
SysML v2
Model Interoperability

& Standard API Requirements

Axel Reichwein

Consultant, Koneksys

September 13, 2016

Systems Modeling Environment
Conceptual Architecture

2

Image from “Status of SysML v2, Planning & Requirements, Berlin, Germany June 16, 2015, Sandy
Friedenthal & Eldad Palachi, http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-
roadmap:sysml_assessment_and_roadmap_working_group”

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-roadmap:sysml_assessment_and_roadmap_working_group

Goals of the SysML v2 Interoperability WG

• Update template for specifying service requirements

• Coordinate with other Concept Leads to capture integrated service
requirements based on elaborated Hybrid SUV scenario

• Coordinate with other vendors on the team to define the general
requirements for the standard API

• Consider limitations of OSLC and the need for event services (per
Chris Delp)

• Confirm that the proposed exchange format is an XML serialization of
RDF

• Clarify the concept for migrating SysML v1 model to SysML v2 models

3

Previous Activities

• Overview of Linked Data capabilities for SysML v2 interoperability
(Presentation to OMG meeting in December 2015 by Axel)

• Overview of upcoming OSLC 3.0 for capabilities for SysML v2
interoperability (Presentation to OMG meeting in June 2015 by Chas)

• Consensus on using standards for SysML v2 interoperability based
on RESTful web services, OSLC, Linked Data, and W3C standards

4

Web APIs

• Different approaches for Web
APIs
• SOAP APIs

• RESTful APIs

• Hypermedia APIs

• Linked Data

• Linked Data Platform

• OSLC v2 core

• OSLC v3 core?

• Template for defining SysML v2
services depends on the type of
Web API

http://www.dbguide.net/publishing/img/knowledge/tech_img1040.jpg

5

http://www.dbguide.net/publishing/img/knowledge/tech_img1040.jpg

Why do (Web) APIs matter?

• Existing APIs are all unique

• You need to read the documentation for each API

• Tightly coupled and brittle solutions

• When dealing with many APIs, you will constantly be running against
APIs that have changed and clients that have broken

6

Presentation Goals

• Provide an overview of different Web APIs

• Propose Web API for SysML v2

• No template yet for SysML v2 web services (possibility to reuse
existing standard to define SysML v2 web services)

7

Yesterday’s Most common Web API: SOAP API

• SOAP (Simple Object Access
Protocol)

• W3C standard

• Latest version: v1.2 (2007)

• XML for information exchange

• Commonly using HTTP as
transport protocol

• slow parsing speed of XML, and
lack of a standardized
interaction model

https://en.wikipedia.org/wiki/SOAP

8

https://en.wikipedia.org/wiki/SOAP

9

Today’s Most common Web API: REST API

• REST (Representational state
transfer)

• Not standard, just
architectural style

• Formal REST constraints as to
how a client should interact
with a server defined in PhD
thesis of Roy Fielding (2000)

• REST constraints used to
define W3C standard HTTP

Example: Twitter API

GET

https://api.twitter.com/1.1/followers/list.

json?cursor=-

1&screen_name=twitterdev&skip_status=true&i

nclude_user_entities=false

https://dev.twitter.com/rest/reference/get/followers/list
10

https://dev.twitter.com/rest/reference/get/followers/list

Elements of HTTP Request/Response

• Verb

• URL

• Query parameters

• Body

Example: Twitter API

GET

https://api.twitter.com/1.1/followers/list.

json?cursor=-

1&screen_name=twitterdev&skip_status=true&i

nclude_user_entities=false

https://dev.twitter.com/rest/reference/get/followers/list
11

https://dev.twitter.com/rest/reference/get/followers/list

Today’s Most common Web API Media Type:
JSON

12

Today’s Most common Web API Media Type:
JSON

• Typical body format: JSON

• No semantics associated with
plain JSON

• Meaning of JSON body needs to
be discovered through human-
readable documentation

• No complex reasoning/analytics
possible without knowing the
meaning of data

https://dev.twitter.com/rest/reference/get/followers/list

13

https://dev.twitter.com/rest/reference/get/followers/list

Tomorrow’s Most common Web API Media
Type: JSON-LD (?)

• JavaScript Object Notation
for Linked Data

• JSON-LD = one possible
serialization of RDF

• Additional identifiers
(URIs) can be used to
specify the meaning of
JSON properties, and the
type of JSON objects

Example of Google Knowledge Graph REST API
https://developers.google.com/knowledge-graph/ 14

https://developers.google.com/knowledge-graph/

Example of JSON-LD used to improve web
search results
• Web admins describe events in

JSON-LD conforming to
schema.org RDF vocabulary

• Data on the Web in JSON-LD
conforming to schema.org gets
merged into Google
Knowledge Graph providing
better search results to the
user (search results with
meaning!)

https://schema.org/Event

15

https://schema.org/Event

JSON-LD support for data integration across
applications
• Github added JSON-LD and

schema.org support. Now if you
get a pull request via email, and
your mail client supports it (like
Gmail does), you’ll see an action
button shown in the display
without having to open the email,
like so

• When you get an email from
Github, it will now include markup
that looks like this:

http://manu.sporny.org/2014/github-adds-json-ld-support/ 16

https://github.com/blog/1891-view-issue-pull-request-buttons-for-gmail
http://manu.sporny.org/2014/github-adds-json-ld-support/

