
SysML-Embeddable Ontology & Implementation v1.1
SysML Implementation
The concepts we described in the conceptual ontology are mapped to concrete implementation
in SysML so that they can be used to actually model behavior. In this section we describe first
the embedding of the ontology into SysML (so that the user can understand how the concepts
are made concrete) and then provide a SysML example using the simple flashlight used in the
conceptual example.

SysML-Embeddable Behavior Ontology -
Description
The conceptual ontology presented the essential concepts to capture behavior. However,
several reasons exist why we do not use this ontology directly as of now.

IMCE has developed an infrastructure to generate a SysML profile from the OWL file
that describes the ontology. This infrastructure and the tools used require for now that
the ontology follows some characteristics. For example, the ontology should use
"simple range class expressions", i.e., the relationships described in the ontology must
have a unique source class and a unique target class. Accordingly, in the case where a
relationship targets several classes, an abstract parent class is created to conform to
that principle. Also, the mapping of a single conceptual class into multiple SysML
elements is currently not supported by the IMCE tools. As a consequence, a one-to-one
mapping to SysML lead to the introduction of additional classes in the ontology.
Some decisions were made regarding the choice of embedding of the classes and
relationships introduced in the conceptual ontology. These decisions resulted in the
introduction of intermediate classes in SysML that should be captured in the ontology
so that its existence is recognized and that validation rules can be written from an
ontological perspective. For example, it was chosen to embed state variables as value
properties in SysML. Value properties cannot exist on their own in SysML, they must
have a "container". This container was in turn given an ontological existence by adding
an associated class into the ontology.

The result of this process is an other ontology that we call "SysML-embeddable behavior
ontology". This ontology is the closest possible to the original conceptual ontology while
conforming to the constraints described above. Despite the introduction of a significant amount
of new classes and relationships, the core of the behavior ontology remains the same than what
was described in the conceptual ontology. Note that, in the future, the generation of a
pattern SysML profile for the behavior pattern will be done directly from the conceptual
ontology, and that the implementation concerns about will be handled
"behind-the-scene". In the meantime, the ontology presented on this page is the
temporary solution that was selected to obtain a behavior SysML profile using the

The introduced concepts and relationships are shown graphically with acurrent infrastructure.
blue fill.

The remainder of this page presents side-by-side the original conceptual ontology, the
"SysML-embeddable behavior ontology", and the SysML example so that the reader can
understand the relationships between the three representations.

Note that the concepts are represented by blocks and relationships are represented by ellipses
on directed arrows.

SysML Implementation
SysML-Embeddable Behavior
Ontology - Description

State variable
Parameter
ElementBehavior

Mathematical
constraints
State machines

Interation aspects
Interaction
Interaction
using
InteractionTer
minal (optional)

Synthesis of constraints

StateVariable,
Parameter and Value
Types
Complete embedded
ontology

Ontology map
Optional usage
of stereotypes
in the SysML
model
Summary
tables for all
non-abstract
concepts and
relationships
Relation
multiplicity
table

SysML Example
Model Implementation Concerns
Supporting Scripts/Tooling
Tooling Tricks

State variable

In the conceptual ontology, s characterize s. As mentioned above, it was chosen to embed StateVariable BehavingElement StateVari
s as value properties, hence requiring the introduction of a "container" for these value properties. The class that represent theseable

containers is named , and is shown in Figure 1. The relationship between and the s itPropertyGroup PropertyGroup StateVariable
contains is named , and represents this containment. is a specialization of the Analysis:CharacterizationhasAttribute PropertyGroup
concept (and is thus embedded as a Component.Block, i.e. a UML Component stereotyped by the SysML Block stereotype). The hasAttrib

 relationship is embedded using the associated UML concept of A_ownedAttribute_class: it represents the UML relation between a Classute
and the attributes (here) owned by that Class. The SysML example provided in Figure 2 shows the case of the battery StateVariable Sta

s (ignore for now the value types of the value properties in SysML, these are covered later in this page).teVariable

