative likelihood) of occuring

– The expected value (or expectation) is equivalent to the 

mean 𝑚

– However, it is not the value of 𝑋 that you “expect” to get -

𝐸{𝑋} may not even be among the possible values for 𝑋!

– Example: data set (sample) has a “center“, i.e. an average

» Repeat experiment many times, observe many 𝑋𝑖
» ത𝑋 then converges to 𝐸{𝑋} as 𝑛 → ∞

𝑀1 = 𝐸{𝑋} = σ𝑎𝑙𝑙 𝑖 𝑝(𝑥𝑖)𝑥𝑖
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Moments of Discrete Distributions (2)

 Variance: measure of “dispersion“ of a RV

– Other common notation: 𝜎2, 𝜎𝑋
2
, 𝑉𝑎𝑟(𝑋)

– Weighted average of squared deviations of the possible 
values 𝑥𝑖 from the mean

– Standard deviation of 𝑋 is 𝜎 = 𝜎𝑋 = + 𝑉{𝑋}

– Interpretation analogous to that for 𝐸{𝑋}

 Data set (sample) has a similar measure:

– Sample variance: 𝑠2 =
1

𝑛−1
σ𝑖=1
𝑛 (𝑋𝑖 − ത𝑋)2

– Sample standard deviation: 𝑠 = + 𝑠2

𝑀2 = 𝑉{𝑋} = σ𝑎𝑙𝑙 𝑖 𝑝 𝑥𝑖 (𝑥𝑖−𝐸{𝑋})
2
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Continuous Distributions

 No matter how small the

range of possible values

for 𝑋, the number of

possible values for X is

always infinite (and hence

uncountable)

 𝑝(𝑋 = 𝑥𝑖) is always 0

 Observed 𝑋’s are denser in regions where the 

probability density function f(x) is high

 Height of a density is not the probability of anything!
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Continuous Distribution Functions

 Let 𝑋 be a continuous RV

 Probability density function (PDF):

– Total area under 𝑓 𝑥 is 1:

– For any fixed 𝑎 and 𝑏 with 𝑎 ≤ 𝑏, the probability that 𝑋 will 

fall between 𝑎 and 𝑏 is equal to the area under 𝑓 𝑥
between 𝑎 and 𝑏:

𝑓 𝑥 ≥ 0 for all real values 𝑥

𝑝 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥

∞−׬
+∞

𝑓 𝑥 𝑑𝑥 = 1
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Discrete Distribution Functions (2)

 Cumulative distribution function (CDF)

– Probability that the value of a RV will be less than or equal 

to a fixed value 𝑥

– Properties:

1) 0 ≤ 𝐹(𝑥) ≤ 1 for all 𝑥

2) lim
𝑥→−∞

𝐹 𝑥 = 0

3) lim
𝑥→∞

𝐹 𝑥 = 1

4) 𝐹 𝑥 is non-decreasing in 𝑥

5) 𝐹 𝑥 is a continuous function

with slope equal to PDF: 𝑓 𝑥 = 𝐹′(𝑥)

𝐹 𝑥 = 𝑝 𝑋 ≤ 𝑥 = ∞−׬
𝑥
𝑓 𝑡 𝑑𝑡

Same as

discrete!

cdf

x

1

0
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Moments of Continuous Distributions

 Expected Value: first moment 𝑀1

– The expected value (or expectation) is equivalent to the 

mean 𝑚

– Roughly, a weighted “continuous” average of possible 

values for 𝑋

– Same interpretation as in discrete case:  average of a large 

number (infinite) of observations on the RV 𝑋

𝑀1 = 𝐸{𝑋} = ∞−׬
+∞

𝑥𝑓 𝑥 𝑑𝑥
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Moments of Continuous Distributions (2)

 Variance: measure of “dispersion“ of a RV

– Other common notation: 𝜎2, 𝜎𝑋
2
, 𝑉𝑎𝑟(𝑋)

– Standard deviation of 𝑋 is 𝜎 = 𝜎𝑋 = + 𝑉{𝑋}

– Interpretation analogous to that for 𝐸{𝑋}

𝑀2 = 𝑉{𝑋} = ∞−׬
+∞

(𝑥 − 𝐸 𝑋 )2𝑓 𝑥 𝑑𝑥
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Simple Continuous Distributions

 Uniform Distribution

– Only lower and upper 

bound are known

 Triangular Distribution

– Quick first guess (lower, 

upper bound and mode)

