



John Watson Lockheed Martin 2/24/2014

- Used the SEBoK to identify
  - Description of Knowledge Areas
  - Organized based on 15288 Life Cycle Stages
- ISO/IEC 15288
  - Definition of Life Cycle Stages
  - Content of Life Cycle Stages



## Organize Use Cases by Life Cycle Phases

- Exploratory/Concept Stage
- System Development Stage
  - Management Use Cases
  - SE Domain Use Cases
  - Validation and Verification Use Cases
- Production Stage
- Product and Service Life Management Stage



#### System Architecture Domain Activities

- Analyze Stakeholder Needs
- Analyze Missions
- Analyze System Behavior
- Derive system requirements
- Derive logical and physical structure
- Derive System Components Specifications
- Manage System Life Cycle Costs



### SE Domain Integration and Information Layers

Domain

Definition

System Architecture

#### • Each SE Domain;

- Contributes domain specific information
- Has Responsibility for their information content
- Information content can reference content from other domains
- Iterates solution with other Domains
- Has one or more views to information content
- Defines and manages Requirements
- Measures impact of their changes in their domain and across other domains
- Conducts Reviews
- Produces Deliverables

#### **Mission Analysis Domain**

Infrastructure Engineering Domain

SWaP Management Domain

**RMA Management Domain** 

Structural Analysis Domain

Security Engineering Domain

Safety Engineering Domain

Performance Analysis Domain

Verification and Validation Domain

Human Systems Integration Domain

**Environmental Engineering Domain** 

**Development Management Domain** 



## Expanded SysML Context



## Suggested Approach

- Define the System Engineering Development System
   Context
  - Not as set of independent tools

- Identify the SE Use Cases this System must support
  - First Pass Identifying Use Case Goal, Primary Actor and Textual Description
  - Select the few that will provide the most SysML benefit
    - Derive Functional entities, via Activity Diagrams
    - Derive SysML Requirements
    - Determine to what extent is SysML supporting System Engineering







#### Future Use

- Architect a Development System
  - Decompose System into a set of Components with Interfaces
  - Example Components Modeling Tools, Analysis Tools, CM tools. Etc.
  - Components and Interfaces are standards based, e.g. OSLC
- Provide input, clarity and vision to:
  - Standards Groups
    - Identifying enhancements to existing standards
    - Demonstrate the need of integration threads across standards
    - Identify new standards
  - Tool Vendors
    - A full view of the need
    - A specification of what needs to be built Tool Vendors



#### Life Cycle System Engineering Use Cases

#### • Exploratory/Concept Stage

- Evaluate Customer Proposal
- Define Stakeholders Needs
- Analyze System Missions
- Define the System Requirements
- Analyze System Life-cycle Costs

#### System Development Stage

- Management Use Cases
  - Plan a Development Cycle
  - Manage Development Progress
  - Manage Development Environment



#### Life Cycle System Engineering Use Cases

System Development Stage (Continued)

#### – SE Domain Use Cases

- Derive Product Architecture
- Evaluate System Safety
- Perform System Reliability, Availability and Maintainability Engineering
- Perform System Security Engineering
- Analyze System Performance
- Allocate and Manage SWaP
- Perform Trade Study
- Analyze Behavior Correctness
- Manage Product Lines
- Integrate Human Domain Constraints
- Perform Environmental Engineering
- Integrate with Implementation Domains
- Perform EMI Engineering



#### Life Cycle System Engineering Use Cases

- System Development Stage (Continued)
  - Validation and Verification Use Cases
    - Develop Verification Plan and Procedures
    - Develop a System Integration Plan
    - Execute a Verification Test Procedure
    - Provide V&V Status
- Production Stage Use Cases
  - Support Produce-ability Engineering

#### Product and Service Life Management

- Support Initial Installation
- Evaluate Change Request
- Support System Modernization Plan
- Support System Disposal and Retirement