Note that the grouping of s into s is left to the modeler. All the s of a chStateVariable PropertyGroup StateVariable PropertyGroup
aracterizing the are applicable (no notion of only certain subsets available). The same scope applies if the BehavingElement PropertyGr

 is provided by a library.oup

Figure 1. embeddingStateVariable

Figure 2. Battery sStateVariable

Parameter

In the conceptual ontology, s are related to s in the same fashion than s. They are alsoParameter BehavingElement StateVariable
embedded in a similar fashion, using value properties. can own s and s, as shown in FigurePropertyGroup StateVariable Parameter
3. The grouping of these properties into specific s is left to the modeler's decision. It can be seen in Figure 3 that the PropertyGroup hasAt

 relationship has as a source and and as targets. To conform to the simple rangetribute PropertyGroup StateVariable Parameter
class expression principle mentioned previously, an additional abstract class (i.e., a class that will not appear explicitly in models) is
introduced as a generalization of and , named . This class becomes in turn the target of the StateVariable Parameter Property hasAtt

 relationship. Figure 4 shows examples of this pattern in SysML, and with different options for grouping s and ribute StateVariable Para
s for the lamp and the battery. The grouping is left to the modelers and their intent for such groups.meter

Figure 3. iesPropert

Figure 4. Battery and Lamp iesPropert

ElementBehavior

In the conceptual ontology, characterizes its and constrains (s), as shown in the leftElementBehavior BehavingElement StateVariable
panel of Figure 5.

The embedding of depends on the intent of the modeler: two embedding are provided here, one for the capture ofElementBehavior
mathematical constraints, and one for the capture of state machines.

Mathematical constraints

This embedding of the makes a distinction between the constraints and their owner. For this purpose, two classes areElementBehavior
introduced: the is a (Component) Constraint Block, while the is anElementBehaviorConstraint ElementBehaviorCharacterization
Analysis:Characterization that owns the potentially many Constraint Blocks. The relationship between the ElementBehaviorCharacterizati

 and the , named , is embedded as a binary composite association (or "black-diamond"on ElementBehaviorConstraint hasConstraint
association). An additional class is created to complete the picture: the constraint in the Constraint Block does not refer directly to the StateVari

s of interest: the elements participating in the constraint are SysML Constraint Parameters owned by the Constraint Block (throughable
A_ownedAttribute_structuredClassifier, the appropriate UML association in this case). The class that represents these constraint parameter is
named . In the constraint, the participants "play the role" of the relevant state variables: thisStateVariableConstraintParticipant
relationship is captured through the relationship that is embedded as a binding connector between playsRoleOf StateVariableConstraint

 and . This choice allows for potential reuse of the Constraint Block and their addition to libraries.Participant StateVariable

Figure 5. and sElementBehavior StateVariable

An s, but also potentially in the expression of theElementBehaviorConstraint constrains StateVariable uses Parameters
constraint. This case is handled in a symmetrical fashion as shown in Figure 6, and the owns a ElementBehaviorConstraint ParameterCo

 (through the relationship) that plays the role of a .nstraintParticipant uses Parameter

Figure 6. and ElementBehavior Properties

An example of the of the battery is shown in Figure 7, and displays elements described above. The "white diamond"ElementBehavior
relationship allows the construction of the parametric diagram of the in which the references ElementBehaviorCharacterization State

/ are bound to their respective s/ . Also note that theVariable Parameter-ConstraintParticipant StateVariable Parameters
Constraint Block owns a constraint that specifies the relationship between the s / : StateVariable Parameters the recommended

.specification of a constraint is part of an upcoming pattern

Figure 7. Battery exampleElementBehavior

State machines

There are cases where state machines are a more compact and efficient representation, for example to capture the discrete modes of a device.
We have added to the embedding for the of the conceptual ontology support for using UML state machines, as they fit in theElementBehavior
" constraint" definition of . However, the only semantics of the UML state machines that are recognized inStateVariable ElementBehavior
this embedding of the behavior pattern are the ones listed below. The remaining semantics of UML state machines are out of the purview of the
behavior pattern and their usage is left to the agreements between modelers.