Bad vs Good URLs

• Bad URLs contain
information irrelevant
to the user (such as
internal
numeric identifiers for
values in a database,
illegibly-
encoded data, session
IDs, implementation
details)

https://en.wikipedia.org/wiki/Semantic_URL

17

https://en.wikipedia.org/wiki/Semantic_URL

Different Possibilities to Construct a Web API

• One service endpoint URL vs
many service endpoint URLs

• Usage of a single HTTP verb vs
Usage of a multiple HTTP verbs

• Body composed of XML vs JSON
vs RDF

• Autonomous services only
discoverable through human-
readable API documentation vs
interconnected services whereby
each service refers to other
available services

Example: Twitter API

GET

https://api.twitter.com/1.1/followers/list.

json?cursor=-

1&screen_name=twitterdev&skip_status=true&i

nclude_user_entities=false

https://dev.twitter.com/rest/reference/get/followers/list
18

https://dev.twitter.com/rest/reference/get/followers/list

Different Levels of REST:
Richardson Maturity Model
Level Major feature Analogy

Level 0 Same URL for all services One single function accepting many
arguments

Level 1 Breaking a large service endpoint down into multiple
resources.

Object-oriented approach (getter/setter
applied to a specific object)

Level 2 Introducing a standard set of verbs for handling
similar situations in the same way

Common naming convention (getter/setter
methods)

Level 3 Introducing discoverability, providing a way of
making a protocol more self-documenting

Somewhat similar to reflection but more
powerful (only possible through
hyperlinks)

19

Example of Level 3:
REST API of Paypal
• One of the key features of the PayPal

REST Payments API is Hypermedia As
The Engine Of Application State
(HATEOAS).

• HATEOAS enables you to interact
with the Payments API entirely
through hyperlinks. Each Payments
API request returns an array of links
that enable you to request more
information about and further
interact with Payments API
resources.

• https://developer.paypal.com/docs/i
ntegration/direct/paypal-rest-
payment-hateoas-links/

20

https://developer.paypal.com/docs/api/payments/
https://en.wikipedia.org/wiki/HATEOAS
https://developer.paypal.com/docs/integration/direct/paypal-rest-payment-hateoas-links/

Level 3 REST APIs = Hypermedia APIs

• Most "RESTful APIs" make it as far as to the last point but the majority
fail the hypermedia constraint.

• However this is so innate to the architecture that is has its own
abbreviation — HATEOAS. It is also what makes RESTful design stand
out and be as powerful as it is.

21

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://en.wikipedia.org/wiki/HATEOAS

Hydra: W3C
Standard for
Hypermedia APIs

• Hydra
provides a
vocabulary to
define a
Hypermedia
API

• Unofficial
draft for now

https://www.hydra-cg.com/spec/latest/core/
22

https://www.hydra-cg.com/spec/latest/core/

Hydra Example

• Hydra Console

http://www.markus-
lanthaler.com/hydra/console/?url=http://www.markus-
lanthaler.com/hydra/api-demo/

23

http://www.markus-lanthaler.com/hydra/console/?url=http://www.markus-lanthaler.com/hydra/api-demo/

Recommendations related to SysML v2 Web API
based on developments in Web community

• SysML v2 Web API = Hypermedia API

• Don’t specify requirements related to
• Service endpoint URL structure (e.g. https://sysmltool.com/projectA/blocks/)
• Specific media types (e.g. application/ld+json)

• Specify requirements related to
• Usage of HTTP verbs (POST to create, GET to read, etc..)
• Usage of media types supporting RDF data model
• Usage of RDF describing SysML v2 data should conform to SysML v2 vocabulary
• Usage of RDF W3C Hydra to describe SysML v2 Web API

24

What about W3C Linked Data standards?

• Linked Data Principles: instructions for servers on how to publish
Linked Data such that clients can read Linked Data

• Linked Data Platform: instructions for servers on how to offer services
such that clients can also create, update, delete Linked Data

25

LDP Vocabulary

https://www.w3.org/TR/ldp/

26

https://www.w3.org/TR/ldp/

LDP Extension for paging

• For separating large resources
into smaller chunks

• https://www.w3.org/TR/ldp-
paging/

27

https://www.w3.org/TR/ldp-paging/

Recommendations related to SysML v2 Web API
based on developments in Linked Data community

• Not many implementations of LDP (Apache Marmotta)

• Big overlap between LDP and W3C Hydra on Collections

• LDP provides rules for Level 2 REST API

• LDP and Hypermedia APIs (Level 3) are compatible

• Requirement:
• SysML v2 Web API conforming to W3C LDP and W3C LDP Paging

28

What about OSLC Core Specification?

• Discovery: How OSLC servers publish the REST APIs for their provided
services, and how clients discover and use them.

• Resource Operations: Defines OSLC resource representations and
how OSLC client applications create, read, update and delete resource
managed by OSLC servers through HTTP methods.

29

OSLC
Core
Spec

http://open-
services.net/bin/
view/Main/OslcC
oreSpecification

30

http://open-services.net/bin/view/Main/OslcCoreSpecification

Recommendations related to SysML v2 Web API
based on developments in OSLC community

• Many implementations of OSLC

• Big overlap between LDP, and OSLC v2 Core

• OSLC v3 Core = LDP ?

• Or OSLC v3 Core = W3C Hydra on Collections?

• OSLC domain-specific vocabularies will remain

• OSLC core spec will most likely become replaced by a W3C spec

• No requirements related to SysML v2 Web API based on OSLC Core
spec

31

Summary

• Personal Recommendations:
• SysML v2 Web API = Hypermedia API

• SysML v2 Hypermedia API defined according to W3C Hydra and conforming to
W3C LDP and W3C LDP Paging

• Definition of SysML v2 service template based on W3C Hydra

32