 Exponential Distribution

– Time between random 

events – constant arrival 

rate



 ,  0
( )

0        ,  0

xe x
f x

x

  
 
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Normal Distribution

 Use:

– Errors of various types

– Sum of a large number of 

other quantities (central limit 

theorem)

– Maximum entropy distribution 

when only mean and variance 

are known

– NOTE: when estimating 

mean 𝜇 and variance 𝜎2, use 

Student distribution (t-dist)

 Parameters: 𝑚 (or 𝜇), 𝜎
𝑓 𝑥 =

1

2𝜋𝜎2
𝑒
−
𝑥−𝑚 2

2𝜎2
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Lognormal Distribution

 Use:

– Time to perform a task

– Product of a large number 

of other quantities

– Quantities that are always 

positive and the 

distribution is skewed 

towards zero

– Analogy to normal 

distribution 𝑁:

 Parameters: 𝑚 (or 𝜇), 𝜎

𝑓 𝑥 =
1

𝑥 2𝜋𝜎2
𝑒
−
ln 𝑥−𝑚 2

2𝜎2

𝑥~𝐿𝑁(𝑚, 𝜎2)֞ ln 𝑥 ~𝑁(𝑚, 𝜎2)
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Beta Distribution

 Use:

– When lower and upper 

bounds exist

– Rough initial model – but 

more refined then 

triangular

– Commonly used in 

Bayesian probability 

theory – easy to compute 

posterior distributions

 Parameters: 𝛼1, 𝛼2 𝑓 𝑥 =
𝑥𝛼1 −1 1 − 𝑥 𝛼2 −1

𝐵(𝛼1, 𝛼2)
0 < 𝑥 < 1
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Weibull Distribution

 Use:
– Time to complete a task

– Time to failure for a piece 
of equipment

– If the failure rate 
decreases over time, then 
𝛼 < 1

– If the failure rate is 
constant over time, then 
𝛼 = 1

– If the failure rate increases 
over time, then 𝛼 > 1

 Parameters: 𝛼, 𝛽 𝑓 𝑥 =
𝛼

𝛽

𝑥

𝛽

𝛼−1

𝑒−(𝑥/𝛽)
𝛼

0 ≤ 𝑥
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Joint Distributions: More Than 1 RV

 Jointly distributed RVs or random vectors

 Example:

– Input: (𝑃, 𝑊, 𝑆) = (type of part, weight, service time)

– Output: 𝑇1, 𝑇2, 𝑇3, … = total processing time of exiting parts

 Are the individual RVs independent of each other or 

related?

– We will consider the special case of a pair of RVs 𝑋1, 𝑋2
Extends naturally (but messily) to higher dimensions
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Joint Distributions: More Than 1 RV

 Joint CDF of 𝑋1, 𝑋2 is a function of two variables:

 Joint PMF for two discrete RVs:

 Joint PDF for two continuous RVs with total volume 

below the resulting non-negative function equal to 1:

𝐹(𝑋1, 𝑋2) = 𝑝(𝑋1 ≤ 𝑥1 and 𝑋2 ≤ 𝑥2)
= 𝑝(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2)

𝑝(𝑥1, 𝑥2) = 𝑝(𝑋1 = 𝑥1, 𝑋2 = 𝑥2)

𝑝 𝑎1 ≤ 𝑋1 ≤ 𝑏1, 𝑎2 ≤ 𝑋2 ≤ 𝑏2 = 𝑎1׬
𝑏1 𝑎2׬

𝑏2 𝑓 𝑥1, 𝑥2 𝑑𝑥2 𝑑𝑥1
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Covariance Between RVs

 Measures linear relation between RVs 𝑋1 and 𝑋2
 Covariance between 𝑋1 and 𝑋2 is

– If large 𝑋1 tends to go with large 𝑋2, then covariance > 0

– If large 𝑋1 tends to go with small 𝑋2, then covariance < 0

– If there is no tendency for 𝑋1 and 𝑋2 to occur jointly in 

agreement or disagreement over being big or small, then 

𝐶𝑜𝑣 = 0

 Interpreting value of covariance is difficult since it 
depends on units of measurement

𝐶𝑜𝑣(𝑋1, 𝑋2) = 𝐸 𝑋1 − 𝐸 𝑋1 𝑋2 − 𝐸 𝑋2
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Correlation Between RVs

 Correlation (coefficient) between RVs 𝑋1 and 𝑋2 is:

– Has same sign as covariance

– Always between –1 and +1

– Numerical value does not depend on units of measurement

– Dimensionless – universal interpretation

 Still only good for capturing linear relation between 𝑋1
and 𝑋2

𝐶𝑜𝑟(𝑋1, 𝑋2) =
𝐶𝑜𝑣(𝑋1, 𝑋2)

𝜎𝑋1𝜎𝑋2



49ASE 6002: Systems Design and Analysis2008-2012 Copyright © Chris Paredis. All Rights Reserved.