The can own a UML state machine, represented by the relationship and the ElementBehaviorCharaterization hasAutomaton Attribut
. The UML state machines can have regions, and states and these are captured in the ontology as eAutomatonConstraint AutomatonRegio

 and , with the appropriate and relationships. These concepts and relations are shown in Figure 8.n AutomatonState hasRegion hasState

As in the flashlight example, some constraints can be applied while in some states: the switch voltage is constrained to be zero in the closed state
and the switch current is constrained to be zero in the open state. To capture these constraints, we make use of the first embedding of ElementB

 presented above. The constraints are described using an , and the domain of applicability to a specificehavior ElementBehaviorConstraint
state/region is handled by pointing a relationship from the to the appropriate analysis:characterizes ElementBehaviorConstraint Aut

 (these two concepts are generalized into the). This convention allows to clearly state what is theomatonState/Region AutomatonScope
scope of the constraint:

if an points at an (or a set of s), then the constraint specified byElementBehaviorConstraint AutomatonState AutomatonState
this is valid only in the context of these s;ElementBehaviorConstraint AutomatonState
if an points at an (or a set of s), then the constraint specifiedElementBehaviorConstraint AutomatonRegion AutomatonRegion
by this is valid only in the context of these s;ElementBehaviorConstraint AutomatonRegion
if an does not point to (s) or (s) in the presence of an ElementBehaviorConstraint AutomatonState AutomatonRegion Attribu

, it means that the constraints specified by the is valid for all teAutomatonConstraint ElementBehaviorConstraint AutomatonR
 and s of that .egions AutomatonState AttributeAutomatonConstraint

Figure 8. and state machinesElementBehavior

Figure 9 shows the switch of the flashlight example captured using the embedding presented above. Note that the ElementBehavior Codomai
 of the Switch position is defined using the state machine, as seen in the structure of the value type typing the Switch position n StateVariable

. More details on value types is provided later in this page. The Switch position has two s: OPEN and CLOSED, andStateVariable State
represented using states in the state machine. The constraint on the voltage for the CLOSED state is captured using an ElementBehaviorCons

 that points an dependency to the CLOSED state. The constraint on the voltage for the OPEN state istraint analysis:characterizes
captured using an that points an dependency to the OPEN state.ElementBehaviorConstraint analysis:characterizes

Note that in Figure 9, no triggers were modeled, but they could have been captured using the semantics of UML State Machine.

Figure 9. Switch ElementBehavior

Interation aspects

Interaction

Another constraint type for is in the context of an . The right part of of Figure 10 describes the new classesStateVariable Interaction
introduced to capture the constraints that occur during interactions.The relationship is embedded as a sharedBehavingElement joins
association ("white-diamond" association) from the block to the different s that have the sInteraction PropertyGroup StateVariable
or s that are involved in the interaction constraints.Parameter

The pattern to capture the interaction constraints is exactly symmetrical with the capture of constraints: the ElementBehavior Interactio
 (embedded as a Component Block) owns through the relationship s (embeddedn hasConstraint InteractionBehaviorConstraint

as Component Constraint Block). These constraint blocks in turn own (through the relationship) constrains StateVariableConstraint
 that are related to s using binding connectors stereotyped by . The Participants StateVariable playsRoleOf InteractionBehavio

 from the Conceptual Ontology is fulfilled by the in the SysML-embeddable Ontology.r InteractionBehaviorConstraint

In a similar fashion, can use s, and this pattern is shown in Figure 11.InteractionBehaviorConstraint Parameter

An example of the is shown in Figure 12 using the flashlight example (mesh-analysis constraintInteractionBehaviorConstraint
version). Note once again that .the recommended specification of a constraint is part of an upcoming pattern

Figure 10. and sInteraction StateVariable

Figure 11. and sInteraction Parameter

Figure 12. Flashlight circuit Interaction

Interaction using InteractionTerminal (optional)

As discussed in the conceptual ontology, this ontology gives to the modeler the choice to use InteractionTerminal for experimentation. This
section explains how the related concepts and relationships are embedded in SysML. These concepts will be present and shown greyed in
the rest of this page.
Expand this section if you want to read more.

