SysEng/2017-09-04

RFP Template: ab/15-06-01

Object Management Group

109 Highland Avenue
Needham, MA 02494
USA

Telephone: +1-781-444-0404
Facsimile: +1-781-444-0320
rfp@omg.org

Systems Modeling Language (SysML®) v2
Request For Proposal (RFP)
DRAFT
OMG Document: syseng/2017-09-04
Letters of Intent due: <day> <month> <year>
Submissions due: <day> <month> <year>
<Note to RFP Editors: spell out month name; e.g., January>

Objective of this RFP

This RFP specifies the requirements for the next generation of the OMG Systems Modeling Language (OMG SysML® v2) that are intended to address many of the limitations of the current version of OMG SysML® v1.5 to enable the more effective application of model-based systems engineering (MBSE). In particular, the emphasis for SysML v2 is to improve the precision, expressiveness, interoperability, and integration of the language concepts relative to SysML v1. The SysML v2 modeling language will express the core concepts required to precisely specify a system, its elements, and its environment (i.e., the system model). The language will be specified as both a SysML profile of UML and as a SysML metamodel. A complementary SysML v2 API and Services RFP is intended to further enhance interoperability by specifying standard services to access SysML v2 models.

1 Introduction

1.1 Goals of OMG

The Object Management Group (OMG) is a software consortium with an international membership of vendors, developers, and end users. Established in 1989, its mission is to help computer users solve enterprise integration problems by supplying open, vendor-neutral portability, interoperability and reusability specifications based on Model Driven Architecture (MDA). MDA defines an approach to IT system specification that separates the specification of system functionality from the specification of the implementation of that functionality on a specific technology platform, and provides a set of guidelines for structuring specifications expressed as models. OMG has published many widely-used specifications such as UML [UML], BPMN [BPMN], MOF [MOF], XMI [XMI], DDS [DDS] and CORBA [CORBA], to name but a few significant ones.

1.2 Organization of this document

The remainder of this document is organized as follows:

Section 2 – Architectural Context. Background information on OMG’s Model Driven Architecture.

Section 3 – Adoption Process. Background information on the OMG specification adoption process.

Section 4 – Instructions for Submitters. Explanation of how to make a submission to this RFP.

Section 5 – General Requirements on Proposals. Requirements and evaluation criteria that apply to all proposals submitted to OMG.

Section 6 – Specific Requirements on Proposals. Problem statement, scope of proposals sought, mandatory requirements, non-mandatory features, issues to be discussed, evaluation criteria, and timetable that apply specifically to this RFP.

Appendix A – References and Glossary Specific to this RFP

Appendix B – General References and Glossary

Appendix C - SysML v2 Requirement Support Document
1.3 Conventions

The key words "shall", "shall not", "should", "should not", "may" and "need not" in this document should be interpreted as described in Part 2 of the ISO/IEC Directives [ISO2]. These ISO terms are compatible with the same terms in IETF RFC 2119 [RFC2119].

1.4 Contact Information

Questions related to OMG’s technology adoption process and any questions about this RFP should be directed to rfp@omg.org.

OMG documents and information about the OMG in general can be obtained from the OMG’s web site: http://www.omg.org. Templates for RFPs (like this document) and other standard OMG documents can be found on the Template Downloads Page: http://www.omg.org/technology/template_download.htm
2 Architectural Context

MDA provides a set of guidelines for structuring specifications expressed as models and the mappings between those models. The MDA initiative and the standards that support it allow the same model, specifying business system or application functionality and behavior, to be realized on multiple platforms. MDA enables different applications to be integrated by explicitly relating their models; this facilitates integration and interoperability, and supports system evolution (deployment choices) as platform technologies change. The three primary goals of MDA are portability, interoperability and reusability.

Portability of any subsystem is relative to the subsystems on which it depends. The collection of subsystems that a given subsystem depends upon is often loosely called the platform, which supports that subsystem. Portability – and reusability – of such a subsystem is enabled if all the subsystems that it depends upon use standardized interfaces (APIs) and usage patterns.

MDA provides a pattern comprising a portable subsystem that is able to use any one of multiple specific implementations of a platform. This pattern is repeatedly usable in the specification of systems. The five important concepts related to this pattern are:

1. Model – A model is a representation of a part of the function, structure and/or behavior of an application or system. A representation is said to be formal when it is based on a language that has a well-defined form (“syntax”), meaning (“semantics”), and possibly rules of analysis, inference, or proof for its constructs. The syntax may be graphical or textual. The semantics might be defined, more or less formally, in terms of things observed in the world being described (e.g. message sends and replies, object states and state changes, etc.), or by translating higher-level language constructs into other constructs that have a well-defined meaning. The (non-mandatory) rules of inference define what unstated properties can be deduced from explicit statements in the model. In MDA, a representation that is not formal in this sense is not a model. Thus, a diagram with boxes and lines and arrows that is not supported by a definition of the meaning of a box, and the meaning of a line and of an arrow is not a model – it is just an informal diagram.

2. Platform – A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified usage patterns that any subsystem that depends on the platform can use without concern for the details of how the functionality provided by the platform is implemented.

3. Platform Independent Model (PIM) – A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize it.

4. Platform Specific Model (PSM) – A model of a subsystem that includes information about the specific technology that is used in the realization of that subsystem on a specific platform, and hence possibly contains elements that are specific to the platform.

5. Mapping – Specification of a mechanism for transforming the elements of a model conforming to a particular metamodel into elements of another model that conforms to another (possibly the same) metamodel. A mapping may be expressed as associations, constraints, rules or templates with parameters that to be assigned during the mapping, or other forms yet to be determined.

OMG adopts standard specifications of models that exploit the MDA pattern to facilitate portability, interoperability and reusability, either through ab initio development of standards or by reference to existing standards. Some examples of OMG adopted specifications are:

6. Languages – e.g. IDL for interface specification [IDL], UML for model specification [UML], BPMN for Business Process specification [BPMN], etc.
7. Mappings – e.g. Mapping of OMG IDL to specific implementation languages (CORBA PIM to Implementation Language PSMs), UML Profile for EDOC (PIM) to CCM (CORBA PSM) and EJB (Java PSM), CORBA (PSM) to COM (PSM) etc.

8. Services – e.g. Naming Service [NS], Transaction Service [OTS], Security Service [SEC], Trading Object Service [TOS] etc.

9. Platforms – e.g. CORBA [CORBA], DDS [DDS]
10. Protocols – e.g. GIOP/IIOP [CORBA] (both structure and exchange protocol), DDS Interoperability Protocol [DDSI].
11. Domain Specific Standards – e.g. Model for Performance-Driven Government [MPG], Single Nucleotide Polymorphisms specification [SNP], TACSIT Controller Interface specification [TACSIT].
For an introduction to MDA, see [MDAa]. For a discourse on the details of MDA please refer to [MDAc]. To see an example of the application of MDA see [MDAb]. For general information on MDA, see [MDAd].

Object Management Architecture (OMA) is a distributed object computing platform architecture within MDA that is related to ISO’s Reference Model of Open Distributed Processing RM-ODP [RM-ODP]. CORBA and any extensions to it are based on OMA. For information on OMA see [OMA].

3 Adoption Process

3.1 Introduction

OMG decides which specifications to adopt via votes of its Membership. The specifications selected should satisfy the architectural vision of MDA. OMG bases its decisions on both business and technical considerations. Once a specification is adopted by OMG, it is made available for use by both OMG members and non-members alike, at no charge.

This section 3 provides an extended summary of the RFP process. For more detailed information, see the Policies and Procedures of the OMG Technical Process [P&P], specifically Section 4.2, and the OMG Hitchhiker’s Guide [Guide]. In case of any inconsistency between this document or the Hitchhiker's Guide and the Policies and Procedures, the P&P is always authoritative. All IPR-related matters are governed by OMG's Intellectual Property Rights Policy [IPR].

3.2 The Adoption Process in detail

3.2.1 Development and Issuance of RFP

RFPs, such as this one, are drafted by OMG Members who are interested in the adoption of an OMG specification in a particular area. The draft RFP is presented to the appropriate TF, discussed and refined, and when ready is recommended for issuance. If endorsed by the Architecture Board, the RFP may then be issued as an OMG RFP by a TC vote.

Under the terms of OMG's Intellectual Property Rights Policy [IPR], every RFP shall include a statement of the IPR Mode under which any resulting specification will be published. To achieve this, RFP authors choose one of the three allowable IPR modes specified in [IPR] and include it in the RFP – see section 6.10.

3.2.2 Letter of Intent (LOI)

Each OMG Member organisation that intends to make a Submission in response to any RFP (including this one) shall submit a Letter of Intent (LOI) signed by an officer on or before the deadline specified in the RFP's timetable (see section 6.11). The LOI provides public notice that the organisation may make a submission, but does not oblige it to do so.

3.2.3 Voter Registration

Any interested OMG Members, other than Trial, Press and Analyst members, may participate in Task Force voting related to this RFP. If the RFP timetable includes a date for closing the voting list (see section 6.11), or if the Task Force separately decides to close the voting list, then only OMG Member that have registered by the given date and those that have made an Initial Submission may vote on Task Force motions related to this RFP.

Member organizations that have submitted an LOI are automatically registered to vote in the Task Force. Technical Committee votes are not affected by the Task Force voting list – all Contributing and Domain Members are eligible to vote in DTC polls relating to DTC RFPs, and all Contributing and Platform Members are eligible to vote in PTC polls on PTC RFPs.

3.2.4 Initial Submissions

Initial Submissions shall be made electronically on or before the Initial Submission deadline, which is specified in the RFP timetable (see section 6.11), or may later be adjusted by the Task Force. Submissions shall use the OMG specification template [TMPL], with the structure set out in section 4.9. Initial Submissions shall be written specifications capable of full evaluation, and not just a summary or outline. Submitters normally present their proposals to the Task Force at the first TF meeting after the submission deadline. Making a submission incurs obligations under OMG's IPR policy – see [IPR] for details.

An Initial Submission shall not be altered once the Initial Submission deadline has passed. The Task Force may choose to recommend an Initial Submission, unchanged, for adoption by OMG; however, instead Task Force members usually offer comments and feedback on the Initial Submissions, which submitters can address (if they choose) by making a later Revised Submission.

The goals of the Task Force's Submission evaluation are:

· Provide a fair and open process

· Facilitate critical review of the submissions by OMG Members
· Provide feedback to submitters enabling them to address concerns in their revised submissions

· Build consensus on acceptable solutions

· Enable voting members to make an informed selection decision

Submitters are expected to actively contribute to the evaluation process.

3.2.5 Revised Submissions

Revised Submissions are due by the specified deadline. Revised Submissions cannot be altered once their submission deadline has passed. Submitters again normally present their proposals at the next meeting of the TF after the deadline. If necessary, the Task Force may set a succession of Revised Submission deadlines. Submitters choose whether or not to make Revised Submissions - if they decide not to, their most recent Submission is carried forward, unless the Submitter explicitly withdraws from the RFP process.

The evaluation of Revised Submissions has the same goals listed above.

3.2.6 Selection Votes

When the Task Force's voters believe that they sufficiently understand the relative merits of the available Submissions, a vote is taken to recommend a submission to the Task Force's parent Technical Committee. The Architecture Board reviews the recommended Submission for MDA compliance and technical merit. Once the AB has endorsed it, members of the relevant TC vote on the recommended Submission by email. Successful completion of this vote moves the recommendation to OMG's Board of Directors (BoD).

3.2.7 Business Committee Questionnaire

Before the BoD makes its final decision on turning a Technical Committee recommendation into an OMG published specification, it asks its Business Committee to evaluate whether implementations of the specification will be publicly available. To do this, the Business Committee will send a Questionnaire [BCQ] to every OMG Member listed as a Submitter on the recommended Submission. Members that are not Submitters can also complete a Business Committee Questionnaire for the Submission if they choose.

If no organization commits to make use of the specification, then the BoD will typically not act on the recommendation to adopt it – so it is very important that submitters respond to the BCQ.
Once the Business Committee has received satisfactory BCQ responses, the Board takes the final publication vote. A Submission that has been adopted by the Board is termed an Alpha Specification.

At this point the RFP process is complete.
3.2.8 Finalization & Revision

Any specification adopted by OMG by any mechanism, whether RFP or otherwise, is subject to Finalisation. A Finalization Task Force (FTF) is chartered by the TC that recommended the Specification; its task is to correct any problems reported by early users of the published specification. The FTF first collaborates with OMG's Technical Editor to prepare a cleaned-up version of the Alpha Specification with submission-specific material removed. This is the Beta1 specification, and is made publicly available via OMG's web site. The FTF then works through the list of bug reports ("issues") reported by users of the Beta1 specification, to produce a Finalisation Report and another Beta specification (usually Beta2), which is a candidate for Formal publication. Once endorsed by the AB and adopted by the relevant TC and BoD, this is published as the final, Formal Specification.

Long-term maintenance of OMG specifications is handled by a sequence of Revision Task Forces (RTFs), each one chartered to rectify any residual problems in the most-recently published specification version. For full details, see P&P section 4.4 [P&P].

4 Instructions for Submitters

4.1 OMG Membership

To submit to an RFP issued by the Platform Technology Committee an organisation shall maintain either Platform or Contributing OMG Membership from the date of the initial submission deadline, while to submit to a Domain RFP an organisation shall maintain either a Contributing or Domain membership.

4.2 Intellectual Property Rights

By making a Submission, an organisation is deemed to have granted to OMG a perpetual, nonexclusive, irrevocable, royalty-free, paid up, worldwide license to copy and distribute the document and to modify the document and distribute copies of the modified version, and to allow others to do the same. Submitter(s) shall be the copyright owners of the text they submit, or have sufficient copyright and patent rights from the copyright owners to make the Submission under the terms of OMG's IPR Policy. Each Submitter shall disclose the identities of all copyright owners in its Submission.

Each OMG Member that makes a written Submission in response to this RFP shall identify patents containing Essential Claims that it believes will be infringed if that Submission is included in an OMG Formal Specification and implemented.

By making a written Submission to this RFP, an OMG Member also agrees to comply with the Patent Licensing terms set out in section 6.10.

This section 4.2 is neither a complete nor an authoritative statement of a submitter's IPR obligations – see [IPR] for the governing document for all OMG's IPR policies.

4.3 Submission Effort

An RFP submission may require significant effort in terms of document preparation, presentations to the issuing TF, and participation in the TF evaluation process. OMG is unable to reimburse submitters for any costs in conjunction with their submissions to this RFP.

4.4 Letter of Intent

Every organisation intending to make a Submission against this RFP shall submit a Letter of Intent (LOI) signed by an officer on or before the deadline listed in section 6.11, or as later varied by the issuing Task Force.

The LOI should designate a single contact point within the submitting organization for receipt of all subsequent information regarding this RFP and the submission. The name of this contact will be made available to all OMG members. LOIs shall be sent by email, fax or paper mail to the “RFP Submissions Desk” at the OMG address shown on the first page of this RFP.

A suggested template for the Letter of Intent is available at http://doc.omg.org/loi [LOI].
4.5 Business Committee terms

This section contains the text of the Business Committee RFP attachment concerning commercial availability requirements placed on submissions. This attachment is available separately as OMG document omg/12-12-03.

4.5.1 Introduction
OMG wishes to encourage rapid commercial adoption of the specifications it publishes. To this end, there must be neither technical, legal nor commercial obstacles to their implementation. Freedom from the first is largely judged through technical review by the relevant OMG Technology Committees; the second two are the responsibility of the OMG Business Committee. The BC also looks for evidence of a commitment by a submitter to the commercial success of products based on the submission.
4.5.2 Business Committee evaluation criteria

4.5.2.1 Viable to implement across platforms

While it is understood that final candidate OMG submissions often combine technologies before they have all been implemented in one system, the Business Committee nevertheless wishes to see evidence that each major feature has been implemented, preferably more than once, and by separate organisations. Pre-product implementations are acceptable. Since use of OMG specifications should not be dependent on any one platform, cross-platform availability and interoperability of implementations should be also be demonstrated.
4.5.2.2 Commercial availability

In addition to demonstrating the existence of implementations of the specification, the submitter must also show that products based on the specification are commercially available, or will be within 12 months of the date when the specification was recommended for adoption by the appropriate Task Force. Proof of intent to ship product within 12 months might include:
· A public product announcement with a shipping date within the time limit.
· Demonstration of a prototype implementation and accompanying draft user documentation.
Alternatively, and at the Business Committee's discretion, submissions may be adopted where the submitter is not a commercial software provider, and therefore will not make implementations commercially available. However, in this case the BC will require concrete evidence of two or more independent implementations of the specification being used by end-user organisations as part of their businesses.

Regardless of which requirement is in use, the submitter must inform the OMG of completion of the implementations when commercially available.
4.5.2.3 Access to Intellectual Property Rights
OMG will not adopt a specification if OMG is aware of any submitter, member or third party which holds a patent, copyright or other intellectual property right (collectively referred to in this policy statement as "IPR") which might be infringed by implementation or recommendation of such specification, unless OMG believes that such IPR owner will grant an appropriate license to organizations (whether OMG members or not) which wish to make use of the specification. It is the goal of the OMG to make all of its technology available with as few impediments and disincentives to adoption as possible, and therefore OMG strongly encourages the submission of technology as to which royalty-free licenses will be available.

The governing document for all intellectual property rights (“IPR”) policies of Object Management Group is the Intellectual Property Rights statement, available at: http://doc.omg.org/ipr. It should be consulted for the authoritative statement of the submitter's patent disclosure and licensing obligations.

4.5.2.4 Publication of the specification
Should the submission be adopted, the submitter must grant OMG (and its sublicensees) a worldwide, royalty-free licence to edit, store, duplicate and distribute both the specification and works derived from it (such as revisions and teaching materials). This requirement applies only to the written specification, not to any implementation of it. Please consult the Intellectual Property Rights statement (http://doc.omg.org/ipr) for the authoritative statement of the submitter's copyright licensing obligations.
4.5.2.5 Continuing support

The submitter must show a commitment to continue supporting the technology underlying the specification after OMG adoption, for instance by showing the BC development plans for future revisions, enhancement or maintenance.
4.6 Responding to RFP items

4.6.1 Complete proposals

Submissions should propose full specifications for all of the relevant requirements detailed in Section 6 of this RFP. Submissions that do not present complete proposals may be at a disadvantage.

Submitters are encouraged to include any non-mandatory features listed in Section 6.

4.6.2 Additional specifications

Submissions may include additional specifications for items not covered by the RFP and which they believe to be necessary. Information on these additional items should be clearly distinguished. Submitters shall give a detailed rationale for why any such additional specifications should also be considered for adoption. Submitters should note that a TF is unlikely to consider additional items that are already on the roadmap of an OMG TF, since this would pre-empt the normal adoption process.

4.6.3 Alternative approaches

Submitters may provide alternative RFP item definitions, categorizations, and groupings so long as the rationale for doing so is clearly stated. Equally, submitters may provide alternative models for how items are provided if there are compelling technological reasons for a different approach.

4.7 Confidential and Proprietary Information

The OMG specification adoption process is an open process. Responses to this RFP become public documents of the OMG and are available to members and non-members alike for perusal. No confidential or proprietary information of any kind will be accepted in a submission to this RFP.

4.8 Proof of Concept

Submissions shall include a “proof of concept” statement, explaining how the submitted specifications have been demonstrated to be technically viable. The technical viability has to do with the state of development and maturity of the technology on which a submission is based. This is not the same as commercial availability. Proof of concept statements can contain any information deemed relevant by the submitter; for example:

“This specification has completed the design phase and is in the process of being prototyped.”

“An implementation of this specification has been in beta-test for 4 months.”

“A named product (with a specified customer base) is a realization of this specification.”

It is incumbent upon submitters to demonstrate the technical viability of their proposal to the satisfaction of the TF managing the evaluation process. OMG will favor proposals based on technology for which sufficient relevant experience has been gained.

4.9 Submission Format

4.9.1 General

· Submissions that are concise and easy to read will inevitably receive more consideration.

· Submitted documentation should be confined to that directly relevant to the items requested in the RFP.

· To the greatest extent possible, the submission should follow the document structure set out in "ISO/IEC Directives, Part 2 – Rules for the structure and drafting of International Standards" [ISO2]. An OMG specification template is available to make it easier to follow these guidelines.
· The key words "shall", "shall not", "should", "should not", "may" and "need not" shall be used as described in Part 2 of the ISO/IEC Directives [ISO2]. These ISO terms are compatible with the same terms in IETF RFC 2119 [RFC2119]. However, the RFC 2119 terms "must", "must not", "optional", "required", "recommended" and "not recommended" shall not be used (even though they are permitted under RFC2119).
4.9.2 Mandatory Outline

All submissions shall use the following structure, based on the OMG Specification template [TEMPL]:

Section 0 of the submission shall be used to provide all non-normative supporting material relevant to the evaluation of the proposed specification, including:

· The full name of the submission

· A complete list of all OMG Member(s) making the submission, with a named contact individual for each
· The acronym proposed for the specification (e.g. UML, CORBA)

· The name and OMG document number of the RFP to which this is a response

· The OMG document number of the main submission document
· Overview or guide to the material in the submission

· Statement of proof of concept (see 4.8)

· If the proposal does not satisfy any of the general requirements stated in Section 5, a detailed rationale explaining why

· Discussion of each of the “Issues To Be Discussed” identified in Section 6.
· An explanation of how the proposal satisfies the specific requirements and (if applicable) requests stated in Section 6.

· If adopting the submission requires making changes to already-adopted OMG specifications, include a list of those changes in a clearly-labelled subsection in Section 0. Identify exactly which version(s) of which OMG specification(s) shall be amended, and include the list of precise wording changes that shall be made to that specification.