### Activity - Perform System Security Engineering

- **Goal** The goal of this use case is to incorporate in the system of interest the necessary security design features to meet the needs of the customer.
- **Primary Actor** SE Security Specialist
- Secondary Actors –
- Preconditions
  - 1. A list of known potential threats are available
  - 2. A list of applicable policy documentation is available
- Activity This use case begins early in the development cycle and continues to iterate through the remaining development cycles as the product matures.
  - 1. Obtain and/or define the customer's security protection goals for the following security domains including:
    - 1. Information security governance and risk management
    - 2. Access control
    - 3. Cryptography
    - 4. Physical (environmental) security
    - 5. Security architecture and design
    - 6. Business continuity and disaster recovery planning
    - 7. Telecommunications and network security
    - 8. Application development security
    - 9. Operations security
    - 10. Legal, regulations, investigations, and compliance
  - 2. Capture the system vulnerabilities by analyzing the known or perceived threats and their behavior.



#### Activity - Perform System Security Engineering

- 3. Derive a set of security requirements that address the vulnerabilities and other applicable security policy documents.
- 4. Evaluate points of Interface;
  - 1. Identify all external interface points
  - 2. Identify internal interface points of major subsystems such as server farms, sensors, security management, business network, etc.
  - 3. Identifying the points of interface may have been completed earlier in a use case such as "Derive Product Architecture".
  - 4. Determine and capture the level of security required for the information exchanged at the points of interface.
- 5. Capture the security architecture design that satisfy these requirements and minimize or contain the vulnerabilities.
- 6. Measure the change impact to other domains and mitigate issues
- 7. Conduct appropriate reviews within engineering and with the customer
- 8. Capture test cases that validate the security requirements have been reached.
- 9. If the proposed design does not meet the System goals, refine the design.
- 10. Prepare the necessary documentation for system accreditation and certification.

**Post Conditions** – Accreditation Certificate is submitted



# Perform System Security Engineering UC



## **Artifact Review Pattern**





#### Summary

- 4
- Examine the complete System Engineering Context to examine:
  - How well is SysML supporting System Engineering activities?
  - Are there other areas where SysML could be expanded?
- Use SysML to:
  - Define that Context
  - Define System Engineering Use Cases
  - Drive the language requirements
- One Use Case Example was shown but;
  - We expect to see re-occurring patterns and requirements throughout many of the use cases



### References

- Pyster, A. and D.H. Olwell (eds). 2013. *The Guide to the Systems Engineering Body* of Knowledge (SEBoK), v. 1.2. Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed DATE. www.sebokwiki.org/
- International Standard ISO/IEC 15288 and IEEE 15288 2008, Second Edition 2008-02-01, Systems and software engineering - System life cycle processes
- Pramanik, Sarah. "Security Architecture Approaches." 2013. Crosstalk November/December



# Backup Slides





## What to Harvest from Use Cases

- Functional entities
  - Represents the Development System functionality required by Systems Engineers to do their work
  - Examine how **SysML** is used to support each functional entity
  - Many will appear in multiple Use Cases
  - Use these functional entities to derive SysML Requirements
- Functional Entity Examples;
  - Conduct a Review, Capture System behavior/structure/requirements, measure change impact, share information across domains, produce a deliverable, analyze performance, select a domain view, select a multidomain view, create a baseline, assess change impact, manage domain information, etc.



## Infrastructure Engineering Domain Activities

- Define Hardware platforms and performance
- Define Physical Network
- Define System Management
  - Define Status and Error Messages
  - Status and error collection and reporting
  - Error management
- Define common system services
- Time management
- Redundancy Architecture



## Industry Available Product Phases

#### Generic Life Cycle (ISO 15288:2008)

| Exploratory<br>Stage | Course the Stars | Development<br>Stage | Production<br>Stage | Utilization Stage | Retirement<br>Stage |
|----------------------|------------------|----------------------|---------------------|-------------------|---------------------|
|                      | Concept Stage    |                      |                     | Support Stage     |                     |