Synthesis of constraints

As described in the previous two sections, some relationships appears several times with different sources or targets. To conform to our simple
range class expression pattern, some synthesis is necessary and presented below.

Let's address first the case of the relationship: it is shown in the upper panel of Figure 16 that it has two sources (hasConstraint Elem
 and) and two targets (and entBehaviorCharacterization Interaction ElementBehaviorConstraint InteractionBehavi

). As a consequence, two abstract superclasses are created, namely the and the orConstraint AttributeConstraintOwner Attri
 as shown in the lower part of Figure 16. Range restrictions are defined to prevent incorrect mapping betweenbuteConstraint

subclasses. in Figure 16 for the allowed use cased for theRange restrictions are defined and shown using red dashed lines
hasConstraint relationship. This visual representation will be used in the remainder of this page.

Figure 16. synthesishasConstraint

Next, let's address the cases of the , and relationships. As shown in the upper panel of Figure 17, the constrains uses playsRoleOf
 relationship has two source classes (and) andconstrains ElementBehaviorConstraint InteractionBehaviorConstraint

one target. These two source classes were already grouped into the abstract class just above, so this class isAttributeConstraint
reused and is defined as the source of the relationship. The same observation can be made for the relationship,constrains uses
whose source is defined as the class and the target is the .AttributeConstraint ParameterConstraintParticipant

The relationship case is more complex: it has two source classes (and playsRoleOf StateVariableConstraintParticipant Par
) and four target classes (, (optional), aameterConstraintParticipant StateVariable StateVariableSurrogate Parameter

nd (optional)). In the case of the source classes, a new abstract superclass is introduced, named ParameterSurrogate AttributeCo
. In the case of the four target classes, a previous grouping can be reused (featuring , nstraintParticipant Property PropertySur

 (optional) and shown in Figure 12). Range restrictions were not defined in this case due to the complexity of therogate Attribute

restriction expression: it will instead be handled by validation rules that will check that the model only has relationships that fall only in the
four cases presented in the upper panel of Figure 17. The (see discussion in theoptional classes related to InteractionTerminal
previous section) , and this visual representation will be used in the remainder of this page.are grayed out

Figure 17. embeddingplaysRoleOf

StateVariable, Parameter and Value Types

As explained in the conceptual ontology, the is defined as having a and a , as shown in Figure 19. ThisStateVariable TimeDomain Codomain
is captured in the SysML embedding by using Value Types. The value property is typed by a specific value type named StateVariable StateV

. This value type in turn owns two value properties: a one and a one. Each of these valueariableValueType TimeDomain Codomain
properties are typed by distinct value types respectively named and e (note that theTimeDomainValueType AttributeCodomainValueTyp
latter is greyed in Figure 18 as it will be expanded upon later in this page). As a consequence, the is a structuredStateVariableValueType
value type.