Section 1 and subsequent sections of the submission shall contain the normative specification that the Submitter(s) is/are proposing for adoption by OMG, including:

· Scope of the proposed specification

· Overall design rationale

· Conformance criteria for implementations of the proposed specification, clearly stating the features that all conformant implementations shall support, and any features that implementations may support, but which are not mandatory.
· A list of the normative references that are used by the proposed specification

· A list of terms that are used in the proposed specification, with their definitions

· A list of any special symbols that are used in the proposed specification, together with their significance

· The proposed specification itself
Section 0 will be deleted from any specification that OMG adopts and publishes. Therefore Section 0 of the submission shall contain no normative material (other than any instructions to change existing specifications; ensuring that these are implemented is the responsibility of the FTF that finalises the specification, before it deletes section 0). Any non-normative material outside section 0 shall be explicitly identified.

The main submission document and any models or other machine-interpretable files accompanying it shall be listed in an inventory file conforming to the inventory template [INVENT].

The submission shall include a copyright waiver in a form acceptable to OMG. One acceptable form is:

“Each of the entities listed above: (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version, and (ii) grants to each member of the OMG a nonexclusive, royalty-free, paid up, worldwide license to make up to fifty (50) copies of this document for internal review purposes only and not for distribution, and (iii) has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used any OMG specification that may be based hereon or having conformed any computer software to such specification.”

Other forms of copyright waiver may only be used if approved by OMG legal counsel beforehand.

4.10 How to Submit

Submitters should send an electronic version of their submission to the RFP Submissions Desk (rfp@omg.org) at OMG Headquarters by 5:00 PM U.S. Eastern Standard Time (22:00 GMT) on the day of the Initial and Revised Submission deadlines. Acceptable formats are Adobe FrameMaker source, ISO/IEC 26300:2006 (OpenDoc 1.1), OASIS DocBook 4.x (or later) and ISO/IEC 29500:2008 (OOXML, .docx).

Submitters should ensure that they receive confirmation of receipt of their submission.

5 General Requirements on Proposals

5.1 Requirements

5.1.1 Use of modelling languages

Submitters are encouraged to express models using OMG modelling languages such as UML, MOF, CWM and SPEM (subject to any further constraints on the types of the models and modeling technologies specified in Section 6 of this RFP). Submissions containing models expressed using OMG modeling languages shall be accompanied by an OMG XMI [XMI] representation of the models (including a machine-readable copy). A best effort should be made to provide an OMG XMI representation even in those cases where models are expressed via non-OMG modeling languages.

5.1.2 PIMs & PSMs

Section 6 of this RFP specifies whether PIM(s), PSM(s), or both are being solicited. If proposals specify a PIM and corresponding PSM(s), then the rules specifying the mapping(s) between the PIM and PSM(s) shall either be identified by reference to a standard mapping or specified in the proposal. In order to allow possible inconsistencies in a proposal to be resolved later, proposals shall identify whether it's the mapping technique or the resulting PSM(s) that shall be considered normative.

5.1.3 Complete submissions

Proposals shall be precise and functionally complete. Any relevant assumptions and context necessary to implement the specification shall be provided.

5.1.4 Reuse

Proposals shall reuse existing OMG and other standard specifications in preference to defining new models to specify similar functionality.

5.1.5 Changes to existing specifications

Each proposal shall justify and fully specify any changes or extensions to existing OMG specifications necessitated by adopting that proposal. In general, OMG favors proposals that are upwards compatible with existing standards and that minimize changes and extensions to existing specifications.
5.1.6 Minimalism

Proposals shall factor out functionality that could be used in different contexts and specify their models, interfaces, etc. separately. Such minimalism fosters re-use and avoids functional duplication.

5.1.7 Independence

Proposals shall use or depend on other specifications only where it is actually necessary. While re-use of existing specifications to avoid duplication will be encouraged, proposals should avoid gratuitous use.

5.1.8 Compatibility

Proposals shall be compatible with and usable with existing specifications from OMG and other standards bodies, as appropriate. Separate specifications offering distinct functionality should be usable together where it makes sense to do so.
5.1.9 Implementation flexibility

Proposals shall preserve maximum implementation flexibility. Implementation descriptions should not be included and proposals shall not constrain implementations any more than is necessary to promote interoperability.

5.1.10 Encapsulation

Proposals shall allow independent implementations that are substitutable and interoperable. An implementation should be replaceable by an alternative implementation without requiring changes to any client.

5.1.11 Security

In order to demonstrate that the specification proposed in response to this RFP can be made secure in environments that require security, answers to the following questions shall be provided:
· What, if any, security-sensitive elements are introduced by the proposal?

· Which accesses to security-sensitive elements should be subject to security policy control?

· Does the proposed service or facility need to be security aware?

· What default policies (e.g., for authentication, audit, authorization, message protection etc.) should be applied to the security sensitive elements introduced by the proposal? Of what security considerations should the implementers of your proposal be aware?

The OMG has adopted several specifications, which cover different aspects of security and provide useful resources in formulating responses. [SEC] [RAD].

5.1.12 Internationalization

Proposals shall specify the degree of internationalization support that they provide. The degrees of support are as follows:
a)
Uncategorized: Internationalization has not been considered.

b)
Specific to <region name>: The proposal supports the customs of the specified region only, and is not guaranteed to support the customs of any other region. Any fault or error caused by requesting the services outside of a context in which the customs of the specified region are being consistently followed is the responsibility of the requester.

c)
Specific to <multiple region names>: The proposal supports the customs of the specified regions only, and is not guaranteed to support the customs of any other regions. Any fault or error caused by requesting the services outside of a context in which the customs of at least one of the specified regions are being consistently followed is the responsibility of the requester.

d)
Explicitly not specific to <region(s) name>: The proposal does not support the customs of the specified region(s). Any fault or error caused by requesting the services in a context in which the customs of the specified region(s) are being followed is the responsibility of the requester.

5.2 Evaluation criteria

Although the OMG adopts model-based specifications and not implementations of those specifications, the technical viability of implementations will be taken into account during the evaluation process. The following criteria will be used:

5.2.1 Performance

Potential implementation trade-offs for performance will be considered.

5.2.2 Portability

The ease of implementation on a variety of systems and software platforms will be considered.

5.2.3 Securability

The answer to questions in section 5.1.11 shall be taken into consideration to ascertain that an implementation of the proposal is securable in an environment requiring security.

5.2.4 Conformance: Inspectability and Testability

The adequacy of proposed specifications for the purposes of conformance inspection and testing will be considered. Specifications should provide sufficient constraints on interfaces and implementation characteristics to ensure that conformance can be unambiguously assessed through both manual inspection and automated testing.

5.2.5 Standardized Metadata

Where proposals incorporate metadata specifications, OMG standard XMI metadata [XMI] representations should be provided.

6 Specific Requirements on Proposals

6.1 Problem Statement
The transition to a model-based systems engineering (MBSE) approach is essential for systems engineering to meet the demands of increasing system complexity, productivity and quality, and shorter design cycles. Many other engineering disciplines, such as mechanical, electrical, and controls engineering, utilize models as an integral part of their practice. Models have long been important for systems engineering to support systems analysis and design, but MBSE emphasizes the need to create a coherent model of the system architecture that helps integrate other aspects of the design, including electrical, mechanical, and software.

The system model provides a shared view of the system that can enhance communication and coordination across the system development lifecycle. This model represents an authoritative source of information that is maintained to ensure consistency and traceability between requirements, design, analysis, and verification. The model-based approach contrasts with the traditional document-based approach in which information is captured independently in many different documents using common applications such as Word, Visio, Excel, and PowerPoint. To take full advantage of a model-based approach, the system model must be maintained as part of the technical baseline, and integrated with other engineering models and tools.

The capability to express system concepts in the form of models can result in quality improvements by reducing downstream design errors, and in productivity improvements through reuse of models throughout the lifecycle and across projects. Systems engineers realize other benefits, such as the ability to automate tasks like change impact analysis, and auto-generation of reports and documentation with increased confidence that the information is valid, complete, and consistent.

A systems modeling language enables systems engineers to express fundamental concepts about the system such as system composition, interconnection and interfaces, functional and state-based behavior, parametric aspects, and traceability relationships between requirements, design, analysis, and verification. The modeling language is an essential capability to specify and architect increasingly complex systems. A standard systems modeling language can help overcome the informational "Tower of Babel" by providing a means to express these concepts in a standard and precise way that enables communications between engineers and tools.

SysML v1 was adopted in 2006 as a general-purpose graphical modeling language for specifying, analyzing, designing, and verifying complex systems that may include hardware, software, information, personnel, procedures, and facilities. The language provides graphical representations with a semantic foundation for modeling system requirements, behavior, structure, and constraints.

Since its adoption, SysML enabled broad recognition and increased adoption of model-based systems engineering practices across industry. Systems engineers, tool vendors, and academia have learned much from this experience, including both the strengths and weaknesses of SysML as a language, and the benefits and challenges of adopting and applying MBSE with SysML. The SysML specification has continued to evolve through the SysML Revision Task Force since its adoption. However, the scope of the RTF limits how much change can be introduced to address the needs.

Based on the industry experiences with the adoption and use of MBSE with SysML over the preceding 10 plus years, it was determined that a more comprehensive update to the language is needed beyond what can be accomplished through the SysML RTF alone. This RFP is intended to enable a re-architecting of the SysML profile of UML, and also provide a SysML v2 metamodel that is not constrained by UML, to address some of the more fundamental issues associated with the language, including the need for additional expressiveness, increased precision, interoperability, and improved integration of the concepts, such as those related to behavior and structure. Section 6.2 describes the scope of the proposals to address these needs.
6.2 Scope of Proposals Sought

6.2.1 Language Architecture and Formalism

6.2.1.1 Language Architecture

SysML v2 is a modeling language used to represent SysML v2 models. As shown in the figure below, SysML v2 models include both models created by SysML v2 end users and model libraries containing reusable modeling components that may be used in the creation of user models. In particular, some of the SysML v2 language requirements may be implemented in the SysML v2 specification as user-level model libraries.

Figure 1.1. SysML v2 Models and Model Libraries

[image: image1.png]bdd [SyshL v2 lodel |

The SysML v2 language is specified using a SysML v2 metamodel that defines the language's semantics, abstract syntax and concrete syntax, and the relationships between them, as shown in the figure below. The language also provides mechanisms to support further customization to reflect domain specific concepts. In addition, the SysML v2 metamodel is mapped to a SysML v2 profile. This allows a SysML v2 model to also be represented as an extension of a UML model, using the profile to adapt UML syntax and semantics to those of SysML v2. The combination of a metamodel and a profile enable a broader range of vendor implementations. The metamodel supports implementation of the system concepts without some of the constraints imposed by UML, while the profile supports implementation of the system concepts in a way that is more closely aligned with SysML v1 implementations.

Figure 1.2. SysML v2 Metamodel and Profile

[image: image2.png]bdd [[§F) SysML v2 Metamodel and Profie]

Having the SysML v2 metamodel aligned with the SysML v2 profile also allows for the specification of a SysML v2 format for interchanging models between tools, usable by both metamodel and profile-based tools. As shown in the figure below, this is done by defining mappings from both the SysML v2 metamodel and the SysML v2 profile to a common SysML v2 interchange metamodel, consistent with the mapping between the SysML v2 metamodel and the SysML v2 profile. That is, a SysML v2 models based on the metamodel and profile are related by the SysML v2 metamodel-to-profile mapping and represented in the same way for the purposes of tool interchange. This allows a SysML v2 model exported from a metamodel-based tool to be imported into a profile-based tool, and vice versa. Furthermore, the SysML v2 interchange format enables interchange of both the abstract syntax representation of a SysML v2 model and the concrete syntax representation of views of that model.

Figure 1.3. SysML v2 Model Interchange

[image: image3.png]bdd [g SysML v2 interchange]

SysML v2 is a general language for modeling systems. However, it will also be possible to identify a number of distinct sub-languages within SysML v2, each covering a well-defined subset of capabilities of the overall SysML v2 language. As shown in the following figure, these include model-transformation, query and expression languages, though this list is by no means intended to be exhaustive. Such sub-languages may represent existing languages within SysML, so that models using them can be fully integrated and exchanged as part of the System Modeling Environment.

SysML v2 will also include a sub-language focused on representing metamodels. This SysML v2 metamodeling language will then be used to represent the SysML v2 metamodel itself. This circularity of specifying SysML v2 in itself stops at a root level that is defined by a foundational subset of the language using a separate declarative formalism (as described further in the section on Formalism below). It is not expected that any additional features will need to be added to SysML v2 to support metamodeling. The SysML v2 metamodeling language will simply be a subset of SysML v2 language features already needed to satisfy other SysML v2 requirements, such as for structural and behavioral modeling, but which also apply to metamodeling.

Figure 1.4. SysML v2 Language Subsets

[image: image4.png]bdd [|g) SysML v2 Language Subsets |

Since the SysML v2 metamodeling language is a sub-language of SysML v2, it is specified by a subset of the SysML v2 metamodel. As shown in the following figure, this metamodel subset is known as the SysML v2 meta-metamodel, since it is essentially a model of the meta-modeling language. The SysML v2 meta-metamodel also provides the basis for mapping to the OMG-standard Semantic Meta-Object Facility (SMOF) meta-model (SMOF is an extension of the base MOF specification). Using this mapping, the SysML v2 metamodel may be represented using a metamodel conformant with the SMOF standard, allowing integration with existing MOF and SMOF-based tooling. Note, however, that, like MOF, SMOF only provides support for structural modeling of the syntactic constructs of a modeling language, so it will likely not be possible to fully map the SysML v2 semantics portion of the SysML v2 metamodel to a SMOF-based representation. This semantic gap can be filled by other OMG standards such as those used in the precise semantics of UML.

Figure 1.5. SysML v2 SMOF Mapping

[image: image5.png]bdd [g SysML v2 SWOF Mapping]

6.2.1.2 Formalism

A formalism is used to specify the SysML v2 language. In mathematics and logic, formalism has to do with how something is structured and expressed, as opposed to the actual content of what is being expressed. Formalism aims to express content in a well-defined form, such that this expression can be given a uniform interpretation. A formalism may also extend to rules for the consistent manipulation of the form of expression, such as the ability to construct formal proofs using deduction rules based on given axioms and to reason about the system being represented.

For SysML, the formalism defines how the language itself is specified in terms of its syntax and semantics, as opposed to what is in the language. This includes: the abstract syntax that specifies the grammar of the language, including the basic constructs of the language analogous to verbs and nouns, and the rules for constructing legal sentences (i.e., statements); the concrete syntax that specifies the symbols (textual, graphical and diagrammatic) that define how grammatical constructs in the language can be presented; and the semantics that specify the meaning of the constructs so that they can be interpreted in the domain that the model is intended to represent. The specification of how models are interchanged can also be considered part of the formalism. The rigorous specification of the abstract syntax, concrete syntax, semantics, and interchange format is intended to ensure the precision and integrity of the language.

The figure below shows the relationship between the language formalism and the things being modeled. The goal of a formal specification for SysML is to provide a uniform syntactic and semantic interpretation for the language. That is, a SysML model should be interpreted in a consistent way and subject to an objective evaluation as to whether it conforms to the SysML v2 Specification, whether this interpretation is done by a human that interprets a view of the model or a machine that interprets the model.

Figure 1.6. Language Formalism and Uniform Interpretation

[image: image6.png]%8 Formal definition of

:E Meta- + Concrete syntax

s model * Abstract syntax

5 * Semantics
-0

Conlormance of

o Views to concrete syntax
8o Model + Grammatical structure to
Sw abstract syntax

é“ = + Common interpretation to
8 semantics

Manual interpretation
of models
Z"%% «©°, . Autqmated

= R ~ o f, 4 interpretation of models

S Things

E Being

o Modeled

&

SysML v1 is specified using the formalism of UML 2 profiles. A UML profile is an extended subset of the UML metamodel, which is itself specified using the formalism provided by the Meta Object Facility (MOF). The SysML v1 specification defines the abstract syntax of SysML as a profile of UML that extends the subset of UML abstract syntax using stereotypes, extends the concrete syntax of UML diagrams, and adopts and adapts UML semantics as appropriate.

There are some significant limitations of the formalism used for SysML v1 that result in ambiguities of interpretation. For example, SysML v1 does not include a complete formal mapping between the concrete syntax and the abstract syntax, which can result in ambiguity in how a SysML diagram conforms to the rules of the grammar. In addition, the semantics of SysML v1 are often defined in English rather than a more precise formal representation, which can result in ambiguity of meaning.

In contrast, SysML v2 will have a more formal specification of its abstract syntax, concrete syntax and semantics, and the mappings between them. To maximize the flexibility of this specification, the required approach is to specify a small set of foundational concepts and their base semantics using a mathematical declarative semantics. Then, model libraries written in SysML itself, grounded in the base semantics, are used to further extend the concepts of the language and their associated semantics. These extensions will represent the core domain concepts for the SysML v2 language. SysML v2 is also intended to include additional user-level model libraries that extend these core concepts, and provide a mechanism to further customize the language.

The advantage of grounding SysML semantics in a declarative approach is that well-known techniques of mathematical logic can then be used to make formal deductions based on the assertions made in a model, in order to prove things that are true or not about the system or domain that is being modeled. Declarative semantics contrast with the operational semantics which specify how a model executes, such that the execution results are evaluated to determine how the system will behave. It is expected that the full semantics for SysML v2 will include both declarative and operational components.

As an example of how the semantics of SysML v2 could be built up from a declarative base, consider the case of the semantics of control nodes used in activity diagrams. Currently (in UML and, so, SysML v1), each type of control node such as a fork node, join node, decision node, or merge node is defined with its own unique semantics. In SysML v2, the general concept of a control node might be specified along with its base semantics. The specific semantics for fork, join, decision and merge nodes could then be specified in the core model library, specializing the base control node semantics. The language formalism would include rules for how this could be done in an unambiguous, rigorous way. A formal mathematically-based language does not have to be difficult to use. The usability of the language will be emphasized using graphical, textual and tabular notations appropriate for a practicing systems engineer.

6.2.2 Data Model

Systems Engineering Concept Model (SECM). SysML v2 is intended to provide the capability to model systems with a precisely defined systems engineering vocabulary. A Systems Engineering Concept Model (SECM) is used to capture the key concepts to represent systems, and is a primary input to help specify the requirements for the SysML v2 metamodel, profile, and model libraries. The SECM is used as part of the analysis to derive the SysML v2 requirements, but is not considered part of the mandatory requirements in the SysML v2 RFP.

The high-level concepts in the SECM are intended to be consistent with industry standards for systems engineering that include the Systems Engineering Body of Knowledge (SEBoK), the ISO standard for Systems and Software Engineering -- System lifecycle processes (ISO/IEC/IEEE 15288:2015), and the INCOSE Systems Engineering Handbook v4. These sources and others provide high-level concepts which can be further elaborated to support the requirements for SysML v2. The figure below is an extract from the SECM-2015 Industry Reference showing some of the core concepts in the SEBoK. There are many other concepts in the industry reference model beyond what is shown in this Figure.

Figure 1.7. Core SEBoK Concepts (Extract from draft SECM-2015 Industry Reference. Used with permission)

[image: image7.png]s
Competency

Systems Engineering

System Gontext

(Only afew exanpie w ork proucts
ed are stow n

SysML v2 includes concepts directly related to the specification, design, analysis, and verification of systems. The SysML v2 concepts are intended to align with the industry standards, but the scope of SysML v2 is not intended to address the full scope of the industry reference model. At the same time, SysML v2 may include additional concepts that are not explicitly referred to in the industry reference model.

Data model requirements. The scope of SysML v2 system modeling concepts includes the scope of SysML v1, which includes support for modeling structure, behavior, parametric, and requirements, often referred to as the 4 pillars of SysML. The SysML v2 concepts also include additional concepts related to verification, analysis, and other concepts beyond what is in SysML v1. The organization of the system modeling concepts are indicated in the figure below.

Figure 1.8. Organization of SysML v2 Modeling Concepts

[image: image8.png]The Pillars of SysML

Validation

In addition to extending the SysML v1 concepts, a major emphasis for SysML v2 is to ensure integration of these concepts. This is in part accomplished by defining a core set of concepts and patterns, and then applying them consistently to define other concepts. For example, the concept of decomposition can be applied consistently to structure and behavior, and the concept of precedence can be applied consistently in different behavior representations, such as activities and state machines. Logical expressions such as AND, OR, XOR, and NOT can also be applied consistently throughout the language.

The following is a brief introduction to the SysML v2 modeling concepts that reflect the intent of many of the requirements. This summary level is an abstraction of the more comprehensive SECM that includes consider more detail. The SECM is captured in a model that will be provided as an input to the Submission Teams to provide context for the requirements. Although many of the concepts may be similar to those in UML and SysML, the terms are often different to avoid the implication of a particular implementation.

Root concepts. The root concepts that are reflected in the cross cutting requirements are included in Figure 3.9. A Model Element is the root element. A Container contains other model elements, and is analogous to a package in SysML. An Element Group establishes criteria for Model Elements to be members of a group, but is not a Container. Model and Model Library are kinds of Containers, where a Model is a top-level Container and a Model Library contains elements that are designated to be reused. Finally, the Relationship relates 2 model elements, and can be directed, non-directed, or both. All other relationships are specialized from this more general relationship.