Typical High-Tech Commercial Systems Integrator

| Study Period                                |                                |                                  |                      | Implementation Period      |                      |                       | Operations Period   |                                           |                       |
|---------------------------------------------|--------------------------------|----------------------------------|----------------------|----------------------------|----------------------|-----------------------|---------------------|-------------------------------------------|-----------------------|
| User<br>Requirements<br>Definition<br>Phase | Concept<br>Definition<br>Phase | System<br>Specification<br>Phase | Acq<br>Prep<br>Phase | Source<br>Select.<br>Phase | Development<br>Phase | Verification<br>Phase | Deployment<br>Phase | Operations<br>and<br>Maintenance<br>Phase | Deactivation<br>Phase |

Typical High-Tech Commercial Manufacturer

|                                  | Study Period                   |                                 |                        | nplementatio              | n Period                  | Operations Period                 |                                               |                       |
|----------------------------------|--------------------------------|---------------------------------|------------------------|---------------------------|---------------------------|-----------------------------------|-----------------------------------------------|-----------------------|
| Product<br>Requirements<br>Phase | Product<br>Definition<br>Phase | Product<br>Development<br>Phase | Engr<br>Model<br>Phase | Internal<br>Test<br>Phase | External<br>Test<br>Phase | Full-Scale<br>Production<br>Phase | Manufacturing,<br>Sales, and<br>Support Phase | Deactivation<br>Phase |

#### US Department of Defense (DoD) 5000.2

|    | User                      | Y                                              | 7 V                                         |                                                            | 7                        | юс                            | FOC                                                           |
|----|---------------------------|------------------------------------------------|---------------------------------------------|------------------------------------------------------------|--------------------------|-------------------------------|---------------------------------------------------------------|
| Re | Tech<br>Dpport<br>sources | Pre-System<br>Materiel<br>Solution<br>Analysis | ns Acquisition<br>Technology<br>Development | Systems<br>Engineering and<br>Manufacturing<br>Development | Acquisit<br>Produ<br>Dep | tion<br>uction and<br>loyment | Sustainment<br>Operations and Support<br>(including Disposal) |

NASA

|    | Form                            | ulation                                         | App                                                       | Approval Implementation                   |                                                           |                                         |                      |
|----|---------------------------------|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------|
|    | Pre-Phase A:<br>Concept Studies | Phase A:<br>Concept & Technology<br>Development | Phase B:<br>Preliminary Design &<br>Technology Completion | Phase C:<br>Final Design &<br>Fabrication | Phase D:<br>System Assembly<br>Integration & Test, Launch | Phase E:<br>Operations &<br>Sustainment | Phase F:<br>Closeout |
| _  |                                 |                                                 |                                                           |                                           |                                                           |                                         |                      |
| Fe | Feasible Concept 🗕 🗕            | <ul> <li>Top-Level Architecture</li> </ul>      | ► Functional Baseline →                                   | Allocated  Product Baseline  Product      | $\rightarrow$                                             | As Deployed Baseline                    |                      |

#### US Department of Energy (DoE)

|                  | Project Planning Period    |                           |                      | Project Execution       |                 |                         | Mission                 |                          |  |  |
|------------------|----------------------------|---------------------------|----------------------|-------------------------|-----------------|-------------------------|-------------------------|--------------------------|--|--|
|                  | Pre-Project                | Preconceptual<br>Planning | Conceptual<br>Design | Preliminary<br>Design   | Final<br>Design | Construction            | Acceptance              | Operations               |  |  |
| Typical          | $\overline{\mathbf{A}}$    | $\overline{\mathbf{v}}$   |                      |                         |                 | $\overline{\mathbf{v}}$ | $\overline{\mathbf{A}}$ | $\overline{\mathbf{v}}$  |  |  |
| ecision<br>Gates | New Initiative<br>Approval | e Concept<br>Approval     |                      | Development<br>Approval | Pr              | oduction<br>pproval     | Operational<br>Approval | Deactivation<br>Approval |  |  |