Figure 18 shows a simple example for generic s such as Voltage, Current or LuminousFlux. Note that the Value Types of theStateVariable
domain and codomain properties are not and e, as they are extracted from theTimeDomainValueType AttributeCodomainValueTyp
ISO-80000 library. One could specialize these library Value Types for their components, and type the specialized 's StateVariable TimeDomai

 and with these. n Codomain Guidance on how to handle Value Types is under evaluation and Value Type modeling may be part of a
separate pattern. This section is a first attempt at capturing Value Types from a behavior perspective and might evolve in future

.iterations

Figure 18. Value Type Example

The fact that a value property is typed by a value type is captured in the embedded ontology by the relationship (embedded byhasValueType
the appropriate UML concept, A_type_typedElement). The owns two value properties and this is captured throughStateVariableValueType
the relationship. Once again to conform to the single range class expression pattern, the introduction of abstract superclasses ishasFeature
necessary as the and the have several sources or targets. In the case of , all the value propertieshasValueType hasFeature hasValueType
that are typed (, and) are grouped into the class, and all the valueStateVariable TimeDomain Codomain AbstractValueTypedAttribute
types (, and e) are grouped into the StateVariableValueType TimeDomainValueType AttributeCodomainValueTyp AbstractValueT

 class. The relationship is now defined as having as source and ype hasValueType AbstractValueTypedAttribute AbstractValueType
as target. Range restrictions are defined as appropriate and are shown in Figure 18. In the case of the relationship, the abstracthasFeature
superclass is created and groups the and value properties.AbstractValueTypedFeature TimeDomain Codomain

Figure 19. 's and StateVariable TimeDomain Codomain

There are however cases where the nature of the calls for a different way of capturing its type. For example, the case of aStateVariable
discrete with a small number of s, such as the switch position in the flashlight example that can eitherStateVariable State StateVariable
be in the open or closed s. It is more natural then to capture these s using a State Machine (that has region and states). The State State Codom

 of the is defined by the configuration of the State Machine (i.e., the combination of the active states in different regions). Inain StateVariable
the case of a single region, the configuration of the state machine and the currently active state are confounded. The state machine is also used
to capture the behavior of the associated with the , and as such the state machine is owned by the BehavingElement StateVariable Attrib

 class, as shown in Figure 20. Figure 22 shows specifically the value type of the switch position state variable. This caseuteConstraintOwner
was already touched upon in Figure 9.

Different constraints might be applicable when in different states (such as in the case of the switch position: an open switch constrains the current
to be zero, while a closed switch constrains the voltage to be zero), and this is captured by linking the appropriate constraint blocks to the states
using the relationship.The relationship points at the concept,analysis:characterizes analysis:characterizes AutomatonScope
specialized by and . This gives the possibility to the model to constraint several s at once byAutomatonRegion AutomatonState State
pointing at a state machine region.

To go back to the original point regarding the fact that the state machine could type a state variable, or more exactly its , the Codomain Attribut
 is expanded in Figure 20 into two child classes, one of which is the that captureseCodomainValueType AttributeAutomatonConstraint

the state machines.

Figure 20. State machines

Figure 21. value typesCodomain

Figure 22. Switch position value type

To conclude on the topic of value type, the value properties can also be typed by their specific value type, namely Parameter ParameterValue
. This is shown in Figure 23. Figure 24 a synthesis of all the classes and relationships discussed in this section, with the addition of anotherType

class, named (extreme right of the figure) that specializes the and the claQuantityValueType CodomainValueType ParameterValueType
sses. This value type class is introduced to allow for flexibility in capturing value types in model and particularly to allow the reuse of the same
value type for typing s and s of s, when appropriate (there are cases when this reuse is not possible,Parameter Codomain StateVariable
such as when the quantity kind associated with the value type is specific to some behavior properties). The modeler will have the choice to reuse
value types from libraries such as the ISO 80000, or define their own. Examples of defining specific value types are given in the flashlight SysML
model and the interested reader is referred to the MagicDraw file. <<<insert link/reference>>>

Figure 23. Behavior attribute Codomain

Figure 24. Value type synthesis

Complete embedded ontology

Ontology map

Figure 25 shows the complete embedded ontology map that was step-by-step described in this page. As explained before, range restrictions are
displayed using red dotted lines, and the optional concepts related to InteractionTerminal are grayed out.