Figure 1.9. Root Concepts

[image: image9.png]

Value Type and Definition Element. The two important kinds of Containers shown in Figure 3.10 are Value Types and Definition Elements. A Value Type is used to represent data structures with units and quantity kinds. A Value Property is typed by a Value Type to represent quantitative properties, and a Value Expression establishes the value for a Value Property. A Value Type can contain other Value Properties. The kinds of Value Types have been significantly expanded beyond the primitive Value Types in SysML v1 to include vectors and other more complex data structures.

The concepts of definition and usage, such as block and part, are core concepts in SysML v1 that also apply to many of the SysML v2 language concepts. The Definition Element and Usage Element provide the ability to define a concept one time, and then reuse it in many different contexts. Usage Elements represent many concepts that are referred to as structural and behavioural features in UML and SysML. A Usage Element is typed by a Definition Element, and a Definition Element can contain other Usage Elements. An Element Path can unambiguously refer to a deeply nested usage element, and over-ride the definition for a particular localized usage (Note: analogous to SysML redefinition). This concept is further elaborated in the SECM. The Usage Expression allows the representation of logical expressions such as {(Usage Element A AND Usage Element B) OR (Usage Element C AND Usage Element D)}.

Figure 1.10. Value Type and Definition Element

[image: image10.png]bdd [2-System Modelng Concepis-Value Types and Definiion Elements |

Component Definition and Item Definition. Two particular types of Definition Elements that represent structural elements of a system and items that flow across a system are Component Definition and Item Definition respectively as shown in Figure 3.11. A simple example of a Component is a Pump and an Item is Water that flows in and out of the Pump. Both of these can be represented in SysML v1 as a Block to represent a modular unit of Structure. SysML v1 also includes various concepts to represent items that flow such as flow properties and item properties.

Figure 1.11. Component Definition and Item Definition

[image: image11.png]bdd [3-System Modeing Concepts-Component & tem Definiion 1]

Component Definition and Item Definition-Elaborated. The Component Definition and Item Definition are further elaborated in Figure 3.12 to show the kinds of usage elements and value properties that they contain. The Item Definition includes Value Properties and Constraint Usages to constrain its properties, and Item Usages to create nested item structures. The Component Definition contains Value Properties and Constraint Usages similar to Item Definitions, and Component Usages to define nested component structures. It also contains Port Usages and Connector Usages to connect Component Usages. Component Definition also contains Function Usages that is analogous to an Operation of a Block, but represents an action that the Block performs to transform inputs to outputs or change its state. The input and output Item Usages are allocated to ports.

Figure 1.12. Component Definition and Item Definition-Elaborated

[image: image12.png]

Function Definition and Constraint Definition. As noted in the previous figure, both a Component Definition and Item Definition contain Constraint Usages, and a Component Definition can contain Function Usages. The Constraint Definition and Function Definition are also Definition Elements as shown in Figure 3.13. They both use the standard pattern that enable the Definition Element to decompose into Usage Elements and the Usage Elements are typed by the Definition Element, enabling a nested tree of usages. The Constraint Definition contains Constraint Expressions that constrain the parameters of the expressions similar to SysML v1 Constraint Blocks.

The Function Definition contains Function Usages and Control Node Usages which are analogous to actions and control nodes in SysML v1. Function Usages can include both inputs and outputs (i.e., Item Usages), and start and end events (i.e., Event Usages). An Output from one Function Usage is connected to the input of another Function Usage by an Item Flow, and the end event of one Function Usage is connected to the start event of another Function Usage by an Event Flow. Item Flow and Event Flow are analogous to Object Flow and Control Flow in SysML v1. Although not shown, these flows can also connect Control Node Usages. A Control Node Usage refers to a Constraint Usage. This is similar to a join specification in SysML v1. Finally, Function Definitions can include pre-conditions and post-conditions.

Figure 1.13. Function Definition and Constraint Definition

[image: image13.png]bdd [6-System Modeling Concepts-Function Definition and Constrait Definition 1)

State Machine. The State Machine of a Component Definition and Item Definition specify its finite (i.e., discrete) states and the transitions between them as shown in Figure 3.14. The State Machine is a Definition Element which enables a Finite State to be typed by a State Machine. A Finite State can enable Constraint Usages and Function Usages in response to an event and guard condition. A State Machine can define the discrete states for an Item Definition such as a solid, liquid, and gas states of Water. A State Machine for an Item Definition can enable Constraint Usages, but does not enable Function Usages.

Figure 1.14. State Machine

[image: image14.png]bdd [£-System Modeling Concepts-State Machine

Interface Definition. An Interface definition in SysML v2 constrain the physical and functional interaction between structural elements. The Interface includes two ends, the connection between them, and the constraints on the connection. As shown in Figure 3.15, the Interface Definition is a subclass of a Connector Definition, which corresponds to a SysML v1 association block. The Connector Definition includes Port Definitions (aka Interface End Definitions) on either end, and includes an Interface Agreement Definition which constrains the connection. The two types of Interface Agreements include both a Function Definition and Constraint Definition. Function Definitions are generally used to constrain the exchange of Items, such as with a communication protocol, and Constraint Definitions are generally used to constrain physical interactions such as voltage and current (i.e., Across and Through Variables). Although not shown in the Figure, a special type of component called in Interface Medium enables connection between other components, such as a pipe, network, cable. Interfaces also support nested ports and layered interfaces.

Figure 1.15. Interface Definition

[image: image15.png]

Configuration Element and Individual Element. A Definition Element can be decomposed into a tree of Usage Elements as noted before. However, SysML v2 requires a mechanism to define an unambiguous deeply nested structure using Configuration Elements which provides a straight forward way to specify a design configuration. A simple example is a vehicle that has 4 wheels, and each wheel has several lug bolts. The design configuration would enable the definition of an unambiguous product structure where each lug bolt on each wheel is clearly identified, and the torque value for each lug bolt can also be uniquely defined.

An Individual Element represents a model of a particular element that is uniquely identified, such as a model of a particular Vehicle on the factory floor with a Vehicle Identification Number (VIN). The structure of an Individual Element can be modified, such as replacing its wheels with a new kind of wheel and tire. A Simple Composition and Simple Connector is used to define a tree of Configuration or Individual Elements and connect the Configuration or Individual Elements.

A Configuration Element can conform to a Definition Element such as a Component Definition, and an Individual Element can conform to a Configuration Element. However, they can be defined independently.

Figure 1.16. Configuration Element and Individual Element

[image: image16.png]bdd [8-System Wodeing Concepts-Configuration Element and Individual Element ||

State and Time History. An Individual Element can have a state and time history. The state history is defined as a series of ordered Snapshots of an Individual Element, where each Snapshot represents the state of the Individual Element at a point in time. An Individual Element such as an Engine may have several value properties, such as its temperature and torque, whose values change over time. These are referred to as state variables. The Snapshot represents the values of each of these state variables at a particular point in time.

Each State Machine can contain multiple State Histories, where each State History can represent a distinct estimate of the Individual Elements change in state over time. A State History for a State Machine for a Component Definition implies that each conforming Individual Element will have this State History.

Figure 1.17. State and Time History

[image: image17.png]

Requirements. A Requirement in SysML v2 will extend the SysML v1.5 Requirement which includes the ability to more precisely specify a requirement with a Formal Requirement Statement in addition to a Text Requirement Statement. The Formal Requirement Statement is specified by constraints. Requirements can be grouped into Requirement Groups, and can be related to other elements using requirements relationships such as Satisfy, Verify, Derive, and others, similar to SysML v1.

Figure 1.18. Requirements

[image: image18.png]

Analysis and Verification. SysML v2 includes additional concepts to support Analysis and Verification. Both Analysis and Verification can apply similar patterns to represent an Analysis or Verification Context that include the Component Definition, Configuration, or Individual being analyzed or verified, the analysis models or verification system use to perform the verification or analysis, and the Analysis Case or Verification Case used to define how the analysis or verification is performed. The concept of Case is a common concept that is specialized to define an Analysis Case and Verification Case.

Figure 1.19. Analysis and Verification

[image: image19.png]bdd [11-System Modelng Concepis-Analysis and Verification

Decision and Variant. SysML v2 requires additional concepts to support decisions analysis, such as trade studies, and variant modeling. Some common patterns for these concepts are noted in Figure 3.20. In particular, both a Decision and Variants involve a set of choices, called Alternative and Variant, respectively. An Expression can be used to define the choices such as A or B or C. The name for the set of choices is called a Trade-off and a Variation Point for the Decision and Variants respectively. A Selection is made among choices and called a Decision and a Variant Selection respectively. The available choices may be dependent on other Selections.

The Explanation Relationship relates the Decision to the Rationale which in turn refers to the Supporting Analysis. The Rationale concepts can be applied more generally to any conclusion.

Figure 1.20. Decision and Variant

[image: image20.png]bdd [12-System Modeing Concepts-Decision and Variant

View and Viewpoint. SysML v2 includes concepts to enable the generation of Views of the system or Domain of Interest that address diverse Stakeholder Concerns. Views can include diagrams, tables, and total documents that are presented to Stakeholders. The Model is treated as a Data Source. The View Definition defines the structure of the artifact that is presented, such as a Table of Contents for a document. The View is generated by applying Viewpoint Methods to query the model and render the results. The Viewpoint contains the Viewpoint Method and a specification of View in terms of the type of information and the format of the presentation.

Figure 1.21. View and Viewpoint

[image: image21.png]bdd [, 13-System Hodeing Concepts-View & Viewpoint

6.3 Relationship to other OMG Specifications and activities

6.3.1 Relationship to OMG specifications

<Note to RFP Editors: Describe the possible relationships that proposals may have to OMG Formal or Beta specifications in terms of potential reuse of models, mappings, interfaces, and potential dependencies on pervasive services and facilities.>

6.3.2 Relationship to other OMG Documents and work in progress

<Note to RFP Editors: If proposals are expected to have any relationship to or dependencies on OMG documents that are not Formal or Beta specifications (such as Alpha specifications or discussion papers), describe those relationships here. If there are none, omit this section.>

6.4 Related non-OMG Activities, Documents and Standards

<Note to RFP Editors: List documents, URLs, standards, etc. that are relevant to the problem and the proposals being sought. Also describe any known overlaps with specification activities or specifications, competing or complementary, from other standards bodies.>
6.5 Mandatory Language Requirements

6.5.1 Language Architecture and Formalism Requirements

LNG 1: Language Architecture and Formalism Requirements Group

This group specifies how the language is structured and defined.

Supporting information: Some concepts may be implemented as user-level model libraries.

LNG 1.1: Metamodel and Profile Group

LNG 1.1.1: SysML Metamodel

SysML v2 shall be specified using a metamodel that includes abstract syntax, concrete syntax, semantics, and the relationships between them.

LNG 1.1.2: Metamodel Mapping

The SysML v2 specification shall provide or reference a mapping between the subset of SysML v2 used to define SysML v2, MOF and SMOF.

LNG 1.1.3: SysML Profile

SysML v2 shall be specified as a SysML v2 profile of UML that includes, as a minimum, the functional capabilities of the SysML v1.x profile, and a mapping to the SysML v2 metamodel.

Supporting information: Equivalent functional capability demonstrated by mapping the UML metaclasses and SysML stereotypes from SysML v2 to SysML v1 to demonstrate coverage.

SysML v1.X Constructs: SysML v1.x Profile

LNG 1.2: Semantics Group

LNG 1.2.1: Semantic Model Libraries

SysML v2 semantics shall be modeled with SysML v2 model libraries.

Supporting Information:

1. Simplifies the language when model libraries are used to extend the base declarative semantics without additional abstract syntax.

2. Enables SysML to be improved and extended more easily by changes and additions to model libraries, rather than always through abstract syntax.

LNG 1.2.2: Declarative Semantics

SysML v2 models shall be grounded in a declarative semantics expressed using mathematical logic.

Supporting Information:

Semantics are defined formally to reduce ambiguity. Declarative semantics enable reasoning with mathematical proofs. This contrasts with operational semantics that requires execution in order to determine correctness.

The semantics provide the meaning to the concepts defined in the language, and enable the ability to reason about the entity being represented by the models.

SysML v1.X Constructs: Semantics of UML and SysML

LNG 1.2.3: Reasoning Capability

SysML v2 shall provide a subset of its semantics that is complete and decidable.

Supporting Information: This enables the ability to reason about the entity being modeled by querying the model, and returning results that satisfy the specified set of constraints.

As an example, a query could return valid vehicle configurations that satisfy vehicle mass<2kg AND vehicle has a sunroof.

LNG 1.3: Abstract Syntax Group

LNG 1.3.1: Syntax Specification

SysML v2 abstract and concrete syntax shall be specified entirely using a subset of SysML v2 (including constraints on syntactic structure).

Supporting Information:

Expressing the syntax formally using a single consistent language which is more understandable to the user.

LNG 1.3.2: View Independent Abstract Syntax

The SysML v2 abstract syntax representation of SysML v2 models shall be independent of all views of the models.

Supporting Information: Rationale

This is intended to define the concept independent of how it is presented. This enables a consistent representation of concepts with common semantics across a diverse range of views, including graphical, tabular, and other textual representations.

It also allows more consistent implementation of services on models (e.g., model checking, execution, and analysis) independent of specific views of those models.

LNG 1.4: Concrete Syntax Group

LNG 1.4.1: Concrete Syntax to Abstract Syntax Mapping

The SysML v2 concrete syntax representation of all views of a SysML model shall be separate from, and mapped to the abstract syntax representation of that model (including the ability to map to one or more images or snippets of images).

Supporting Information:

Enables views to provide unambiguous concrete representation of the abstract syntax of the model.

Enables views to be rendered in a consistent way across tools.

SysML v1.X Constructs: Diagram Definition

LNG 1.4.2: Graphical and Textual Concrete Syntax

SysML v2 shall provide a standard graphical and human readable textual concrete syntax.

Supporting information: Graphical and textual concrete syntax representations can be used in combination to more efficiently and effectively present the model. Refer to Alf as an example of a textual notation.

SysML v1.X Constructs: Graphical syntax only

LNG 1.4.3: Syntax Examples

All examples of model views in the SysML v2 specification shall include the concrete syntax of the view, and the mapping to the abstract syntax representation of the parts of the models being viewed.

Supporting Information:

Experience has shown that the mapping of examples to the concrete and abstract syntax is not always obvious. Making these mappings explicit helps clarify their formal specification.

LNG 1.5: Extensibility Group

LNG 1.5.1: Extension Mechanisms

SysML v2 syntax and semantics shall include mechanisms to extend the language.

Supporting Information: This is essential to enable further customization of the language. SysML v1 includes a stereotype and profile mechanism to extend the language.

It should also enable extension of metadata, e.g. data owner, model protection data, model precision

SysML v1.X Constructs: Stereotype, Profile

LNG 1.5.2: Extensibility Consistency

All SysML v2 extension mechanisms shall be applicable to SysML v2 syntax (concrete and abstract) and semantics, and be consistent with how these are specified in SysML v2.

Supporting Information:

The SysML v2 Specification includes syntax, semantics, and vocabulary, so extending the language requires all of these to be extensible.

LNG 1.6: Model Interchange, Mapping, and Transformations Group

LNG 1.6.1: Model Interchange

SysML v2 shall provide a tool-neutral format for unambiguously interchanging the abstract syntax representation of a model and the concrete syntax representation of views of the model.

Supporting Information: The interchange should facilitate long term retention, file exchange, and version upgrades.

Consider consistency with related interchange standards, such as AP233. For the concrete syntax, consider consistency with Diagram Definition and Diagram Interchange.

SysML v1.X Constructs: XMI

LNG 1.6.2: Model Mappings and Transformations

SysML v2 shall provide a capability to specify model mappings and transformations.

Supporting Information: SysML may be used to represent the metamodel of other languages to enable transformation between SysML models and models in other languages. These languages include languages for queries, validation rules, expressions, viewpoint methods, and transformations.

LNG 1.6.3: UML Interoperability

SysML v2 shall provide the capability to map shared concepts between SysML and UML.

SysML v1.X Constructs: SysML Profile of UML

6.5.2 Data Model Requirements

6.5.2.1 Cross-cutting Requirements

CRC 1: Cross-cutting Requirements Group

The following specify the requirements that apply to all model elements.

CRC 1.1: Model and Model Library Group

CRC 1.1.1: Model

SysML v2 shall include a capability to represent a model (aka system model) that contains a set of uniquely identifiable model elements.

Supporting Information: This is intended to be a kind of Container or Namespace.

SysML v1.X Constructs: Model

CRC 1.1.2: Model Library

SysML v2 shall include a capability to represent a Model Library that contains a set of model elements that are intended to support reuse.

Supporting Information: This is intended to be a kind of Container or Namespace.

SysML v1.X Constructs: Model Library

CRC 1.1.3: Container

SysML v2 shall include the capability to represent a Container that is a model element that contains other model elements.

Supporting Information: This provides a way to organize the model and should include considerations for rules to uniquely identify the content of a container. Containers can contain other containers.

SysML v1.X Constructs: Package

CRC 1.2: Model Element Group

CRC 1.2.1: Model Element

SysML v2 shall include a root element that contains features that apply to all other kinds of elements in the model.

SysML v1.X Constructs: Model Element

CRC 1.2.10: Risk

SysML v2 shall include a capability to represent a Risk that identifies the kind of risk (e.g., cost, schedule, technical), and the likelihood of occurrence, and the potential impact.

CRC 1.2.2: Unique Identifier

SysML v2 shall include a capability to represent a single unique identifier for each model element that cannot be changed.

SysML v1.X Constructs: UUID is part of the XMI specification

CRC 1.2.3: Name and Aliases

SysML v2 shall include a capability to represent a name and one or more aliases for any named model element.

Supporting Information: Aliases enable users to assign more than one name for the same element, such as a shortened name.

Selected kinds of model elements may not require a name (e.g. dependency), or the name may be optional, but still should be distinguishable within a namespace.

A common use of aliases is the use of an abbreviated or shortened name.

SysML v1.X Constructs: Named Element

CRC 1.2.4: Keyword

SysML v2 shall include a capability to assign a key word to any model element as a lightweight extension mechanism.

Supporting Information:

This is intended to be an inheritable feature such that any sub-class will inherit this keyword.

It is similar to a very lightweight usage of a stereotype at the user model level and not at the metamodel level.

SysML v1.X Constructs: Stereotypes

CRC 1.2.5: Definition / Description

SysML v2 shall include a capability to represent one or more definitions and/or descriptions for each model element and select those that apply.

SysML v1.X Constructs: Owned Comment

CRC 1.2.6: Annotation

SysML v2 shall include a capability to represent an annotation of one or more model elements that includes a text string and/or link that refers to a Navigation relationship.

SysML v1.X Constructs: Comment

CRC 1.2.7: Element Group

SysML v2 shall include a capability to represent a group of model elements that can be ordered and can satisfy user-defined criteria for membership in the group.

Supporting Information:

1. A query can be used to dynamically update the members of the group.

2. A relationship between an element group and another element applies to each member of the element group.

3. A member of an element group is not intended to impose ownership constraints on the members.

4. Element group is expected to be specialized for different kinds of members, such as contain requirements, functions, and structural elements, which may impose additional constraints on its members.

SysML v1.X Constructs: Element Group

CRC 1.2.8: Problem

SysML v2 shall include a capability to represent a problem that causes an undesired affect from a particular stakeholder.

Supporting Information: A problem is often represented as a cause in a cause-effect relationship.

SysML v1.X Constructs: Problem

CRC 1.2.9: Case

SysML v2 shall include the capability to represent a case that can be specialized into a use case, analysis case, verification case, and domain specific cases, such as safety case and assurance case.

Supporting Information: A case is sometimes defined as a systematic investigation or study that produces a result or conclusion, which can be represented as a behavior.

CRC 1.3: Model Element Relationships Requirements Group

CRC 1.3.01: Relationship

SysML v2 shall include a capability to represent a Relationship between any two model elements that may have a name and direction, and can be used concretely or sub-classed.

SysML v1.X Constructs: Relationship

CRC 1.3.02: Derived Relationship

SysML v2 shall include a capability to represent a relationship that is derived from other relationships.

Supporting Information:

An example is a derived relationship from a transitive relationship where B relates to A and C relates to B, then C relates to A.

Another example is a connector between two composite parts that is derived from a connector between their nested parts.

CRC 1.3.03: Dependency Relationship

SysML v2 shall include a capability to represent a Dependency Relationship where one side of the relationship refers to the independent element and the other side of the relationship refers to the dependent element.

SysML v1.X Constructs: Dependency

CRC 1.3.04: Cause-Effect Relationship

SysML v2 shall include a capability to represent a Cause-Effect Relationship where one side of the relationship refers to the cause and the other side of the relationship refers to the effect.

CRC 1.3.05: Explanation Relationship

SysML v2 shall include a capability to represent an Explanation Relationship where one side of the relationship refers to the rationale and the other side of the relationship refers to the element being explained (i.e. what is concluded).

SysML v1.X Constructs: Anchor on a rationale

CRC 1.3.06: Refine Relationship

SysML v2 shall include a capability to represent a Refine Relationship where the refined side of the relationships refers to the more precisely specified element.

SysML v1.X Constructs: RefineReqt

CRC 1.3.07: Realization Relationship

SysML v2 shall include a capability to represent a Realization Relationship where one side of the relationship refers to the more abstract element, and the other side of the relationship refers to the more concrete element.

Supporting information: Generalization constrains this relationship with the ability to inherit features. It is also restricted to relating classifiers.

SysML v1.X Constructs: Realization

CRC 1.3.08: Allocation Relationship

SysML v2 shall include a capability to represent an Allocation Relationship where one side of the relationship refers to the allocated from, and the other side of the relationship refers to the allocated to.

SysML v1.X Constructs: Allocate

CRC 1.3.09: Element Group Relationship

SysML v2 shall include a capability to represent an Element Group Relationship where one side of the relationship refers to the member, and the other side of the relationship refers to the Element Group.