Visualizing Correlations
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Statistics vs. Probability Theory

Both deal with probabilities…

…but with different interpretations!

 Statistics:

Analysis of frequencies of past events

 Probability Theory:

Predicting the likelihood of future events

 For a good overview of the meaning of probability see: “Philosophical 

Foundations of Probability Theory” by Roy Weatherford
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Fundamental Interpretations of Probabilities

 Many interpretations argued throughout history

 You probably learned about the frequentist
interpretation

– Probability of an event is the limit value of long run 
frequency of outcomes

– E.g., coin toss: p(heads) ≈ # heads / # tosses 

 Frequentist interpretation breaks down when 
accepting that every event is unique — no repetition 
ever occurs

– Probability of rain tomorrow

– Probability of GT winning against Virginia on Saturday

 Is probability meaningful beyond relative frequencies?
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Subjective Probabilities

 Probability expresses your willingness to bet or act

 Probability of an event = relative amount you are 
willing to pay to engage in a bet that...

– Pays $1 if the event occurs

– Pays $0 otherwise

 Probability = $bet / $1

 You should determine the amount for which you are 
willing to both buy and sell the bet – the fair price

 Subjective, but:
– Unambiguous, since the meaning is well defined and 

consistent across different events

– Operational definition, which is especially important in 
support of decision making
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Criteria for Acceptable Probability Values

 Beliefs must be internally consistent / coherent

 Example: GT plays against Virginia

– I believe GT has a 50% chance of winning

– I believe Virginia has a 40% chance of winning 

 Are these acceptable probability values?

– No! Must satisfy no-sure-loss criterion — see “Dutch book” 

argument in textbook Chapter 4.1

 Beliefs must adhere to Kolmogorov's axioms:

– For any event 𝐸: 0 ≤ 𝑝 𝐸 ≤ 1

– For the space 𝑆 of all possible events: 𝑝 𝑆 = 1

– For disjoint events: 𝑝(𝐸1 ∪ 𝐸2 ∪ 𝐸3… ∪ 𝐸𝑛) = σ𝑖=1
𝑛 𝑝 𝐸𝑖
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Criteria for Acceptable Probability Values

 Rational beliefs must also be externally consistent

 What is the wrong with the following belief: ”I am 

willing to pay $0.6 for a bet that pays $1 if a fair coin 

flip results in heads, $0 otherwise”

 What is the relationship between a frequentist

interpretation of an inherently random event and a 

subjective probability of that event?

– Beliefs should be consistent with scientific, factual 

information, i.e., observations of nature

 How much would you be willing to pay for a coin flip 

with a bent coin?



55ASE 6002: Systems Design and Analysis2008-2012 Copyright © Chris Paredis. All Rights Reserved.

What is a Stochastic/Random Process?

 A stochastic process or random process is a collection of 

random variables — in our case, one random variable, 𝑦, for 

each value of 𝑥 (for time series, use 𝑡 instead of 𝑥)

 𝑥 can be continuous or discrete

 𝑦 can be a multidimensional vector

 A specific sample of a random process

is called a realization

Brownian motion: a realization of a 

2-dimensional random process
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What is a Gaussian Process?

 A stochastic process or random process is a collection of random 
variables — in our case, one random variable, 𝑦, for each value of 𝑥

 For a Zero-Mean Gaussian Process, 𝑦~𝑁(0, 𝜎) for each 𝑥
 In addition, the Gaussian process is characterized by its covariance 

function

 A vector, 𝑦(𝑥𝑖), is characterized by a multivariate Gaussian 
distribution
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Meaning of Correlation
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Positive correlation: If 𝑓(𝑥1) is above the mean 

then 𝑓(𝑥2) is more likely to be above the mean also 

𝑥1

𝑥

𝑓(𝑥)

𝑥2

is more likely than

Typically:  the closer 𝑥2 is to 𝑥1, the stronger 

the correlation between 𝑓 𝑥2 and 𝑓(𝑥1)
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Typical Correlation Kernels for Kriging
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