SysML v1.X Constructs: Anchor

CRC 1.3.10: Navigation Relationship

SysML v2 shall include a capability to represent a Navigation Relationship between a model element and another model element or an external element, similar to a hyperlink, where one side of the relationship refers to the linked to, and the other side of the relationship refers to the linked from. The external element can be a data element and/or a file.

Supporting information:

This is a navigation aid that standardizes what many tools already do.

The navigation can specify the ability to navigate from either end of the relationship.

SysML v1.X Constructs: Some tools support navigation links, but not in a standard way.

CRC 1.4: Variability Modeling Group

The requirements in this group should accommodate approaches to model variants as choices among design options. The modeling approaches may include a separate variability model to identify the design choices.

Supporting information: refer to ISO/IEC 26550:2015

CRC 1.4.1: Variation Point

SysML v2 shall include a capability to model variation points that identify features that can vary across a set of variants (e.g., vehicles with manual or automatic transmission, variable number of axles, or variable wheel size).

CRC 1.4.2: Variant

SysML v2 shall include a capability to model variants that correspond to particular selections for a variation point.

CRC 1.4.3: Variability Expression and Constraints

SysML v2 shall include a capability to model variability expressions that can be used to select variants among a set of possible variant choices (e.g., 3 axles plus large wheel size or 2 axles plus small wheel size), and where one selection may be dependent on another selection (e.g., number of axles and wheel size is dependent on selection of load size).

CRC 1.4.4: Variant Binding

SysML v2 shall include a capability to model the binding between a variant and the model elements that vary.

Supporting Information: The binding is intended to enable a variability model to define variation in different kinds of models such as a SysML model, simulation model, and a CAD model.

CRC 1.5: View and Viewpoint Group

The following specify the requirements associated with View and Viewpoint. These concepts are used by the Visualization Services to generate Views of a Model.

CRC 1.5.1: View Definition

SysML v2 shall include a capability to represent the structure of an artifact that is presented to a stakeholder.

Supporting Information: An individual View is intended to be a specific artifact, such as a document, diagram, or table that is presented to a stakeholder. A View Definition can be thought of as a table of contents for a document and the list of figures and tables that can be specialized, decomposed into sub-views, and ordered. The View is generated when the Viewpoint Method is applied to the View Definition to populate the contents. The View Definition is intended to be reused with different Viewpoint methods.

SysML v1.X Constructs: View

CRC 1.5.2: Viewpoint

SysML v2 shall include a capability to represent a Viewpoint to address a set of stakeholders and their concerns. It specifies the requirements a View must satisfy and the set of methods needed to generate a particular View that can be presented to a stakeholder.

Supporting Information:

The Viewpoint method enables query of the model and rendering of the query results to present to the stakeholder.

The stakeholder and their concerns should be represented in the model.

SysML v1.X Constructs: Viewpoint

CRC 1.6: Metadata Group

The requirements in this group identify metadata that can apply to each model element or to another element that refers to a model element (e.g., a model configuration item).

CRC 1.6.1: Version

SysML v2 shall include a capability to represent the version of one or more model elements or of another element that refers to one or more model elements.

CRC 1.6.2: Time Stamp

SysML v2 shall include a capability to represent a model management time stamp for one or more elements or for another element that refers to one or more model elements.

CRC 1.6.3: Data Protection Controls

SysML v2 shall include a capability to represent Data Protection Controls for one or more model elements or for another element that refers to one or more elements.

Supporting Information: This can include markings such as ITAR, proprietary or security classifications

6.5.2.2 Properties, Values & Expressions Requirements

PRP 1: Properties, Values and Expressions Requirements Group

The requirements in this group provide a unified representation of the type of properties, variables, constants, operation parameters and return types as well as literal values and value expressions. This includes types to represent variable size collections, compound value types, and measurement units and scales.

PRP 1.01: Unified Representation of Values

SysML v2 shall include a capability to represent any value-based characteristic such as a value property, a constant, a variable in an expression, as well as a formal parameter and the return type of an operation in a unified way.

Supporting Information: Consider distinguishing between a fundamental physical or mathematical constant (i.e., Pi) from a constant value within the context of a particular model or model execution (i.e., amplifier gain).

SysML v1.X Constructs: Value Property, Value Specification, Formal Parameter of an Operation

PRP 1.02: Value Type

SysML v2 shall include a capability to represent a Value Type as a named definition of the essential semantics and structure of the set of possible values of a value-based characteristic.

SysML v1.X Constructs: Value Type

PRP 1.03: Value Expression

SysML v2 shall include a capability to represent a value as a literal or through a reusable Value Expression that is stated in an expression language that includes the capability to represent opaque expressions.

SysML v1.X Constructs: Opaque and OCL expressions

PRP 1.04: Logical Expressions

SysML v2 shall include a capability to represent, as part of the Expression language, logical expressions that support as a minimum the standard boolean operators AND, OR, XOR, NOT, and conditional expressions like IF-THEN-ELSE and IF-AND-ONLY-IF, in which symbols bound to any characteristics (e.g. value properties or usage features) may be used.

PRP 1.05: Unification of Expression and Constraint Definition

SysML v2 shall include a capability to represent a reusable constraint definition in the form of an equality or inequality which can be evaluated to true or false, and where the left and right-hand sides of the constraint definition are Value Expressions.

SysML v1.X Constructs: Constraint Block

PRP 1.06: Intended Use of Value

SysML v2 shall include a capability to convey the intended use of a Value Property as a default (static, invariant) value, and initial value.

SysML v1.X Constructs: Default, Static, Initial Value

PRP 1.07: System of Quantities

SysML v2 shall include a capability to represent a named system of quantities that support definition of numerical Value Types in accordance with the ISO/IEC 80000 standard.

Supporting Information: The typical Systems of Quantities is the ISO/IEC 80000 International System of Quantities (ISQ) with seven base quantities: length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity.

SysML v1.X Constructs: SystemOfQuantities in Annex E.5 QUDV

PRP 1.08: System of Units and Scales

SysML v2 shall include a capability to represent a named system of measurement units and scales to define the precise semantics of numerical Value Types in accordance with the [ISO/IEC 80000] standard.

Supporting Information: Similar to SysML v1 QUDV, SysML v2 should include model libraries representing the [ISO/IEC 80000] units, as well as the conversion to US Customary Units defined in [NIST SP 811] Appendix B.

SysML v1.X Constructs: SystemOfUnits in Annex E.5 QUDV

PRP 1.09: Range Restriction for Numerical Values

SysML v2 shall include a capability to represent a value range restriction for any numerical Value Type.

Supporting Information: This requirement allows further restriction of the range of values beyond what is specified by its type. A simple example is a planar angle typed by a real number Value Type and a degree measurement scale. However, the value range may be further restricted from 0 to 360 degrees for positioning a rotational knob. This can also include the definition of optional lower and upper bounds on an associated measurement scale.

PRP 1.10: Automated Quantity Value Conversion

SysML v2 shall include a capability to represent all information necessary to perform automated conversion of the value of a quantity (typed by a numerical Value Type) expressed in one measurement scale to the value expressed in another compatible measurement scale with the same quantity kind.

Supporting Information: This capability is needed to rebase a set of (smaller) system models coming from various contributors on a single coherent set of measurement scales, so that an integrated (larger) system model can be consistently constructed and analyzed.

SysML v1.X Constructs: Most concepts are defined in Annex E.5 QUDV, but measurement scales are lacking detail to fully automate value conversions.

PRP 1.11: Primitive Data Types

SysML v2 shall include a capability to represent the following primitive data types as a minimum: signed and unsigned integer, signed and unsigned real, string, boolean, enumeration type, ISO 8601 date and time, and complex.

SysML v1.X Constructs: Primitive ValueType Library

PRP 1.12: Variable Length Collection Value Types

SysML v2 shall include a capability to represent variable length value collections where all items are typed by a particular Value Type and are referable by index, and where the collection may be one of the established collection types: sequence (ordered, non-unique), set (unordered, unique), ordered set (ordered, unique) or bag (unordered, non-unique).

PRP 1.13: Compound Value Type

SysML v2 shall include a capability to represent both scalar and compound Value Types, where a scalar Value Type represents elements with a single value, and compound Value Type represents elements with a fixed number of component values, where each component value is typed in turn by a scalar Value Type or another compound Value Type.

Supporting Information: Such compound Value Types are needed to support the representation of vector, matrix, higher order tensor, computer data record, complex number, quaternion, and other richer Value Types.

SysML v1.X Constructs: ValueType

PRP 1.14: Discretely Sampled Function Value Type

SysML v2 shall include a capability to represent variable length sets of values that constitute discrete time series data, frequency spectra, temperature dependent material properties, and any other datasets that can be represented through a discretely sampled mathematical function.

Supporting Information: Such a discretely sampled function can be defined by a tuple of one or more Value Types that prescribe the type of the domain (independent) variables, and a tuple of one or more Value Types that prescribe the range (dependent) variables, as well as a variable length sequence of tuples that represent the actual set of sampled values.

PRP 1.15: Discretely Sampled Function Interpolation

SysML v2 shall include a capability to represent an interpolation scheme for a Discretely Sampled Function Value Type for derivation of the function's range values for domain values that are in-between sampled values.

PRP 1.16: Probabilistic Value Distributions

SysML v2 shall include a capability to represent the value of a quantity with a probabilistic value distribution, including an extensible mechanism to detail the kind of distribution, i.e. the probability density function for continuous random variables, or the probability mass function for discrete random variables.

SysML v1.X Constructs: Annex E.7 Distribution Extensions

PRP 1.17: System Simulation Models

SysML v2 shall include a capability to represent signal flow graph models and lumped parameter models as well as combinations thereof.

Supporting Information: See [SysPISF] for details.

PRP 1.18: Across and Through Value Properties

SysML v2 shall include a capability to define across and through properties of flows on Interface Ends that participate in representing physical interactions in lumped parameter models.

Supporting Information: Typically the across and through properties are defined together as a pair, where the across property does not conserve energy and the through property does. For example, in a lumped parameter model of an electric circuit, the across and through properties are voltage and current respectively. See [SysPISF] for details.

PRP 1.19: Basic Geometry

SysML v2 shall include a capability to represent basic two- and three-dimensional geometry of a structural element, including a base coordinate frame as well as relative orientation and placement of shapes through nested coordinate frame transformations, where the basic shape definitions are provided in a model library.

Supporting Information: These capabilities are intended to provide basic geometry and coordinate frame representations to support specification of physical envelopes. The intent is that each block or equivalent will have its own reference coordinate system, and transformations can be applied between coordinate systems of different blocks. The shape of a block is defined in its reference coordinate system. Consider references to standard formats (e.g., ISO 10303 (STEP), IGES)

PRP 1.20: Materials with Properties

SysML v2 shall include a capability to represent named materials with their material properties in a model library and assignment of such materials to structural elements.

Supporting information: This requirement is intended to specify a model library with a generic material kind that has generic material properties that can be further specialized.

6.5.2.3 Structure Requirements

STC 1: Structure Requirements Group

This group of requirements is intended to represent composable, deeply nested, connectible structure with and without variants, and models of individual elements that are uniquely identified.

STC 1.01: Modular Unit of Structure

SysML v2 shall include a capability to represent a modular unit of structure - called a Definition Element - that defines its characteristics through value properties, interface ends (ports), constraints, and behavioral features.

Supporting Information: Such modular units of structure can be regarded as the fundamental and uniquely identifiable, named building blocks from which system representations, i.e. architectures, can be constructed. The capability enables modeling of all kinds of systems that include hardware, software, people, facilities, and natural objects at the enterprise, system-of system, subsystem, and component levels.

SysML v1.X Constructs: Block

STC 1.02: Usage Feature

SysML v2 shall include a capability to represent the containment of a usage of another Definition Element - called a Usage Feature - in order to support modular, deeply nested hierarchical composition structures.

Supporting Information: In the SECM this is referred to as a Constituent Feature.

SysML v1.X Constructs: Structural Feature, Behavioral Feature, ElementPropertyPath, NestedConnectorEnd

STC 1.03: Generic Hierarchical Structure

SysML v2 shall include a capability to represent hierarchical composition structure between Definition Elements.

SysML v1.X Constructs: Composite Association

STC 1.04: Reference Feature

SysML v2 shall include a capability to represent a reference from one element to any other element within a shared scope.

SysML v1.X Constructs: Reference Property, Reference Association

STC 1.05: Multiplicity of Usage

SysML v2 shall include a capability to define the multiplicity of any particular Usage Feature or Reference Feature as an integer range (i.e., lower bound and upper bound).

Supporting Information:

Multiplicity refers to the number of Individual Elements.

SysML v1.X Constructs: Multiplicity on properties.

STC 1.06: Definition Element Specialization

SysML v2 shall include a capability to represent a specialization from a more general Definition Element into a more specific Definition Element, where the more specific element inherits all features of the more general element.

SysML v1.X Constructs: Generalization/Specialization

STC 1.07: Unambiguous Deeply Nested Structure

SysML v2 shall support a capability to represent and unambiguously identify deeply nested Usage Features in a way that is fully integrated with direct (one level deep) Usage Features.

Supporting Information: Deeply nested Usage Features may be defined only when needed for specific localized typing or interface representation.

SysML v1.X Constructs: ElementPropertyPath, NestedConnectorEnd, Redefinition, Subsetting

STC 1.08: Structure With Variability

SysML v2 shall include a capability to represent multiple possible variant configurations of a system-of-interest through a single collection of Definition Elements and Usage Features - called a Definition Model - where at each usage level in the (de)composition, a Variant selection from different possible Variant choices can be defined.

Supporting Information: A Structure With Variability enables the definition of a product line architecture, see e.g. ISO 26550. Some common variant choices are defined by multiplicity range. sub-classes, and different values of a value property.

SysML v1.X Constructs: Multiplicity of property, specialization of classifiers Redefined property, Subsetted property

STC 1.09: Structure Resolved to a Single Variant

SysML v2 shall include a capability to represent a single variant of a system-of-interest - called a Configuration Model composed of Configuration Elements - that establishes a fully expanded hierarchical (de)composition conforming to an associated Structure with Variability where for each Variability Choice a single selection is made.

Supporting Information: A SysML v2 implementation should support auto-generation of Configuration Models from a Definition Model based on a set of rules. A SysML v2 implementation should ideally also provide a capability to semi-automatically generate a Definition Model from one or more Configuration Models.

SysML v1.X Constructs: Sub-class with Redefinition, Subsetting, Property Specific Type

STC 1.10: Structure of an Individual

SysML v2 shall include a capability to represent a hierarchical structural (de)composition of an individual system or product - called an Individual Model composed of Individual Elements - that actually or potentially exists in the real world, and that conforms to an associated Structure resolved to a Single Variant.

Supporting Information: Such a digital representation of a real-world system is sometimes called a 'digital twin'. The elements in a Structure of an Individual are typically designated by a unique serial number, a batch number or an effectivity code.

SysML v1.X Constructs: Instance Specification

STC 1.11: Usage Specific Localized Type

SysML v2 shall include a capability to represent local override, redefinition, or addition of features with respect to the features defined by its more general type.

Supporting Information: The more-general to more-specific type chain is: Definition Element - direct Usage Feature - deeply nested Usage Feature - Configuration Element - Individual Element.

SysML v1.X Constructs: PropertySpecificType Redefinition, Subsetting

6.5.2.4 Interface Requirements

INF 1: Interface Requirements Group

SysML v2 is intended to provide a robust capability to model interfaces that constrain the physical and functional interaction between structural elements. An interface in SysML v2 includes two (2) interface ends, the connection between them, and any constraints on the interaction. An interface should support the following:

1. Different levels of abstraction that include logical and physical interfaces, nested interfaces, and interface layers;

2. Diverse domains that include a combination of electrical, mechanical, software, and user interfaces;

3. Reuse of interfaces in different contexts;

4. Generation of interface control documents and interface specifications

Supporting Information: The ability to construct and visualize different views of interfaces, including different abstraction levels, are addressed by the visualization and construction services.

INF 1.01: Interface Usage

SysML v2 shall provide the capability to represent an interface that constrains the interaction between any two (2) structural elements.

SysML v1.X Constructs: Ports, Connectors, Parts

INF 1.02: Interface Definition and Reuse

SysML v2 shall provide the capability to define an interface that can be used in different contexts that includes the definition of the interface ends, the interface connections, and the constraints on the interaction.

Supporting Information: Interfaces must conform to the structural concepts of definition and usage.

The constraints can include physical constraints and/or functional constraints on exchanged items.

SysML v1.X Constructs: Port Definitions including Interface Blocks and Blocks, Association and Association Blocks used to type Connectors, Item Flows, Constraints

INF 1.03: Interface Decomposition

SysML v2 shall provide the capability to represent nested interfaces, such as when modeling two electrical connectors with pin to pin connections.

SysML v1.X Constructs: Nested ports

INF 1.04: Interface End Definitions

SysML v2 shall provide the capability to represent an Interface End whose features constrain the interaction that it can participate in, including items that can be exchanged and their direction, behavioral features, and constraints on properties.

SysML v1.X Constructs: Interface Blocks with flow properties, value properties, and behavioral features

INF 1.05: Conjugate Interface Ends

SysML v2 shall provide the capability to reverse the direction of the items that are exchanged in an Interface End.

SysML v1.X Constructs: Conjugate Ports

INF 1.06: Item Definition

SysML v2 shall provide the capability to represent the kind of items that can be exchanged between Interface Ends.

Supporting Information: The items represent the type of things such as water or electrical signals that may have physical characteristics such as mass, energy, charge, and force, and logical characteristics such as those associated with information.

Item Definitions must conform to the structural concepts of definition and usage.

The rate at which a usage of an Item Definition is updated may be marked with an update rate that is continuous or discrete valued. (Refer to Behavior Requirement called "Discrete and Continuous Time Behavior")

SysML v1.X Constructs: Blocks, Signal

INF 1.07: Interface Agreement Group

INF 1.07.1: Item Exchange Constraints

SysML v2 shall provide the capability to constrain the interaction between the interface ends that includes constraints on the items to be exchanged, the allowable sequences and directions of those items, timing of the exchange and other characteristics. The items exchanged shall be consistent with the type and direction of the items specified in the connected Interface Ends.

SysML v1.X Constructs: Activities, state machines and sequence diagrams in an association block with participant properties

INF 1.07.2: Property Constraints

SysML v2 shall provide the capability to constrain the interaction between the interface ends that include mathematical constraints on the properties exposed by the Interface Ends.

Supporting Information: The value properties may further be marked as Across or Through variables consistent with standard usage of the terms (e.g. across and through variables, for specifying properties that are constrained by conservation laws).

Refer to Properties, Values and Expression requirement called "Across and Through Value Properties"

SysML v1.X Constructs: Parametric diagrams that specify constraints on the ends of an association block with participant properties.

INF 1.07.3: Geometric Constraints

SysML v2 shall provide the capability to constrain the interaction between the interface ends that include geometrical constraints on either Interface End.

Supporting Information: An example are the geometric constraints associated with connecting a plug and socket.

INF 1.08: Interface Medium

SysML v2 shall include a capability to represent an Interface Medium that enable 2 or more components to interact.

Supporting Information: The Interface Medium may represent either an abstract or physical element that connects elements to enable interactions. Examples of an interface medium included an electrical harness, a communications network, a fluid pipe, the atmosphere, or even empty space. The interface medium may connect one to many components, which include support for peer-to-peer, multi-cast, and broadcast communications.

Consider replacing the term Interface Medium with Transport Medium.

SysML v1.X Constructs: Property typed by block with user-defined stereotype indicating its special function.

Also, connector typed by Association Block that has part properties, e.g. hotwater:Pipe and coldwater:Pipe.

INF 1.09: Interface Layers

SysML v2 shall provide the capability to represent interfaces between structural elements that represent a specified layer of an interface stack, and connections between structural elements in adjacent layers of an interface stack.

Supporting Information: An upper layer in a stack transforms the data to match the input to the next lower layer, performing the exchange at that lower layer. The transformation can be represented by an Over Relationship. In order for the layered interface stack to perform properly, each layer must satisfy its requirements.

SysML v1.X Constructs: Complex combination of the ports and flow concepts.

INF 1.10: Allocating Functional Exchange to Interfaces

SysML v2 shall provide the capability to allocate or bind the outputs and inputs of a functional exchange to interface ends, and validate the consistency between the functional exchange and the interface.

SysML v1.X Constructs: On Port metaproperty.

6.5.2.5 Behavior Requirements

BHV 1: Behavior Requirements Group

BHV 1.01: Behavior

SysML v2 shall include the capability to model a Behavior that represents the interaction between individual structural elements and their change of state over time.

SysML v1.X Constructs: Activity, State Machine, Interaction, Simple Time

BHV 1.02: Behavior Decomposition

SysML v2 shall include the capability to decompose a behavior to any level of decomposition.

Supporting Information: This should include the equivalent capability to decompose a SysML v1 activity on a BDD, and the ability to decompose actions on a structured activity node.

SysML v1.X Constructs: Composited Association of Behavior Classifiers with Adjunct Properties

BHV 1.03: Function-based Behavior Group

BHV 1.03.1: Function-based Behavior

SysML v2 shall include the capability to represent a controlled sequence of actions (or functions) that can transform a set of inputs to a set of outputs.

Supporting Information: This is analogous to activity diagrams. It may be addressed by an integrated approach to specify both activities and sequence diagrams.

SysML v1.X Constructs: Activity

BHV 1.03.2: Opaque Behavior

SysML v2 shall include the capability to represent a behavior that embeds the definition in a language such as a programming language.

SysML v1.X Constructs: Opaque Behavior

BHV 1.03.3: Behavior Library

SysML v2 shall include a library that can be populated with commonly used behaviors.

SysML v1.X Constructs: FUML actions library

BHV 1.03.4: Structure Modification Behavior

SysML v2 shall include the capability to represent changes in a structural element over time, such as the creation and destruction of interconnections and composition.

SysML v1.X Constructs: Primitive Actions

BHV 1.04: State-based Behavior Group

BHV 1.04.1: Regions, States, and Transitions

SysML v2 shall include the capability to represent the discrete-state behavior of a structural element in terms of its concurrent regions with mutually exclusive states, and transition between discrete states.

SysML v1.X Constructs: State Machine

BHV 1.04.2: Integration of Function-based Behavior with State-based Behavior

SysML v2 shall include the capability to model function-based behavior both on transitions between states, and upon entry, exit, and while in a discrete state.

SysML v1.X Constructs: Entry, Exit, Do Behavior and Transition effect

BHV 1.05: Composite Input and Output

SysML v2 shall include the capability to model composite inputs and outputs of behaviors with separate flows defined for the constituent inputs and outputs.

BHV 1.06: Discrete and Continuous Time Behavior

SysML v2 shall include the capability to model behaviors whose inputs and outputs vary continuously as a function of time, or discretely as a function of time.

SysML v1.X Constructs: Continuous, streaming

BHV 1.07: Events

SysML v2 shall include the capability to model signal events, time events, and change events and their ordering.

Supporting Information: The ordering of actions (i.e., functions) is accomplished through ordering of their start and completion events.

SysML v1.X Constructs: Triggering events on state machines, accept event actions, send signal actions

BHV 1.08: Control Nodes

SysML v2 shall include the capability to model control nodes that specify a logical expression of conditions and events to enable a flow.

Supporting Information: For Example: {Inputs A < a1 AND B>=b2 OR C AND NOT D} must be true).

SysML v1.X Constructs: Join, Fork, Merge, Decision

BHV 1.09: Behavior Constraints

SysML v2 shall include the capability to model constraints on a behavior that include a declarative specification in terms of its pre conditions and its post conditions and/or any invariants.

SysML v1.X Constructs: Pre and post conditions

BHV 1.10: Time Constraints

SysML v2 shall include the capability to specify the time associated with any event that includes start events, completion events, and duration constraints between events to represent the time-line of a behavior.

Supporting Information: Time is a property typed by a Value Type whose quantity kind and units are specified as part of QUDV.

SysML v1.X Constructs: Simple Time

BHV 1.11: State History

SysML v2 shall provide the capability to represent a state history as a sequence of snapshots of state variables. The state history should contain a reference time scale consistent with QUDV, and can include a start time, end time, and time step.

BHV 1.12: Behavior Execution

SysML v2 shall include the capability to execute behavior of an individual element in a standard way that specifies the sequence of events, and flow of inputs and outputs, in accordance with the behavior and time constraints.

Supporting Information: The behavior of a Definition Element or Configuration Element represent the default behavior of the conforming Individual Elements.

SysML v1.X Constructs: FUML

BHV 1.13: Integration between Structure and Behavior

BHV 1.13.1: Allocation of Behavior to Structure

SysML v2 shall include the capability to represent the behavior of one or more structural elements.

Supporting Information:

This should support the ability to define a state machine of a structural element, with discrete states that enable actions (i.e., functions) and constraints. In addition, this should support the ability to specify the actions performed by a component, and the applicable constraints, without specifying the discrete state that enables them.

The representation should allow more than one structural element to perform a single function on an activity diagram or equivalent, such as when two people carry a load. The presentation could be analogous to a reference interaction in a SysML v1 sequence diagram that spans multiple lifelines and displays the participating lifelines. The reference interaction refers to another sequence diagram. It should also allow presentation of the equivalent of structured activity nodes.

SysML v1.X Constructs: Allocate, Allocated Activity Partition, Structured Activity Node, Reference Interaction

BHV 1.13.2: Integration of Control Flow and Input/Output Flow

SysML v2 shall ensure that inputs, outputs, and events can seamlessly integrate with structural elements and interfaces.

SysML v1.X Constructs: Adjunct properties,

On Port

6.5.2.6 Requirements for Requirements

RQT 1: Requirement Group

RQT 1.1: Requirement Definition Group

RQT 1.1.1: Requirement Definition Name

SysML v2 shall include a capability to represent a requirement definition that can be used to constrain a solution.

SysML v1.X Constructs: Requirement Name

RQT 1.1.2: Requirement Identifier

SysML v2 shall include a capability to represent a single identifier for each requirement that does not change over the requirement's lifetime and is adaptable to a user defined numbering scheme.

SysML v1.X Constructs: Requirement ID

RQT 1.1.3: Requirement Attributes

SysML v2 shall include a capability to represent the following optional requirement attributes for a requirement definition.

· Requirement Identifier (conforms to a user specified naming and identifier production scheme)

· Requirement Status Attribute

· Priority Attribute

· Risk Attribute

· Originator/Author Attribute

· Owner Attribute

· User-defined Requirement Attributes (e.g., confidence level, uncertainty status, etc.)

Supporting Information: These are derived from commonly used attributes as defined in the INCOSE Handbook and ReqIF and should be reconciled with other model element metadata and model element attributes that apply more generally.

SysML v1.X Constructs: Non Normative extensions

RQT 1.1.4: Textual Requirement Statement

SysML v2 shall include a capability to represent a requirement definition that contains an optional textual requirement statement.

SysML v1.X Constructs: Requirement text statement

RQT 1.1.5: Restricted Requirement Statement Group

RQT 1.1.5.1: Restricted Requirement Statement

SysML v2 shall include a capability to represent a requirement definition that contains an optional restricted requirement statement which may include predefined key words and sentence structures.

RQT 1.1.5.2: Restricted Requirement Statement Extensibility

SysML v2 shall include a capability to extend a restricted requirement statement with additional key words and sentence structures.

RQT 1.1.5.3: Restricted Requirement Statement Transformation

SysML v2 will include a capability to maintain consistency between the restricted requirement statement and the textual requirement statement or the formal requirement statement.

RQT 1.1.6: Formal Requirement Statement Group

RQT 1.1.6.1: Formal Requirement Statement

SysML v2 shall include a capability to represent a requirement definition that contains an optional formal requirement statement that includes one or more constraints on an acceptable solution.

Supporting Information: It is desired to also enable the element that is intended to satisfy the requirement.to contain the formal requirement statement. This can provide a more lightweight modeling style.

SysML v1.X Constructs: Non-normative extension for a property based requirement

RQT 1.1.6.2: Assumptions

SysML v2 shall include a capability to represent a formal requirement statement that includes one or more expressions to specify the assumptions and applicability conditions for acceptable solutions (e.g., the weight of a car includes the fuel weight)

RQT 1.2: Groups of Requirements

RQT 1.2.1: Requirement Group

SysML v2 shall provide the capability to model a group of requirements that are used to constrain a solution.

Supporting Information: This is intended to be a sub-class of Element Group.

SysML v1.X Constructs: Requirement

RQT 1.2.2: Requirement Usage (localized)

SysML v2 shall include a capability to represent localized values of a requirement usage that can over-ride the values of its requirement definition.

Supporting Information: The structural concepts of definition, usage, configuration, and individuals is intended to apply to reuse requirements, and unambiguously define a tree of requirements that specify a design configuration or an individual element.

RQT 1.2.3: Requirement Usage Identifier

SysML v2 shall include a capability to represent each requirement in a requirement group with a unique requirement identifier and a requirement definition.

SysML v1.X Constructs: Requirement ID

RQT 1.2.4: Requirement Ordering

SysML v2 shall include a capability to represent the order of each requirement in a requirement group that is not constrained by its requirement identifier.

Supporting Information: This primarily allows the user to further organize the requirements, but it does not impact the meaning of the requirements. For example, there may be a requirement group with one requirement to open a value and another requirement to close a valve. The user may want to order the open requirement as the first requirement in the group.

RQT 1.3: Requirement Relationships Group

RQT 1.3.1: Specialization

SysML v2 shall include a capability to represent a generalization relationship that relates a specific requirement definition to a more general requirement definition.

RQT 1.3.2: Requirement Satisfaction

SysML v2 shall include a capability to represent a satisfy relationship that relates a requirement to a model element that is asserted to satisfy it.

SysML v1.X Constructs: Satisfy

RQT 1.3.3: Requirement Verification

SysML v2 shall include a capability to represent a verify relationship that relates a verification case to the requirement it is intended to verify.

SysML v1.X Constructs: Verify

RQT 1.3.4: Requirement Derivation

SysML v2 shall include a capability to represent a derive relationship that relates a derived requirement to a source requirement.

SysML v1.X Constructs: DerivedRequirement

RQT 1.3.5: Relationships to a Requirement Group

SysML v2 shall include a capability to apply any relationship with a requirement group to each member of the requirement group.

Supporting Information: This applies more generally to element groups.

RQT 1.3.6: Requirement Group Membership

SysML v2 shall include a capability to represent a relationship between a requirement group and the members of the group that can include either a requirement or another requirement group.

Supporting Information: This relationship groups requirements into a shared context.

RQT 1.4: Relationship Logical Constraint

SysML v2 shall include a capability to represent a logical expression (e.g. AND, OR, XOR, NOT, and conditional expressions like IF-THEN-ELSE and IF-AND-ONLY-IF) to one or more requirement relationships of the same kind, with an associated completeness property (e.g., complete satisfaction or partial satisfaction) and with a default expression of "And" for the logical expression.

Supporting Information: As an example, two blocks that have a satisfy relationship with the same requirement are asserted to completely satisfy the requirement.

RQT 1.5: Requirement Supporting Information

SysML v2 shall include a capability to represent supporting information for a requirement, requirement definition, and a requirement group.

Supporting Information: This is a kind of annotation that applies more generally to any model element.

RQT 1.6: Goals, Objectives, and Evaluation Criteria

SysML v2 shall include a capability to represent goals, objectives, and evaluation criteria.

Supporting Information:

Criteria can be viewed as a superclass of a requirement that does not constrain the values on the solution space. For example, a cost requirement may be to require the cost to be less than a certain value, where as a cost criteria may be to select a design with the lowest cost. Goals can be a type of criteria. For example, a goal of the system is to minimize the cost. An objective represents a desired end state. For example, the mission objective is to land a person on the moon and safely return them to earth. This can be thought of as a kind of requirement.

6.5.2.7 Verification Requirements

VRF 1: Verification and Validation Requirements Group

The requirements in this group are generally assumed to be specialized from more foundational concepts, and are defined in user level model libraries.

Supporting Information: The validation requirements are not called out explicitly, but are intended to be supported in a similar way as the verification requirements.

VRF 1.1: Verification Context

SysML v2 shall include the capability to model a Verification Context that includes a Verification Case, a Verification System, and a Unit Under Verification.

VRF 1.2: Verification Case Group

VRF 1.2.1: Verification Case

SysML v2 shall include the capability to model a verification case to evaluate whether one or more requirements are satisfied by a unit under verification.

SysML v1.X Constructs: Test Case

VRF 1.2.2: Verification Objectives

The verification case shall include verification objectives to be implemented by the verification activities.

VRF 1.2.3: Verification Success Criteria

The verification case shall include the criteria used to evaluate whether the verification objectives are met and the requirements are satisfied.

VRF 1.2.4: Verification Methods

The verification case shall include the methods used to verify the requirements, including a library of different methods (i.e., inspection, analysis, demonstration, test, external verification, engineering reviews, and similarity) that can be applied. More than one method can be applied to verify a requirement.

Supporting information:

Verification method may include additional classification such as qualification test and acceptance test.

An external verification is a method used in some industries, such as an Underwriters Labs.

VRF 1.2.5: Verification Activity

The verification case shall include activities to produce the verification data, and include the ability to reference the data.

VRF 1.2.6: Verification Evaluation Activity

The verification case shall include activities to evaluate the verification data and the verification success criteria and generate a verification result of how well the requirements are satisfied (e.g., pass/fail/unverified).

VRF 1.3: Verification System

SysML v2 shall include the capability to model the system and associated environment that is used to verify the unit under verification. (Note: the verification system may include verification elements that are combinations of operational and simulated hardware, software, people, and facilities.)

VRF 1.4: Verification Relationships Group

VRF 1.4.1: Verification Objectives to Verification Cases

SysML v2 shall include the capability to model relationship between the verification cases and their verification objectives.

VRF 1.4.2: Validate Relationship

SysML v2 shall include the capability to model the relationship between the validation case and the model element being validated.

Supporting Information: An element being validated may represent a requirement, design, as-built system, model, etc.

6.5.2.8 Analysis Requirements

ANL 1: Analysis Requirements Group

The requirements in this group are generally assumed to be specialized from more foundational concepts, and are defined in user level model libraries.

ANL 1.01: Analysis

SysML v2 shall include the capability to specify an Analysis, including the subject of analysis (system), analysis objectives, analysis case, analysis models, and related infrastructure to perform the analysis.

ANL 1.02: System of Interest

SysML v2 shall include the capability to model the relationship between analysis and the subject of the analysis (system being analyzed).

ANL 1.03: Parameters of Interest

SysML v2 shall include the capability to identify the key parameters of interest, measures-of-effectiveness, and key performance parameters that are derived from the analysis.

SysML v1.X Constructs: Constraint Block

ANL 1.04: Analysis Objectives

SysML v2 shall include the capability to model the objective of the analysis being performed in text or as a mathematical formalism, e.g. math expression, so that it can be evaluated.

ANL 1.05: Analysis Case

SysML v2 shall include the capability to model the analysis case to specify the scenario and analysis methods needed to achieve the analysis objectives.

ANL 1.06: Analysis Scenarios

SysML v2 shall include the capability to model the scenarios that identify the models to executed, the conditions and assumptions, the analysis environment, and the configurations of the subject (system) that is being analyzed.

ANL 1.07: Analysis Assumption

SysML v2 shall include the capability to model the assumptions of the analyses in a text or mathematical form, e.g. constraints and boundary conditions.

ANL 1.08: Analysis Decomposition

SysML v2 shall include the capability to decompose an analysis into constituent analyses.

ANL 1.09: Analysis Model

SysML v2 shall include the capability to relate analysis models to a given analysis or analysis scenarios.

Supporting Information: Analysis models can be defined natively in SysML (e.g. parametric model or behavior model) or externally (e.g. equation-based math models, finite element analysis models, or computational fluid dynamics models).

ANL 1.10: Analysis Model - System Model Transformation

SysML v2 shall include the capability to represent the transformation and the mapping between the analysis model and the system model.

Supporting Information: This transformation will represent the algorithm or derivation process, if used, for generating analysis models from system model (or vice versa), and the mapping will provide a mechanism to verify and synchronize analysis models when system model changes (or vice versa).

ANL 1.11: Analysis Result

SysML v2 shall include the capability to relate the results of executing analysis models to the analysis scenarios or the analysis.

Supporting Information: The results may be stored in the SysML v2 model itself or an in an external store (e.g. CSV file or database). The results will be queried for evaluating analysis objectives and for supporting the rationale for decisions taken based on the analysis.

ANL 1.12: Analysis - Decision

SysML v2 shall include the capability to model a Decision, which represents one or more selected choices among alternatives.

Supporting Information: This Decision and Rationale are related through the Explanation relationship. The Rationale can includes references to the analysis.

ANL 1.13: Analysis Infrastructure

SysML v2 shall include the capability to represent the hardware, software, and the personnel (analysis experts) required for performing the analysis.

ANL 1.14: Analysis Metadata

SysML v2 shall include the capability to represent the following metadata for analysis-related model elements (common to all SysML v2 model elements), such as unique id, element type, name, version, author, creation date, and last modified date.

ANL 1.15: Decision Group

ANL 1.15.1: Alternative

SysML v2 shall include a capability to represent a set of alternatives.

ANL 1.15.2: Decision

SysML v2 shall include a capability to represent a set of decision as one or more selections among alternatives.

ANL 1.15.3: Decision Criteria

SysML v2 shall include a capability to represent decision criteria.

ANL 1.15.4: Rationale

SysML v2 shall include a capability to represent rationale for a decision and/or to explain a conclusion.

SysML v1.X Constructs: Rationale

6.5.3 Reference Model and Model Libraries Requirements

RML 1: Reference Model and Model Libraries Group

RML 1.1: Reference Model

SysML v2 shall include a reference model that demonstrates the application of the SysML v2 language concepts to a commonly understood domain.

RML 1.2: Model Libraries

SysML v2 shall include Model Libraries that contain generic elements that can be further specialized to define domain specific libraries in the following domain areas:

· Primitive Value Types

· Units and Quantity Kinds

· Components

· Natural environments

· Interfaces

· Behaviors

· Requirements

· Verification methods

· Analyses

· Basic geometric shapes

· Basic material kinds

· Viewpoint methods

· View definitions (i.e. different kinds of documents and other artifacts)

· Domain-specific symbols

Supporting information: The generic elements provide a common starting point for development of domain specific model libraries that can be subject to future RFPs and/or the open source community.

6.5.4 Conformance Requirements

CNF 1: Conformance Requirements Group

The conformance approach defines a set of test cases that requires a SysML v2 implementation to import a reference model, and provide a response to standard service requests. The service response is evaluated for conformance to the specification.

The SysML v2 specification will specify the conformance levels for each conformance area below. Vendors are expected to identify specific levels of conformance their implementation is intended to support.

CNF 1.1: Formalism Conformance

SysML v2 shall provide test cases to assess conformance of a SysML v2 implementation with the SysML v2 specification formalism requirements.

CNF 1.2: Metamodel & Profile Conformance Group

CNF 1.2.1: Metamodel Conformance

SysML v2 shall provide test cases to assess conformance of a SysML v2 implementation with the SysML v2 specification metamodel and profile requirements.

CNF 1.2.2: Profile Conformance

SysML v2 shall provide test cases to assess conformance of a SysML v2 implementation with the SysML v2 specification profile requirements.

CNF 1.3: Concrete Syntax Conformance

SysML v2 shall provide test cases to assess conformance of a SysML v2 implementation with the SysML v2 specification concrete syntax requirements.

CNF 1.4: Model Interoperability Conformance

SysML v2 shall provide test cases to assess conformance of a SysML v2 implementation with the SysML v2 specification model interoperability requirements.

SysML v1.X Constructs: XMI

6.6 Non-mandatory features

There are no non-mandatory features in this RFP.
6.7 Issues to be discussed

<Note to RFP Editors: Describe the issues that proposals should discuss. Issues to be discussed shall be stated in terms of phrases such as:

“Proposals shall discuss how... ”, or
“Proposals shall include information on...”, or
“Proposals shall provide the design rationale for...”.>

These issues will be considered during submission evaluation. They should not be part of the proposed normative specification. Place your responses to these Issues in Section 0 of your submission.

6.8 Evaluation Criteria

The following criteria will be used to evaluate how effectively the language supports the model-based systems engineering (MBSE) needs. Some of these criteria are difficult to quantify. The submission teams can propose more quantifiable criteria that support the intent.

· Expressive: Ability to express the concepts needed to describe systems

· Precision: Ability to represent the concepts in a concise way that enables unambiguous human and computer interpretation

· Consistency/integrity: Level of integration of the concepts to ensure the consistency and integrity of the language

· Presentation/communication: Ability to effectively support communications with diverse stakeholders that includes presentation and generation of technical baseline information related to specification, design, analysis, and verification of the system and their relationships

· Usable: Ability for stakeholders that include novice and experienced modelers to efficiently and intuitively create, maintain, interpret, and use the model

· Interoperable: Ability to exchange data with other SysML models, other engineering models and tools, and other structured data sources

· Adaptable/Customizable: Ability to extend models to support domain-specific customizations

· Scalable: Ability to scale from small to medium to large models
6.9 Other information unique to this RFP

The submission is encouraged to provide a pilot implementation with a robust example model that can be used as to assist in the evaluation of conformance with this specification.

The submission is also requested to provide a requirements traceability matrix which is derived from SysML v2 Requirements Spreadsheet (OMG number syseng/2017-09-02). It is recognized that the requirements will be evaluated in more detail as part of the submission process. Rationale should be included in the matrix to support any proposed changes to these requirements.
6.10 IPR Mode

<Note to RFP Editors: This section 6.10 of your completed RFP shall specify EXACTLY ONE of the three possible IPR modes specified in the OMG IPR Policy [IPR]. Delete the two IPR modes below that do not apply to this RFP
<Option 1 – RAND mode>

Every OMG Member that makes any written Submission in response to this RFP covenants that it will grant to an unrestricted number of applicants a nonexclusive, worldwide, non-sublicensable, perpetual patent license to its Essential Claims on fair, reasonable, and non-discriminatory terms to make, have made, use, import, offer to sell, sell, and otherwise directly or indirectly distribute Covered Implementations of the resulting OMG Formal Specification.

<Option 2 – RF on Limited Terms>
Every OMG Member that makes any written Submission in response to this RFP covenants that it will grant to an unrestricted number of applicants a royalty and fee free, nonexclusive, worldwide, non-sublicensable, perpetual patent license to its Essential Claims on fair, reasonable, and non-discriminatory terms to make, have made, use, import, offer to sell, sell, and otherwise directly or indirectly distribute Covered Implementations of the resulting OMG Formal Specification, provided that it may not impose any further conditions or restrictions beyond those specifically mentioned below on the use of any technology or intellectual property rights or the behavior of the Licensee, but may include reasonable, customary terms relating to operation or maintenance of the license relationship, including choice of law and dispute resolution.

At the election of the Obligated Party, the granted license may include a term requiring the Licensee to grant a reciprocal license to its Essential Claims (if any) covering the same OMG Formal Specification. Such term may require the Licensee to grant licenses to all Implementers of such deliverable. The Obligated Party may also include a term providing that such license may be suspended with respect to the Licensee if that Licensee first sues the Obligated Party for infringement by the Obligated Party of any of the Licensee's Essential Claims covering the same OMG Formal Specification.

<Option 3 – Non-Assert Covenant>
Every OMG Member that makes any written Submission in response to this RFP shall provide the Non-Assertion Covenant found in Appendix A of the OMG IPR Policy [IPR].

6.11 RFP Timetable

The timetable for this RFP is given below. Note that the TF or its parent TC may, in certain circumstances, extend deadlines while the RFP is running, or may elect to have more than one Revised Submission step. The latest timetable can always be found at the OMG Work In Progress page at http://www.omg.org/schedules under the item identified by the name of this RFP.

<Instructions to authors – “<month>” and “<approximate month>” means the name of the month spelled out; e.g., January.>
	Event or Activity
	Date

	Letter of Intent (LOI) deadline
	<day> <month> <year>

	Initial Submission deadline
	<day> <month> <year>

	Voter registration closes
	<day> <month> <year>

	Initial Submission presentations
	<day> <month> <year>

	Revised Submission deadline
	<day> <month> <year>

	Revised Submission presentations
	<day> <month> <year>

<Note to RFP Editors: Additional RFP-specific sections may also be included here if necessary. If additional sections are included, please insert a brief description of each such section in Section 1.2 "Organisation of this document".>
Appendix A References & Glossary Specific to this RFP

A.1 References Specific to this RFP

A.2.1 Bibliographic Citation List

The following documents are referenced in this document:

[1] Created for SECM - This citation indicates that this text was created specifically for the SECM and no other reference is known. Enter [1, created for SECM] at the end of the text field.

[2] INCOSE. 2011. INCOSE Systems Engineering Handbook, Version 3.2.2. San Diego, CA, USA: International Council on Systems Engineering (INCOSE), INCOSE-TP-2003-002-03.2.2.

[3] BKCASE Editorial Board. 2015. The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 1.5. R.D. Adcock (EIC). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed DATE. www.sebokwiki.org. BKCASE is managed and maintained by the Stevens Institute of Technology Systems Engineering Research Center, the International Council on Systems Engineering, and the Institute of Electrical and Electronics Engineers Computer Society.

[4] ISO/IEC 2008. Systems and Software Engineering -- System Life Cycle Processes. Geneva, Switzerland: International Organization for Standardization / International Electromechanical Commissions. ISO/IEC/IEEE 15288:2008 (E).

[5] ISO/IEC 2015. Systems and Software Engineering -- System Life Cycle Processes. Geneva, Switzerland: International Organization for Standardization / International Electromechanical Commissions. ISO/IEC/IEEE 15288:2015 (E).

[6] Wikipedia: Safety: Mar 31, 2015: http://en.wikipedia.org/wiki/Safety#Safety_measures

[7] Douglas, Bruce: Safety Analysis of UML Models

[8] Wikipedia. Main Page. Mar 31, 2015. http://en.wikipedia.org

[9] Roedler, G.J. and Jones, C. December 27, 2005. Technical Measurement, Version 1.0, Practical Software and Systems Measurement (PSM) and International Council on Systems Engineering (INCOSE). INCOSE-TP-2003-020-01

[10] INCOSE (2015). Systems Engineering Handbook: A Guide for System Life Cycle Process and Activities (4th ed.) D. D. Walden, G. J. Roedler. K. J. Forsberg, R.D. Hamelin, and, T. M. Shortell (Eds.). San Diego, CA: International Council on Systems Engineering. Published by John Wiley & Sons, Inc.

[11] Merriam Webster on-line dictionary

[12] UML 4SE RFP. SE Definitions List, April 01 2003: http://syseng.omg.org/UML%20for%20SE%20Definitions%20030401.xls

[13] Business Dictionary.com - http://www.businessdictionary.com/

[14] INCOSE. 2015. Guide for Writing Requirements. Version 2, San Diego, CA, USA: International Council on Systems Engineering (INCOSE), INCOSE-TP-2010-006-02.

[15] OMG Unified Modeling Language (OMG UML), Version 2.5, March 2015, OMG Document Number - formal/2015-03-01

[16] OMG Systems Modeling Language (OMG SysML), Version 1.4, September 2014, OMG Document Number: formal/2015-06-03

[17] ISO Online Browsing Platform (OBP), Terms and Definitions, https://www.iso.org/obp/ui/#home

[18] Weilkiens, Tim: Variant Modeling with SysML, MBSE4U - Tim Weilkiens, Apr 12 2016, ISBN 978-3-9817875-4-2

[19] Hilbert, D., & Ackerman, W. (1950) Mathematical Logic (L. Hammond, G. Leckie, & F. Steinhardt, Trans.). New York, NY: Chelsea Publishing Company

[20] Friedenthal, Sanford, Moore, Alan, Steiner, Rick. A Practical Guide to SysML: the systems modeling language. New York, NY: Elsevier, 2015. Third Edition

[21] Friedenthal, S. 2016. "Evolving SysML and the System Modeling Environment to Support MBSE, Part 2" INSIGHT (December Volume 19 Issue 4, Pg. 76-80)

[22] Torroni, P., Yolum, P., Singh, M., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., & Mello, P., (2009). Modeling Interactions via Commitments and Expectations. In Handbook of Research on Multi-Agent Systems: Semantics and Dynamics of Organizational Models (p. 263-284) Hershey, PA: IGI Global.

[23] Winskel, D., & Pitts, A. (2005) Lecture Notes on Denotational Semantics for Part II of the Computer Science Tripos. Retrieved at: http://www.cl.cam.ac.uk/~gw104/dens.pdf

[24] (2017) Oxford Living Dictionaries. Retrieved at https://en.oxforddictionaries.com
[25] ISO 9241-210:2010. Ergonomics of human-system interaction - Part 210: Human-centered design for interactive systems. Geneva, Switzerland: International Organization for Standardization.

[26] OMG Systems Modeling Language (OMG SysML), Version 1.5, May 2017, OMG Document Number: formal/2017-05-0

[27] Satellites to Supply Chains, Energy to Finance - SLIM for Model-Based Systems Engineering, Part 1: Motivation and Concept of SLIM. Manas Bajaj, Dirk Zwemer, Russell Peak, Alex Phung, Andy Scott, Miyako Wilson (2011). Presented at the 21st Annual INCOSE International Symposium, Denver, CO, June 20-23, 2011. PDF available at http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part1.pdf

[28] Satellites to Supply Chains, Energy to Finance - SLIM for Model-Based Systems Engineering, Part 2: Applications of SLIM. Manas Bajaj, Dirk Zwemer, Russell Peak, Alex Phung, Andy Scott, Miyako Wilson (2011). Presented at the 21st Annual INCOSE International Symposium, Denver, CO, June 20-23, 2011. PDF available at http://www.omgsysml.org/SLIM_for_MBSE_Bajaj_Part2.pdf

[29] Introduction to SLIM - www.intercax.com/slim

[30] MOF Support for Semantic Structures (SMOF), Version 1.0, April 2013, OMG Document Number - formal/2013-04-02

[31] Meta Object Facility (MOF), Version 2.5.1, November 2016, OMG Document Number - formal/2016-11-01

[32] Matthews, P.H. (2014). The Concise Oxford Dictionary of Linguistics: Oxford University Press. Retrieved at: http://www.oxfordreference.com/

[33] Object Management Group. RFP Template, June 2015, OMG Document Number ab/15-06-01

[34] Bajaj, Manas. SysML v2 API Prototype. OMG Technical Meeting, Reston VA, March 21, 2017. SysML2_API_Prototype_OMG_Reston_2017-03-21.pdf
A.2.2 OMG Standards List

The following documents are referenced in this document:

[ALF] Action Language for Foundational UMLTM (ALF TM)

http://www.omg.org/spec/ALF

[API2KB] Application Programming Interfaces (API) to Knowledge Bases (KB) RFP

http://www.omg.org/cgi-bin/doc.cgi?ad/2010-06-09

[BMM] Business Motivation Metamodel TM (BMMTM)

http://www.omg.org/spec/BMM

[BPMN] Business Process Model and Notation TM (BPMNTM)

http://www.omg.org/spec/BPMN

[DDS] Data Distribution Service TM (DDSTM)

http://www.omg.org/spec/DDS

[DMN] Decision Model and Notation TM (DMNTM)

http://www.omg.org/spec/DMN

[DD] Diagram Definition TM (DDTM)

http://www.omg.org/spec/DD

[FUML] Semantics of a Foundational Subset for Executable UML Models (FUMLTM)

http://www.omg.org/spec/FUML

[MOF] Meta Object Facility TM (MOFTM) Core

http://www.omg.org/spec/MOF/

[MOFVD] Versioning and Development Lifecycle TM (MOFVDTM)

http://www.omg.org/spec/MOFVD

[OCL] Object Constraint Language TM (OCLTM)

http://www.omg.org/spec/OCL

[PSCS] Precise Semantics of UML Composite Structures TM (PSCSTM)

http://www.omg.org/spec/PSCS

[PSSM] Precise Semantics of UML State Machines (PSSM)

http://www.omg.org/spec/PSSM

[QVT] Query View Transformation TM (QVTTM)

http://www.omg.org/spec/QVT

[ReqIF] Requirements Interchange Format (ReqIF TM)

http://www.omg.org/spec/ReqIF

[RAS] Reusable Asset Specification (RAS)

http://www.omg.org/spec/RAS

[S&R] Profile for Safety and Reliability

In process (POC Geoff Biggs)

[SBVR] Semantics of Business Vocabulary and Business Rules TM (SBVRTM)

http://www.omg.org/spec/SBVR

[SMOF] MOF Support for Semantic Structures TM (SMOFTM)

http://www.omg.org/spec/SMOF/

[SPEM] Software and Systems Process Engineering Metamodel TM (SPEMTM)

http://www.omg.org/spec/SPEM

[SysPISF] SysML Extension for Physical Interaction and Signal Flow Simulation (SysPISF)

http://www.omg.org/spec/SysPISF/1.0/Beta1/
[SysML] OMG Systems Modeling Language Version TM (SysML®)

http://www.omg.org/spec/SysML/

[UAF] Unified Architecture Framework (UAF) previously UPDM

http://www.omg.org/spec/UAF

[UML] Unified Modeling Language TM (UML®)

http://www.omg.org/spec/UML

[UTP] UML Testing Profile TM (UTPTM)

http://www.omg.org/spec/UTP

[XMI] XML Metadata Interchange TM (XMI®)

http://www.omg.org/spec/XMI

A.2.3 Other Standards List

The following documents are referenced in this document:

[FMI] Functional Mock-Up Interface (FMI)

http://fmi-standard.org/

[STEP] ISO 10303-233:2012 (STEP)

https://www.iso.org/standard/55257.html

[ArchDes] ISO 42010 - Systems and software engineering - Architecture description

http://cabibbo.dia.uniroma3.it/asw/altrui/iso-iec-ieee-42010-2011.pdf

[SQuaRE] ISO/IEC 25062:2006(en) - Software engineering - Software product Quality Requirements and Evaluation (SQuaRE) - Common Industry Format (CIF) for usability test reports

https://www.iso.org/obp/ui/#iso:std:iso-iec:25062:ed-1:v2:en

[ISO 15288] ISO/IEC 15288:2015 - Systems and software engineering - System lifecycle processes

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:15288:ed-1:v1:en

[ISO 15704] Industrial automation systems - Requirements for enterprise-reference architectures and methodologies

https://www.iso.org/obp/ui/#iso:std:iso:15704:ed-1:v1:en

[ISO 26550] ISO/IEC 26550:2015 - Software and Systems Engineering - Reference model for product line engineering and management

https://www.iso.org/obp/ui/#iso:std:iso-iec:26550:ed-2:v1:en

[ISO 80000] Quantities and units -- Part 1: General: ISO 80000-1:2009

https://www.iso.org/standard/30669.html

[ISO-TC184] Interoperability, integration, and architectures for enterprise systems and automation applications

https://www.iso.org/committee/54192.html

[HCD] ISO/DIS 9241-220.2(en) Ergonomics of human-system interaction - Part 220: Processes for enabling, executing and assessing human-centered design within organizations

https://www.iso.org/obp/ui/#iso:std:iso:9241:-220:dis:ed-1:v2:en

[SE Handbook] INCOSE Systems Engineering Handbook

http://www.incose.org/ProductsPublications/sehandbook

[OSLC] Open Services for Lifecycle Collaboration (OSLC)

http://open-services.net/

[SEBoK] Systems Engineering Body of Knowledge (SEBoK)

www.sebokwiki.org

A.2 Glossary Specific to this RFP

Abstract Syntax - Those aspects of the rules used in the formal specification of data which are independent of the encoding technique to represent the data (ISO 10161-1:2014(en), 3.3.1) [17, ISO OBP Definitions]

Activity Setup - The activity that takes place before an analysis can be executed. This includes:

1. Model the types of analyses that need to be performed on the system representation

2. Model the analysis objectives mathematically

3. Define the key parameters (KPPs/MoEs) being computed or patterns/anti-patterns to be matched.

4. Define mapping/transformation from system model to analysis model

5. Execute the model transformation - Create or generate analysis model based on mapping/transformation (tool-neutral or tool-dependent)

[1, created for SECM]

Alias - An assumed or additional name. [11, Merriam Webster on-line dictionary]

An additional name could include, an acronym, an abbreviated name, a less formal name or a name used in a different domain. [1, created for SECM]

Allocation Relationship - Allocate relationship provides a mechanism for associating elements of different types, or in different hierarchies, at an abstract level. Allocate is used for assessing user model consistency and directing future design activity. It is expected that an allocate relationship between model elements is a precursor to a more concrete relationship between the elements, their properties, operations, attributes, or sub-classes. [16, derived from SysML spec]

Alternative - a: a proposition or situation offering a choice between two or more things only one of which may be chosen a government facing the alternative of high taxes or poor highways

b: an opportunity for deciding between two or more courses or propositions the alternative of going by train or by plane

[11, Merriam Webster on-line]

Analysis - The systematic investigation of a real or planned system to compare, evaluate, and select candidate system architectures, and/or determine causes & resolutions of failures and exceptions. [SEBoK, NASA SE Handbook 2007].

An analysis activity may include evaluation by means of modeling/simulation, inspection, demonstration, test, or a combination of these. [1, created for SECM]

A systematic investigation of a real or planned system to determine the information requirements and processes of the system and how these relate to each other and to any other system. (ISO/IEC/IEEE 2009) [3, SEBoK Glossary]

Analysis Case - A situation requiring analysis investigation or action. [1, created for SECM]

Analysis Evaluation - The activity that occurs for an analysis case to evaluate the outcome data against the success criteria and determines an outcome. [1, created for SECM]

Analysis Infrastructure - All items needed to conduct the analysis effort, including tools, people, measurement devices, procedures, documentation and information. [1, created for SECM]

Analysis Model - The computation model used to calculate the system properties (relevant to the analysis) to meet the analysis objectives. An Analysis model could be computer-based executable model (e.g. Mathematica/MATLAB code or FEA/CFD model), or a model representing physical measurement on a prototype or actual system. For every analysis model, the following characteristics are modeled:

1. Language in which the model is formulated

2. Software used to formulate the model

3. Type of model

4. Result data from executing the model

5. Relationship to the system representation, e.g. design model. This relationship embodies the model transformations required to generate or update the analysis model from the system representation

[1, created for SECM]

Analysis Objective - Represents the objective of the analysis. The objective can be specified in the form of textual description and/or as an expression. When the objective is modeled using a set of math expressions their formal evaluation can be automated. The objective of an analysis is met if the expressions can be successfully evaluated by the information generated during the analysis. [1, created for SECM]

Analysis Outcome - The output created from executing a scenario of an analysis case. [1, created for SECM]

Analysis Plan - Information item that presents a systematic course of action for achieving a declared purpose, including when, how, and by whom specific activities are to be performed. (ISO/IEC/IEEE 15289:2011) [3, SEBoK Glossary]

Analysis Result - This concept represents the result of the analysis in terms of the evaluations of all the expressions in the Analysis Objective. An analysis is successful if its objective has been met. [1, created for SECM]

Analysis Subject - Represents the subject of the analysis being performed. Since the scope of system analysis spans across the lifecycle, the subject of the analysis could be either of the following:

· Design representation of the system, such as a digital mock-up (computer model) of a spacecraft being developed

· Prototype of the system, such as a scaled or real prototype of the spacecraft

· Deployed system, such as the actual spacecraft deployed in orbit.

[1, created for SECM]

Analyst - 1. A member of the technical community (such as a systems engineer or business analyst, developing the system requirements) who is skilled and trained to define problems and to analyze, develop, and express algorithms. IEEE Std. 1233-1998 (R2002) IEEE Guide for Developing System Requirements Specifications.3.1 (ISO/IEC/IEEE 24765:2010(en), 3.104) [17, ISO OBP Definitions]

Annotation - A note added by way of comment or explanation. [11, Merriam Webster on-line dictionary]

An annotation contains a text statement and can also contain one or more navigational links.

API - In computer programming, an application programming interface (API) is a set of subroutine definitions, protocols, and tools for building application software. A good API makes it easier to develop a computer program by providing all the building blocks, which are then put together by the programmer. [8, Wiki]

As-Built Realization - A description of how a specific Component Realization was actually built. [1, created for SECM]

As-Designed Realization - A description of the design of a Component Realization. [1, created for SECM]

Assumption - 3 a: an assuming that something is true <a mistaken assumption>b : a fact or statement (such as a proposition, axiom (see axiom 2), postulate, or notion) taken for granted [11, Merriam Webster on-line]

Axiomatic Semantics - Meanings for program phrases defined indirectly via the axioms and rules of some logic of program properties. [23, Denotational Semantics Lecture]

Basic 2D/3D Library - A digital library containing a collection of predefined model elements representing a set of reusable basic two and three dimensional geometric shapes that can be copied or reference while constructing a model. [1, created for SECM]

Behavior - The interaction between individual structural elements and their change of state over time. [1, created for SECM]

Case - b (1): a situation requiring investigation or action (as by the police) (2): the object of investigation or consideration

[11, Merriam Webster on-line dictionary]

Cause-effect Relationship - Cause-effect relationship relates a cause to an effect. The cause and effect are the ends of the relationship. Those ends may be any model element including states. [1, Created for SECM]

Comment - a: an observation or remark expressing an opinion or attitude critical comments constructive comments

b: a judgment expressed indirectly sees the film as a comment on modern values

[11, Merriam Webster on-line dictionary]

A Comment is a textual annotation that can be attached to a set of (Model) Elements. [15, UML Spec]

A comment can also contain navigational links from this element or text within this element to other model elements or external elements. [1, created for SECM]

Component - (1) An entity with discrete structure, such as an assembly or software module, within a system considered at a particular level of analysis. (ISO/IEC 1998)

(2) One of the parts that make up a system. (IEEE 2008)

(3) A set of functional services in the software, which, when implemented, represents a well-defined set of functions and is distinguishable by a unique name. (ISO/IEC 2008)

[3, SEBoK Glossary]

In systems terms, we use component as the generic term for the level of decomposition at which system elements are no longer considered complex, and for which specialist design disciplines can be used. [3, SEBoK Glossary Discussion]

Component Definition - A component presents interface ends and connects to other components via interface agreements, or exchange agreements. Components can also contain sub-components that connect with each other. [1, created for SECM]

Component Library - A digital library containing a collection of predefined model elements representing a set of reusable components that can be copied or reference while constructing a model. [1, created for SECM]

Component Realization - A component that provides a solution that is intended to conform to the component specification. [1, created for SECM]

Component Specification - A specification is defined as:

a: a detailed precise presentation of something or of a plan or proposal for something, usually used in plural [11, Merriam-Webster on-line]

A Component Specification provides the physical, behavioral, and interface specification for a component to be designed and built. [1, created for SECM]

Concept - An abstraction; a general idea inferred or derived from specific instances. (Oxford Dictionaries Online 2012) [3, SEBoK Glossary]

Concrete Syntax - Those aspects of the rules used in the formal specification of data that embody a specific representation of those data

ISO/IEC 2382:2015(en), 2123126 [17, ISO OBP Definitions]

Configuration Element - Element of a Configuration Model

A Configuration Element may contain (or make use of) other Configuration Elements thereby constituting an explicit, fully expanded hierarchical composition structure. [1, created for SECM]

Configuration Model - A model that represents a fully expanded hierarchical composition structure for a particular configuration of a system and its interfaces.

The Configuration Model can be used in two ways:

1. As an explicit representation that is generated from a Definition Model with a set of configuration parameters for any Variability Choice, e.g. chosen multiplicity or usage expression, as well as possible filtering or pruning.

2. Direct use of the Configuration Model as a simple 'loosely' typed hierarchical composition structure.

For the case (2) it is in principle possible to generate a (best effort) modular / typed Definition Model with some heuristic algorithm that detects elements of the same type.

Note: It is possible that a Configuration Model is over specified or out of sync w.r.t. to its associated Definition Model, and vice versa. Tool implementations will need to handle this situation with rules, refactoring and synchronization functionality.

[1, created for SECM]

Conform Relationship - The view conforms to the specified rules and conventions detailed in the viewpoint. When this is done, the view is said to conform to the viewpoint. [26, SysML 1.5]

Connector Definition - A connector defines the way in which two components interact. That interaction may take the form of an exchange agreement or an interface agreement, or a combination. [1, created for SECM]

Constrained Element - This element is bound to one or more elements in the realization that is constrained by the requirement. The constrained element is used by the Constraint Evaluation to determine is the system satisfied the requirement as stated in the constraining element.

In a traditional textual requirement statement, this element is equivalent to the subject of the verb "shall" (or will, should, etc.). [1, created for SECM]

Constraining Element - The element contained in a requirement that is used to specify a constraint. This element can apply to any model element including properties, behaviors, etc. [1, created for SECM]

Constraint - An expression that can be evaluated to true or false. [1, created for SECM]

Constraint Evaluation - The result of evaluating a constraint between the constraining element and the constrained element. [1, created for SECM]

Container - A kind of model element that contains other model elements and applies scoping rules such as namespace rules to the contained elements.

Containers can contain other containers providing a mechanism to organize the model. [1, created for SECM]

Context - 1. Background, environment, framework, setting, or situation surrounding an event or occurrence. [13, BusinessDictionary.com]

Data Model - A Data Model is an abstract model that organizes elements of data and standardizes how they relate to one another and to properties of the real world entities.

A data model explicitly determines the structure of data. Data models are specified in a data modeling notation, which is often graphical in form. [2] [8, Wiki]

Decision - b: a determination arrived at after consideration: conclusion made the decision to attend graduate school [11, Merriam Webster on-line]

A determination arrived at after consideration of a selected choice amongst alternatives. [1, created for SECM]

Decision Criteria - Factors that will be will considered in making the decision. [1, Created fro SECM]

Declarative Semantics - Association of meaning that specifies what rather than how. Communication with declarative semantics specifies what actions should be brought out in an interaction, rather than how they are brought out. [22, Modeling Interactions via Commitments and Expectations]

Definition - a: a statement expressing the essential nature of something

b: a statement of the meaning of a word or word group or a sign or symbol dictionary definitions

c: a product of defining

[11, Merriam Webster on-line dictionary]

Definition Element - An element of a Definition Model

The set of Definition Element contained by a Definition Model can be regarded as the fundamental and uniquely identifiable, named building blocks from which system representations, i.e. architectures, can be constructed. Apart from a unique identifier and a human readable name a Definition Element defines the essence of what it represents through a set of named and typed features. [1, created for SECM]

Definition Model - A model that captures a composite hierarchy of typed elements that represent the definition of a system and its interfaces

A Definition Model represents a strongly typed, modular, hierarchical composite structure. It allows for inclusion of variation points so that it can represent a set of possible system variants. It also provides a generic structure to represent interfaces consisting of two Interface Ends and an Interface Connector.

It is a generic pattern that can be specialized into concrete modular decomposition representations for e.g. a functional / behavior architecture and / or a physical architecture.

System variation points can be included, e.g. for multiplicity ranges, inclusion or exclusion of subtrees, alternative composition with or without constraints, etc.

The Definition Model contains a bag of building blocks represented by Definition Elements that may directly use (i.e. one level deep) zero or more Direct Usage Features of other Definition Elements.

In many cases there is a need to unambiguously identify and reference more deeply nested usages, e.g. to introduce local override of feature values for a particular usage two or more levels down from a Definition Element or to define an interface connector between nested interface ends. For this purpose the Deeply Nested Usage Feature is made available.

If no features need to be overridden, redefined nor added at a usage more than one level deep, then a Definition Model constitutes a complete implicit definition of the decomposition structure provided that a single top element is identified. With that, it is possible to automatically generate a corresponding Configuration Model that represents the full and explicit (deeply nested) expansion of the decomposition structure.

It is important to note that Deeply Nested Usage Features need only be created (and persisted) if there is a need to override feature values, (re)define features or reference usages at a deeply nested level. Otherwise their representation can be automatically derived 'on the fly' as their existence is fully implied by Definition Elements and Direct Usage Features only.

In case there are Variation Points present in the Definition Model, choices must be made within the range of possible variabilities in order to transform the Definition Model into a Configuration Model that represents a single actual variant that complies with the implicit definition represented by the Definition Model.

Using some heuristics, and perhaps with some human assistance, it is in principle also possible to devise an algorithm that can automatically derive a Definition Model from a given Configuration Model. This is attractive since it would allow a beginning system modeler to start with the simpler, more easy to understand Configuration Model and transform it to the more powerful and generalized Definition Model. Such a capability would also support use cases for reverse engineering of existing system architectures.

[1, created for SECM]

Denotational Semantics - Concerned with giving mathematical models of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure. [23, Denotational Semantics Lecture]

Dependency Relationship - A Dependency is a Relationship that signifies that a single model Element or a set of model Elements requires other model Elements for their specification or implementation. This means that the complete semantics of the client Element(s) are either semantically or structurally dependent on the definition of the supplier Element(s). [15, UML Spec]

Derived Relationship - A relationship that is derived from other relationships.

An example is a derived relationship from a transitive relationship where B relates to A and C relates to B, then C relates to A.

Another example is a connector between two composite parts that is derived from a connector between their nested parts. [1, created for SECM]

Design Constraint - One of the potential category requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be imposed during the design process. [1, created for SECM]

Element - A entity with a unique identifier including Model Elements, Links, Scripts, Constructs, Files, Data, [1, created for SECM]

Element Group - A mechanism for grouping various and possibly heterogeneous model elements. For example, it can group elements that are associated with a particular release of the model, have a certain risk level, or are associated with a legacy design. The semantics of Element Group is modeler-defined. [16, SysML Spec]

Element Group Relationship - Element Group Relationship relates an element group to a member of the group. Logical expressions can be applied to membership of the group, such as AND, OR, XOR, NOT, and conditional expressions like IF-THEN-ELSE and IF-AND-ONLY-IF. [1, created for SECM]

Environment - (1) Anything affecting a subject system or affected by a subject system through interactions with it, or anything sharing an interpretation of interactions with a subject system. (IEEE 1175.1-2002 (R2007), 3.6)

(2) The surroundings (natural or man-made) in which the system-of-interest is utilized and supported; or in which the system is being developed, produced or retired. (INCOSE 2010) [3, SEBoK Glossary]

Event - 1. Occurrence of a particular set of circumstances. ISO/IEC 16085:2006 (IEEE Std. 16085-2006), Systems and software engineering - Lifecycle processes - Risk management.3.2.

2. An external or internal stimulus used for synchronization purposes

[17, ISO OBP Definitions]

Explanation Relationship - This relationship is used between two elements to establish traceability between the element being rationalized, i.e. the conclusion, and the element justifying the conclusion, i.e. the rationale.

A conclusion element can be any type of element including elements such as blocks, requirements or relationships.

Typical rationale relationship elements include a derived or satisfy relationship.

Rationale elements can include a comment containing a text statement or an analysis.

[1, created for SECM]

Expression - In mathematics, an expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context. Mathematical symbols can designate numbers (constants), variables, operations, functions, brackets, punctuation, and grouping to help determine order of operations, and other aspects of logical syntax. [8, Wiki]

External Element - An entity external to the containing model or the SME. This external entity can include items such as a file, web page, or a model element in another model [1, created for SECM]

Formal Requirement Statement - A formal requirement captures all aspects of a requirement in a machine readable form, vs. text in a Textual requirement. This allows requirements to be used to automate tasks associated with validation of requirement information, verification of requirements and the use of the requirement parameters during system analysis.

Transformation of a textual requirement to a new formal requirement is one means of deriving a formal requirement. A textual view of a set of selected requirements is very useful to a user performing analysis or for a review. [1, created for SECM]

Formalism - A description of something in formal mathematical or logical terms. [24, Oxford Living Dictionaries, "formal, n."

Function - (1) A system outcomes which contribute to goals or objectives. To have a function, a system must be able to provide the outcome through two or more different combinations of elemental behavior. (Ackoff 1971)

(2) An action, a task, or an activity performed to achieve a desired outcome. (Hitchins 2007)

(3) A broad work area encompassing multiple related disciplines (e.g., Engineering, Finance, Human Resources, etc.). (Created for SEBoK)

(4) A function is defined by the transformation of input flows to output flows, with defined performance. (Created for SEBoK)

[3, SEBoK Glossary]

Functional Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a functional requirement. [1, created for SECM]

Generalization Relationship - A Generalization is a taxonomic relationship between a more general Classifier and a more specific Classifier. Each instance of the specific Classifier is also an instance of the general Classifier. The specific Classifier inherits the features of the more general Classifier. A Generalization is owned by the specific Classifier. [15, UML 2.5 Spec]

Hardware - 1. Physical equipment used to process, store, or transmit computer programs or data. 2. All or part of the physical components of an information system. ISO/IEC 2382-1:1993, Information technology - Vocabulary - Part 1: Fundamental terms.01.010.07 cf. software [17, ISO OBP Definitions]

Hyperlink - A hyperlink is a reference to data that the reader can directly follow either by clicking, tapping, or hovering. A hyperlink points to a whole document or to a specific element within a document. Hypertext is text with hyperlinks. [8, Wiki]

In a model links can also exist between model elements or information within in a model element such as values within an element, e.g. text within a definition. [1, created for SECM]

Individual Element - An element of an Individual Model

An Individual Element typically has an identifier that uniquely identifies that element, e.g. a serial number, a batch number, or an effectivity.

An Individual Element may be associated with a "slot" in the Configuration Model as represented by a Configuration Element or it may represent a spare part that is not (yet) integrated into a larger whole. [1, created for SECM]

Individual Model - A model that is a digital representation of an individual system or product that actually or potentially exists in the real world.

An Individual Model can be regarded as a "digital record" of the state of an individual system or product that was built according to a particular Configuration Model for e.g. development testing, verification, shipping, deployment or operation. Sometimes such a model is also known as a "digital twin". [1, created for SECM]

Interface - 1. A relationship that enables the physical and functional interaction between structural elements that includes two (2) interface ends, the connection between them, and any constraints on the interaction. [1, created for SECM]

2. A shared boundary between two functional units, defined by various characteristics pertaining to the functions, physical signal exchanges, and other characteristics. (ISO/IEC 1993)

3. A hardware or software component that connects two or more other components for the purpose of passing information from one to the other. (ISO/IEC 1993)

4. To connect two or more components for the purpose of passing information from one to the other. (ISO/IEC/IEEE 200)

[3, SEBoK Glossary]

Interface Agreement Definition - Specifies the rules that govern the exchange of items flowing between two components.

A type of exchange agreement is a communication protocol.

In telecommunications, a communications protocol is a system of rules that allow two or more entities of a communications system to transmit information via any kind of variation of a physical quantity. These are the rules or standard that defines the syntax, semantics and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination of both.

[8, Wiki, Communications Protocol]

Interface End Definition - An interface agreement specifies the rules that govern the parametric relationships between two components. A type of interface agreement is a set of simultaneous equations. [1, created for SECM]

Interface Medium Definition - An interface medium represents the transmission medium between components. Like components, it presents interface ends and connects to other components via interface agreements, or exchange agreements. [1, created for SECM]

Interface Requirement - One of the potential category requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be associated with an interface. [1, created for SECM]

Item Definition - Describes an item, physical or information, which is exchanged between components. [1, created for SECM]

Keyword - Assigns a key word to any model element as a lightweight extension mechanism.

It is an inheritable feature such that any sub-class will inherit this keyword. It is similar to a very lightweight usage of a stereotype at the user model level and not at the metamodel level. [1, created for SECM]

Language Binding - In computing, a binding from a programming language to a library or operating system service is an application programming interface (API) providing glue code to use that library or service in a particular programming language. [8, Wiki]

Layered Interface - A layered interface is a set of connectors that are related to each other, and that connect the same components. Each layer has its own interface or exchange agreements, and all agreements must be true in isolation and combination for the layered interface as a whole to work properly. Each layer typically addresses a distinct set of concerns. Data or physical material undergoes a transformation when it moves from one layer to an adjacent one. Data transfer within a given layer is called an exchange, and between layers is called a transformation. [1, created for SECM]

Mapping - Specification of a mechanism for transforming the elements of a model conforming to a particular metamodel into elements of another model that conforms to another (possibly the same) metamodel. [33, OMG RFP Template]

Mapping Rules - A set of rules that define how the elements of a model conforming to a particular metamodel are transformed into elements of another model that conforms to another (possibly the same) metamodel. [1, created for SECM]

Mathematical Logic - An extension of the formal method of mathematics to the field of logic. [19, Mathematical Logic, Hilbert & Ackerman]

Meta Object Facility - This International Standard provides the basis for metamodel definition in OMG's family of MDA languages and is based on a simplification of UML2's class modeling capabilities. In addition to providing the means for metamodel definition it adds core capabilities for model management in general, including Identifiers, a simple generic Tag capability and Reflective operations that are defined generically and can be applied regardless of metamodel. [31, MOF Spec]

An OMG standard, closely related to UML, that enables metadata management and language definition. [33, OMG RFP Template]

Metadata - Metadata is "data that provides information about other data". Two types of metadata exist: structural metadata and descriptive metadata. Structural metadata is data about the containers of data. Descriptive metadata uses individual instances of application data or the data content.

Metadata is defined as the data providing information about one or more aspects of the data; it is used to summarize basic information about data which can make tracking and working with specific data easier. Some examples include:

· Means of creation of the data

· Purpose of the data

· Time and date of creation

· Creator or author of the data

· Location on a computer network where the data was created

· Standards used

· File size

[8, Wiki, Metadata]

Metamodel - A metamodel or surrogate model is a model of a model, and metamodeling is the process of generating such metamodels. [8, Wiki]

Model - A representation of one or more concepts that may be realized in a physical world. [20, A Practical guide to SysML]

Model Element - A constituent of a model. [15, UML Spec]

Model elements include things such as entities, relationships, properties, behaviors, multiplicities, comments, model organizational elements, etc. In the UML modeling language this is referred to as an "Element". [1, created for SECM]

Because of the extensive use of the word "Element" in Systems Engineering the word "Model" was added to this term so as to express more specifically its intended use. [1, created for SECM]

Model Library - A library is a collection of sources of information and similar resources, made accessible to a defined community for reference or borrowing. [8, Wiki]

A model library is a digital library containing a collection of predefined model elements representing a set of reusable components that can be copied or reference while constructing a model. [1, created for SECM]

Model Transformation - A mapping between two modeling languages that enables a model expressed in one modeling language to be expressed in whole or in part in the other modeling language. (Created for SEBoK) [3, SEBoK Glossary]

Model-Theoretic Semantics - An account of meaning in which sentences are interpreted in terms of a model of, or abstract formal structure representing, an actual or possible state of the world: compare possible world. Usually, at least, an account of truth conditions; i.e. sentences are interpreted as true or false in such a model. [32, Oxford Dictionary of Linguistics]

MOF - Acronym for Meta Object Facility. See Meta Object Facility for the definition. [1, created for SECM]

Navigation Relationship - d: an identifier attached to an element (as an index term) in a system in order to indicate or permit connection with other similarly identified elements; especially: one (as a hyper link) in a computer file [11, Merriam-Webster]

A Navigational Link is one that establishes a navigable connection from a model element or text within a model element to an entity internal or external to the containing model. This could be a connection to an entity within the SME or external to the SME. [1, created for SECM]

The connections may have different behaviors, such as (1) reference connections for basic traceability, (2) data map connections for exchange for parameter values, (3) function wrap connections for wrapping executable code in system model elements, and (4) model transform connections for generating and synchronizing model structures bi-directionally. [29, Into to SLIM]

Operational Semantics - Meanings for program phrases defined in terms of the steps of computation they can take during program execution. [23, Denotational Semantics Lecture]

Originator/Author Attribute - The originator/author is the person responsible for entering the requirement. [14, Guide Writing Requirements, 5.3.3]

Owner Attribute - Identifies the person or element of the organization that maintains the requirement, who has the right to say something about this requirement, approves changes to the requirement, and reports the status of the requirement. [14, Guide Writing Requirements, 5.3.5]

Performance Requirement - One of the potential category requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a performance requirement. [1, created for SECM]

Physical Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a physical related requirement. [1, created for SECM]

PIM - Acronym for Platform Independent Model. See Platform Independent Model for the definition. [1, created for SECM]

Plan Verification Activity - An activity that creates a verification plan for the verification case. [1, created for SECM]

Platform Independent Model - A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize it. [33, OMG RFP Template]

A platform independent model (PIM) is a model of system or business system that is independent of the specific technological platform used to implement it. [8, Wiki]

Platform Specific Model - A model of a subsystem that includes information about the specific technology that is used in the realization of it on a specific platform, and hence possibly contains elements that are specific to the platform. [33, OMG RFP Template]

Precondition Expression - Something that must exist or happen before something else can exist or happen [11, Merriam-Webster on-line definition]

Types of preconditions can include:

· Property values

· Events

· Textual Statements

· Provided in external referenced documents

[1, created for SECM]

Priority Attribute - This is how important the requirement is to the stakeholders. It may not be a critical requirement (that is, one the system must possess or it won't work at all), but simply something that the stakeholder(s) hold very dear. Priority may be characterized in terms of a level (1, 2, 3 or high, medium, low). Priority may be inherited from a parent requirement. High priority requirements must always be met for the project to be successful; lower priority requirements may be traded off when conflicts occur or when there are budget or schedule issues. [14, Guide Writing Requirements, 5.3.20]

Problem - A Problem is a deficiency, limitation, or failure to satisfy a requirement or need or cause some other undesired outcome or effect from the perspective of a stakeholder. It may be used to capture problems identified during analysis, design, verification, or manufacture and associate the problem with the relevant model elements. [16, derived from SysML spec]

Process Requirement - One of the potential category requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be imposed on a process that is to be used during a development, manufacturing, support or maintenance process. [1, created for SECM]

Property - Any named, measurable or observable attribute, quality or characteristic of a system or system element. (OMG 2003) [3 SEBoK Glossary]

Note: SEBoK defined term was for System Property. It was changed to Property so it could be used at multiple levels, i.e. element, System Element and System.

PSM - Acronym for Platform Specific Model. See Platform Specific Model for the definition. [1, created for SECM]

Rationale - Argument that provides the justification for the selection of an engineering element. (Faisandier 2012) [3, SEBoK Glossary]

Realization Relationship - Realization is a specialized Abstraction relationship between two sets of model Elements, one representing a specification (the supplier) and the other represents an implementation of the latter (the client). Realization can be used to model stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc. [15, UML Spec]

Realized Element - An element within the realization component that is constrained by the constraining element. [1, created for SECM]

Reference Information - b: something (such as a sign or indication) that refers a reader or consulter to another source of information (such as a book or passage). [11, Merriam Webster on-line dictionary]

This text can contain navigational links from this element or text within this element to the actual referenced material. [1, created for SECM]

Reference Model - A reference model in systems, enterprise, and software engineering is an abstract framework or domain-specific ontology consisting of an interlinked set of clearly defined concepts produced by an expert or body of experts in order to encourage clear communication. A reference model can represent the component parts of any consistent idea, from business functions to system components, as long as it represents a complete set. This frame of reference can then be used to communicate ideas clearly among members of the same community. [8, Wiki]

Refine Relationship - From UML 2.5, Refine Relationship Definition

Specifies a refinement relationship between model elements at different semantic levels, such as analysis and design. The mapping specifies the relationship between the two elements or sets of elements. The mapping may or may not be computable, and it may be unidirectional or bidirectional. Refinement can be used to model transformations from analysis to design and other such changes. [15, UML]

Relationship - The way in which two or more things are connected. [11, Merriam-Webster on-line] When the Relationship property "iisDirected" is true the relationship is a directed relationship. A directed relationship is a relationship between a source model Element and a target model Element. [1, created for SECM]

Reliability Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a reliability related requirement. [1, created for SECM]

Required/Desired - This is a property of the formal requirement statement that defines if the requirement is a mandatory (required) requirement or a desired requirement from a customer perspective. In textual requirement statements the verb "shall" or "will" are typically used, respectively, to do this. When a textual form of the formal requirement statement is automatically generated then this verb will be used in the textual statement. [1, created for SECM]

Requirement - This concept represents a usage of a Requirement Definition and is therefore typed by a Requirement Definition. [1, created for SECM]

Requirement Attribute Library - A digital library containing a collection of predefined model elements representing a set of reusable requirement attributes that can be copied or reference while constructing a model.

This collection should include all attributes and types defined in the INCOSE Requirements Writing Guide (see reference14).

The intent is to make this library available to each organization and/or project to allow that organization or project to select which best fit their workflow needs.

[1, created for SECM]

Requirement Attribute - An attribute is additional information included with a requirement statement, which is used to aid in the management of that requirement. [14, Guide Writing Requirements, Definitions)

Requirement Context Element - An element that is referenced in the formal requirement statement that is contained within the context of the constraining element. [1, created for SECM]

Requirement Decompose Relationship - A decompose relationship is established from a requirement group to a requirement. The intent is to add constraints. There can be 1 or more decompose relationships from a requirement group. They are used to identify the set of requirements within a requirement group. [1, created for SECM]

Requirement Definition - Statement that identifies a product* or process operational, functional, or design characteristic or constraint, which is unambiguous, testable or measurable, and necessary for product or process acceptability. (ISO/IEC 2007)

*includes product, service, or enterprise. [3, SEBoK Glossary]

Requirement Derive Relationship - A derived relationship imposes constraints to meet a higher level constraint. A derived relationship indicates a requirement has been added. It can be used in two ways;

1. A relationship between a higher architectural level requirement and one or more requirements derived in lower architectural components.

2. A relationship between 2 requirements on the same architectural level where one constraining element constrains another.

[1, created for SECM]

Requirement Group - A grouping or organization of requirements. This can be an entity of a specification that contains a set of related requirements or it can any grouped set of requirements to facilitate any analysis task.

In a black box specification a requirement context could be a functional items, external interfaces, or topic areas such as security, safety, design constraints, etc. In a white box requirement a context could also be a sub-components.

The context can contain other related supporting information to help understand the requirements such as examples from other systems.

[1, created for SECM]

Requirement Identifier - This is an identifier that uniquely identifies a requirement from other requirements, which can be either a number or mixture of characters and numbers used to refer to the specific requirement. This identifier is not a paragraph number.

It can be a separate identifier or automatically assigned by whatever Requirement Management Tool (RMT) the organization is using. This identifier is used once and never reused.

An identifier that is unique is also needed to link requirements in support of the flow down of requirements (allocation), traceability, and to establish peer-to-peer relationships. Some organizations include in the identifier codes that relate to the SOI to which the requirement applies: e.g., [SOI] 1234.

[14, Guide Writing Requirements, 5.3.1]

This is not the same as the Universally Unique Identifier (UUID) that every model element contains. This identifier should be unique across all requirements and can be tailored to meet a specific organization's needs. This identify typically includes some intelligence built into the number to help humans relate to its context (for example CR_100 for a customer requirement, where CR_ is a user-defined prefix unique to a requirement specification, and 100 is tool generated). [1, created for SECM]

Requirement Status Attribute - This requirement attribute is intended to maintain the current status of the requirement. Typical values can include "draft", "ready for review", "accepted", "rejected", "implemented" and "verified".

A requirement can continue to change after being accepted, implemented and/or verified. This change control management is typically managed via the same change control process as other model elements. [1, created for SECM]

Requirement Type/Category - Each organization will define types or categories to which a requirement fits, based on how they may wish to organize their requirements. The Type/Category field is most useful because it allows the requirements database to be viewed by a large number of designers and stakeholders for a wide range of uses. [14, Guide Writing Requirements, 5.3.25]

Restricted Requirement Statement - A specific type of Textual Requirement Statement, specified by using a restricted/controlled natural language that puts restrictions on grammar (which can be realized by templates and patterns) and vocabulary (by using e.g., pre-defined keywords). Restricted Requirement Statements (RRS) strikes a balance between practicality and level of automation, bridges the gap from informal requirements specifications in natural language to formal, precise, and analyzable specifications. [1, created for SECM]

Result Expression - This is the expression that determines the boundary used by the Constraint Evaluation. This boundary expression can be as simple as a text statement or define a volume in three-dimensional space. It can be presented in many forms including a table, equation, multidimensional graph or text. [1, created for SECM]

Risk Attribute - A risk value assigned to each requirement based on risk factors. Requirements that are at risk include requirements that fail to have the set of characteristics that all well-formed requirements must have: necessary, singular, conforming, appropriate, correct, unambiguous, complete, feasible, and verifiable. Risk can also address feasibility/attainability in terms of technology, schedule, and cost. If the technology needed to meet the requirement is new with a low maturity, the risk is higher than if using a mature technology used in other similar projects. The requirement can be high risk if the cost and time to develop a technology is outside what has been planned for the project. Risk may be inherited from a parent requirement. [14, Guide Writing Requirements, 5.3.22]

Safety Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a safety related requirement. [1, created for SECM]

Satisfy Relationship - A relationship between a requirement and the constrained element (realized element) or its context (the container for the realized element), which asserts the constraint evaluation is true between the constraining element and the constrained element.

There are other terms that are sometimes used for the term satisfy such as conforms, realize and specify. For this effort we have defined these terms as follows:

· The terms realize and conforms are synonymous. Both of these terms are essentially defined as an abstraction of the set of satisfy relationships between the constrained elements and the requirements in a component spec. See the definition for conforms relationship for more information. We chose to use conforms vs. realize.

· The term specify is the opposite of conforms and realize, i.e. converses of each other. Therefore if specify relationship did exist it would go from a Component Specification to the Component Realization. We chose to use one term not both and chose conforms vs specify.

[1, created for SECM]

Scenario Definition - The definition of the procedural steps required to perform the analysis scenario. [1, created for SECM]

Security Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a security related requirement. [1, created for SECM]

Semantics - The rules by which syntactic expressions and model elements are assigned meaning. (ISO 13537:2010, 3.2.3.14) [17, ISO OBP Definitions]

SME - Acronym for System Modeling Environment. See System Modeling Environment for the definition.

SMOF - MOF Support for Semantic Structures. This extension to MOF modifies MOF 2 to support dynamically mutable multiple classifications of elements and to declare the circumstances under which such multiple classifications are allowed, required, and prohibited. [30, OMG SMOF]

Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. (ISO/IEC 2382-1:1993) [3, SEBoK Glossary]

Specify Relationship - The Specify Relationship assumes that the realization has (or will) provided a satisfaction relationship from its constrained elements to each of the applicable requirements in the Component Specification. It can be thought of as a group of satisfied relationships.

The "conforms to" connection will be able to specify what part, or subset of requirements, of the specification are applicable. This can be done by identifying each requirement ID or by identifying one or more requirement groups IDs.

See the definition for the satisfy relationship to see the distinction in the terms satisfy, conforms, realize and specify, as defined for this effort.

[1, created for SECM]

Stakeholder - (1) Individual or organization having a right, share, claim, or interest in a system or in its possession of characteristics that meet their needs and expectations (ISO/IEC/IEEE 2015)

(2) Individual or organization having a right, share, claim, or interest in a system or in its possession of characteristics that meet their needs and expectations; N.B. Stakeholders include, but are not limited to end users, end user organizations, supporters, developers, producers, trainers, maintainers, disposers, acquires, customers, operators, supplier organizations and regulatory bodies. (ISO/IEC June 2010)

(3) An individual, team, or organization (or classes thereof) with interests in, or concerns relative to, a system. (ISO/IEC 2007)

(4) A stakeholder in an organization is (by definition) any group or individual who can affect or is affected by the achievement of the organization's objectives. (Freeman 1984)[3, SEBoK Glossary]

Supportability Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a supportability related requirement. [1, created for SECM]

Supporting Information - Supporting Information provides additional information to help better understand the intent of a model element and specifically for a requirement or requirement group. This information can include items such as an introduction to a set of requirements, one or more goals, a reference to further readings, justification, rationales, examples, diagrams, pictures, graphs, tables, etc. In addition it can include navigational links from this element or text within this element. [1, created for SECM]

Syntax - Structure of expressions in a language, and the rules governing the structure of a language; the relationships among characters or groups of characters, independent of their meanings or the manner of their interpretation and use. (ISO/PAS 16917:2002(en), 3.2.68) [17, ISO OBP Definitions]

SysML - The OMG Systems Modeling Language (OMG SysMLTM) is a general-purpose language for systems engineering applications.

SysML supports the specification, analysis, design, verification, and validation of a broad range of complex systems.

These systems may include hardware, software, information, processes, personnel, and facilities. [16, derived from SysML spec]

SysML v2 Metamodel - A model of a SysML model. [1, created for SECM]

System - (1) A set of elements in interaction. (von Bertalanffy 1968)

(2) Combination of interacting elements organized to achieve one or more stated purposes (ISO/IEC/IEEE 15288:2015)

[3, SEBoK Glossary]

System Context - (1) Describes the system relationships and environment, resolved around a selected system-of-interest. (Flood and Carson 1993)

(2) Diagram defining the highest level view of a system in its environment. (Flood and Carson 1993)

[3, SEBoK Glossary]

System Element - A member of a set of elements that constitutes a system. A system element is a discrete part of a system that can be implemented to fulfill specified requirements. A system element can be hardware, software, data, humans, processes (e.g., processes for providing service to users), procedures (e.g., operator instructions), facilities, materials, and naturally occurring entities (e.g., water, organisms, minerals), or any combination. (ISO/IEC 15288:2015) [3, SEBoK Glossary]

System Model - (3) A simplified representation of a system at some particular point in time or space intended to promote understanding of the real system. (Bellinger 2004)

(4) An abstraction of a system, aimed at understanding, communicating, explaining, or designing aspects of interest of that system (Dori 2002)

(5) A selective representation of some system whose form and content are chosen based on a specific set of concerns. The model is related to the system by an explicit or implicit mapping. (Object Management Group 2010)

[3, SEBoK Glossary]

System Modeling Environment - The System Modeling Environment (SME) is the part of the overall Model-Based Engineering (MBE) environment that systems engineers use to perform model-based systems engineering (MBSE) and interact with other members of the development team. The SME must implement the SME services to provide the functionality needed to enable systems engineers and others to evolve the system model throughout the lifecycle. [21, Insight Article Part 2]

Textual Requirement Statement - The traditional "shall" textual statement used to state a requirement. [1, created for SECM]

Timestamp - A sequence of characters or encoded information identifying when a certain event occurred, including the date and time of day. The timestamp refers to digital date and time information attached to digital data. For example, computer files contain timestamps that tell when the file was last modified. [8, Wiki]

A timestamp should be represented using a common, time zone independent format that includes resolution and context such as UTC. Format example: time=2009-06-15T13:45:30; context=last change [1, created for SECM]

UML Profile - A standardized set of extensions and constraints that tailors UML to particular use. [33, OMG RFP Template]

Uncategorized Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies that categorizing requirements is part of the organization's process but the task has not been completed. [1, created for SECM]

Unified Modeling Language - The objective of the Unified Modeling Language (UML) is to provide system architects, software engineers, and software developers with tools for analysis, design, and implementation of software-based systems as well as for modeling business and similar processes. [15, UML Spec] An OMG standard language for specifying the structure and behavior of systems. The standard defines an abstract syntax and a graphical concrete syntax. [33, OMG RFP Template]

Unique Identifier - This unique identifier is assigned to every element. This identifier must be unique universally, that is within the containing model, within the SME and external to the SME. [1, created for SECM]

Unit Under Verification - A system or part of a system that is the subject of a verification procedure. [1, created for SECM]

Units Library - A digital library containing a collection of predefined model elements representing a set of reusable units and quantity kinds that can be copied or reference while constructing a model. [1, created for SECM]

URI - In information technology, a Uniform Resource Identifier (URI) is a string of characters used to identify a resource. Such identification enables interaction with representations of the resource over a network, typically the World Wide Web, using specific protocols. [8, Wiki]

Usability - The extent to which a system, product or service can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use. [25, ISO 9241-210:2010]

Usability Requirement - One of the potential category of requirement selections available in the Requirement Type attribute. This selection identifies the requirement to be a user usability related requirement. [1, created for SECM]

Usage Feature - A named usage by a Definition Element of another Definition Element

In other words through a Usage Feature a Definition Element establishes that containing or making use of another Definition Element is one of its essential characteristics.

The Usage Feature permits to recursively construct modular, deeply nested hierarchical compositions. The usage relationships shall form an acyclic graph. [1, created for SECM]

User - A specific, defined end user of the System Modeling Environment (SME). [1, Created for SECM]

User Defined Requirement Attribute - This is a requirement attribute that is not available in the Requirement Attribute Library but can be can be created and defined by a specific organization or project to meet the needs of their workflow. See INCOSE Requirements Writing Guide [14] for additional attribute suggestions. [1, created for SECM]

UUID - Universally Unique identifier (UUID) - A unique identifier assigned to every model element. This identifier must be unique both within the SME and external to the SME. This UUID conforms to IETF RFC 4122 http://datatracker.ietf.org/doc/rfc4122/. See also http://en.wikipedia.org/wiki/Universally_unique_identifier for a practical introduction on a UUID. [1, created for SECM]

Validation Rule - A Validation rule is a criterion or constraint used in the process of data validation, carried out after the data has been encoded onto an input medium and involves a data vet or validation program. [8, Wiki]

Value Expression - An expression that can be evaluated to yield a value typed by a Value Type. The expression is stated in an expression language that support all usual mathematical and logical operators. [1, created for SECM]

Value Property - A Model Element that has a value that is typed by a Value Type. [1, created for SECM]

Value Type - Named definition of the essential semantics and structure of the set of possible values of a value-based characteristic, without the value itself. [1, created for SECM]

Variability Choice - Sometimes referred to as Variation Point. A definition of choice from more than one possible value for some characteristic (feature) of a Definition Element. The addition of one or more Variability Choices in a Definition Element allows for a compact and inherently consistent representation of options or alternatives at any level in the hierarchical composition established by a Definition Model. Variability Choices permit coherent modeling of e.g. design or configuration options as well as requirements specifications and architectures for product lines. See also Configuration Model for resolving all Variability Choices into a single Variant. [1, created for SECM]

Variability Context - A model that captures the desired variabilities and constraints for a set of system configurations. [1, Created for SECM]

Variability Expression - A variability constraint constrains the combination of variants. [1, Created for SECM]

Variant - A variant (or option) represents a choice that realizes a particular variation point (or feature). A variant can include additional variation points. [1, Created for SECM]

Variant Binding - A variant binding binds a base model element to a variant [1, Created for SECM]

Variation Point - Refer to Variability Choice [1, created for SECM]

Verification - (1a) Confirmation, through the provision of objective evidence, that specified (system) requirements have been fulfilled. (ISO/IEC 2008, section 4.38)

(1b) Verification is a set of activities that compares a system or system element against the required characteristics. This includes, but is not limited to, specified requirements, design description and the system itself. The system was built right. (ISO/IEC/IEEE 2015, 1, Section 6.4.6)

(2) The evaluation of whether or not a product, service, or system complies with a regulation, requirement, specification, or imposed condition. It is often an internal process. Contrast with validation. (PMI 2013)

[3, SEBoK definition]

Verification Outcome - Describes the data and any other results from performing the Verification Activity. [1, created for SECM]

Verification Activity - An activity that accomplishes (i.e., realizes) one or more steps of the verification case. [1, created for SECM]

Verification Case - A structured scenario that describes a verification objective and individual steps representing the verification activities required. [1, created for SECM]

Verification Context - An environment context that supports the ability to ensure that requirements have been met. [1, created for SECM]

Verification Evaluation Activity - An activity that compares the verification outcome data produced by the verification activity with the verification success criteria. [1, created for SECM]

Verification Method - The verification method for each requirement simply states the planned method of verification (inspection, demonstration, test, analysis, and simulation). [10, INCOSE Handbook]

The Description property provides a textual description of the steps that will be taken in Verification Activity and Verification Evaluation Activity. [1, created for SECM]

The type of method may also include sampling and analogy. [2, SEBoK Verification]

Verification Objective - An objective is the result to be achieved (ISO/IEC 27000:2016(en), 2.56) [17, ISO OBP Definitions]

A verification object is the expected result to be achieved when executing a verification case. [1, created for SECM]

Verification Plan - This plan identifies and includes a verification strategy, selected verification actions, verification procedures, verification tools, the verified element or system, verification reports, issue/trouble reports, and change requests on design. [3, SEBoK, System Verification]

Verification Requirement - A requirement applied to the means of establishing compliance of an end item with its specification requirements. [1, created for SECM]

Verification Result - The result of the Verification Evaluation. [1, created for SECM]

Verification Success Criteria - The success criteria is a subset of the requirement being verified (e.g. selected points in a flight test envelope). [1, created for SECM]

Verification System - An aggregation of enabling elements needed to perform verification activities. This includes the equipment, users and facilities used to perform the activity. [1, created for SECM]

Verification System Element - A system element used to stimulate and interact with the unit under verification during the execution of the verification case. [1, created for SECM]

Verify Relationship - A relationship between a requirement and a verification case that can be elaborated to specify how verification of the requirement is accomplished and to produce a result from the constraint evaluation. [1, created for SECM]

View Definition - A representation of a system from the perspective of a viewpoint. (OMG 2010) [3, SEBoK Glossary]

View Metamodel - A model of a View model that references a set of domain specific View Elements. [1, created for SECM]

Viewpoint - A viewpoint is a specification of the conventions and rules for constructing and using a view for the purpose of addressing a set of stakeholder concerns (OMG 2010) [3, SEBoK Glossary]

Appendix B General Reference and Glossary

B.1 General References

The following documents are referenced in this document:

[BCQ] OMG Board of Directors Business Committee Questionnaire

http://doc.omg.org/bcq

[CCM] CORBA Core Components Specification

http://www.omg.org/spec/CCM/

[CORBA] Common Object Request Broker Architecture (CORBA)

http://www.omg.org/spec/CORBA/

[CORP] UML Profile for CORBA

http://www.omg.org/spec/CORP

[CWM] Common Warehouse Metamodel Specification

http://www.omg.org/spec/CWM

[EDOC] UML Profile for EDOC Specification

http://www.omg.org/spec/EDOC/
[Guide] The OMG Hitchhiker's

http://doc.omg.org/hh

[IDL] Interface Definition Language Specification

http://www.omg.org/spec/IDL35

[INVENT] Inventory of Files for a Submission/Revision/Finalization

http://doc.omg.org/inventory

[IPR] IPR Policy

http://doc.omg.org/ipr

[ISO2] ISO/IEC Directives, Part 2 - Rules for the structure and drafting of International Standards

http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456

[LOI] OMG RFP Letter of Intent template

http://doc.omg.org/loi

[MDAa] OMG Architecture Board, "Model Driven Architecture - A Technical Perspective"

http://www.omg.org/mda/papers.htm

[MDAb] Developing in OMG's Model Driven Architecture (MDA)

http://www.omg.org/mda/papers.htm

[MDAc] MDA Guide

http://www.omg.org/docs/omg/03-06-01.pdf

[MDAd] MDA "The Architecture of Choice for a Changing World

http://www.omg.org/mda

[MOF] Meta Object Facility Specification

http://www.omg.org/spec/MOF/

[NS] Naming Service

http://www.omg.org/spec/NAM

[OMA] Object Management Architecture

http://www.omg.org/oma/

[OTS] Transaction Service

http://www.omg.org/spec/OTS

[P&P] Policies and Procedures of the OMG Technical Process

http://doc.omg.org/pp

[RAD] Resource Access Decision Facility

http://www.omg.org/spec/RAD

[ISO2] ISO/IEC Directives, Part 2 - Rules for the structure and drafting of International Standards

http://isotc.iso.org/livelink/livelink?func=ll&objId=4230456

[RM-ODP]

ISO/IEC 10746

[SEC] CORBA Security Service

http://www.omg.org/spec/SEC

[TEMPL] Specification Template

http://doc.omg.org/submission-template

[TOS] Trading Object Service

http://www.omg.org/spec/TRADE

[UML] Unified Modeling Language Specification

http://www.omg.org/spec/UML

[XMI] XML Metadata Interchange Specification

http://www.omg.org/spec/XMI

B.2 General Glossary

Architecture Board (AB) - The OMG plenary that is responsible for ensuring the technical merit and MDA compliance of RFPs and their submissions. [33, OMG RFP Template]

Board of Directors (BoD) - The OMG body that is responsible for adopting technology. [33, OMG RFP Template]

Common Object Request Broker Architecture (CORBA) - An OMG distributed computing platform specification that is independent of implementation languages. [33, OMG RFP Template]

Common Warehouse Metamodel (CWM) - An OMG specification for data repository integration. [33, OMG RFP Template]

CORBA Component Model (CCM) - An OMG specification for an implementation language independent distributed component model. [33, OMG RFP Template]

Interface Definition Language (IDL) - An OMG and ISO standard language for specifying interfaces and associated data structures. [33, OMG RFP Template]

Letter of Intent (LOI) - A letter submitted to the OMG BoDs Business Committee signed by an officer of an organization signifying its intent to respond to the RFP and confirming the organizations willingness to comply with OMGs terms and conditions, and commercial availability requirements. [33, OMG RFP Template]

Model Driven Architecture (MDA) - An approach to IT system specification that separates the specification of functionality from the specification of the implementation of that functionality on a specific technology platform. [33, OMG RFP Template]

Normative Provisions - To which an implementation shall conform to in order to claim compliance with the standard (as opposed to non-normative or informative material, included only to assist in understanding the standard). [33, OMG RFP Template]

Normative Reference References - To documents that contain provisions to which an implementation shall conform to in order to claim compliance with the standard. [33, OMG RFP Template]

Platform - A set of subsystems/technologies that provide a coherent set of functionality through interfaces and specified usage patterns that any subsystem that depends on the platform can use without concern for the details of how the functionality provided by the platform is implemented. [33, OMG RFP Template]

Platform Independent Model (PIM) - A model of a subsystem that contains no information specific to the platform, or the technology that is used to realize it. [33, OMG RFP Template]

Request for Information (RFI) - A general request to industry, academia, and any other interested parties to submit information about a particular technology area to one of the OMG's Technology Committee subgroups. [33, OMG RFP Template]

Request for Proposal (RFP) - A document requesting OMG members to submit proposals to an OMG Technology Committee. [33, OMG RFP Template]

Task Force (TF) - The OMG Technology Committee subgroup responsible for issuing a RFP and evaluating submission(s). [33, OMG RFP Template]

Technology Committee (TC) - The body responsible for recommending technologies for adoption to the BoD. There are two TCs in OMG the Platform TC (PTC) focuses on IT and modeling infrastructure related standards; while the Domain TC (DTC) focuses on domain specific standards. [33, OMG RFP Template]

XML Metadata Interchange (XMI) - An OMG standard that facilitates interchange of models via XML documents. [33, OMG RFP Template]

Appendix C SysML v2 Requirement Support Document

The SysML v2 Requirement Support Document contains more detailed context information for each of the requirement sections provided in section 6, Specific Requirements on Proposals.

This support document and this RFP were extracted from the same revision of the Systems Engineering Concepts Model (SECM) to ensure consistence between these two documents.

This requirement support document along with SysML v2 RFP, the SysML v2 API and Services RFP and the requirement spreadsheets that contain the requirements contained in each of the RFPs can be found at SysML v2 RFP Related Documents.

OMG RFP
23 September 2017