Figure 25. Complete embedded ontology

Optional usage of stereotypes in the SysML model

Several of the concepts introduced here are necessary for the definition of the ontology, but their usage can be optional in the model, as the
information they would provide is already unambiguously provided by the combination of other stereotypes, or as the elements that should be
stereotyped do not have that capability. This in turn alleviate the number of stereotypes the modeler needs to use for capturing behavior.

presents: optional use, as the port's meaning is unambiguously defined between a and an PropertyGroup InteractionTerminal
exposes: optional use, unambiguous context provided by and Properties InteractionTerminal
playsRoleOf: optional use, as the binding connector's meaning is unambiguously defined between a AttributeConstraintPartic

 and a ipant Attribute
hasConstraint: optional use, as the association's meaning is unambiguously defined between a andAttributeConstraintOwner
a AttributeConstraint
hasAutomatonConstraint: optional use, as the association's meaning is unambiguously defined between a AttributeConstraint

 and a Owner AttributeAutomatonConstraint
AutomatonRegion and : optional use, as the context is unambigously defined by the AutomatonState AttributeAutomatonConst
raint

constrains: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_structuredClassifier. Relationship
unambiguously defined from a to a AttributeConstraint StateVariableConstraintParticipant
uses: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_structuredClassifier. Relationship
unambiguously defined from a to a AttributeConstraint ParameterConstraintParticipant
hasAttribute: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_class. Relationship unambiguously
defined from a to a AttributeGroup Attribute
hasFeature: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_datatype. Relationship unambiguously
defined from a to an StateVariableValueType AbstractValueTypedFeature
hasRegion and : stereotype cannot be applied due to the SysML specification of A_region_stateMachine andhasState
A_subvertex_container.
hasValueType: stereotype cannot be applied due to the SysML specification of A_type_typedElement. Relationship unambiguously

defined from a to an AbstractValueTypedFeature AbstractValueType

If using :InteractionTerminal

StateVariableSurrogate and : optional use, as meaning is provided by the andParameterSurrogate InteractionTerminal
binding connector to Properties

Summary tables for all non-abstract concepts and relationships

from the original Conceptual ontology

Concept SysML embedding

Parameter Value property

Codomain Value property

ElementBehavior no direct embedding – see ElementBehaviorCharacterization
and ElementBehaviorConstraint

InteractionBehavior embedded as – see InteractionBehaviorConstraint Intera
ctionBehaviorConstraint

Interaction Component Block

State no direct embedding – see AutomatonState

StateVariable Value property

TimeDomain Value property

*InteractionTerminal Interface Block (optional use)

Relationship SysML embedding

constrains A_ownedAttribute_structuredClassifier – represents the UML
association between a StructuredClassifier and its owned attributes

exposes Binding connector

isDescribedBy represented by , composite association ("blackhasConstraint
diamond")

isElementOf no direct embedding – convention on the configuration of the State
Machine typing the 's StateVariable Codomain

joins Association Block

uses A_ownedAttribute_structuredClassifier – represents the UML associat
 between a StructuredClassifier and its owned attributesion

*presents Full port (optional use)

Scenario, , , and are not embedded in this pattern, as their full specificationFamilyOfTrajectories Trajectory belongsTo prescribes
is part of an upcoming pattern.

introduced in the SysML-embeddable ontology

Concept SysML embedding

AttributeAutomatonConstraint State Machine

AutomatonRegion Region

AutomatonState State

CodomainValueType Value type

ElementBehaviorCharacterization analysis:Characterization (Component Block)

ElementBehaviorConstraint Component Constraint Block

InteractionBehaviorConstraint Component Constraint Block

InteractionModel analysis:Analysis (Component Block)

ParameterConstraintParticipant Constraint parameter

ParameterValueType Value type

PropertyGroup analysis:Characterization (Component Block)

QuantityValueType Value type

StateVariableConstraintParticipant Constraint parameter

StateVariableValueType Value type

TimeDomainValueType Value type

*ParameterSurrogate UML port (optional use)

*StateVariableSurrogate UML port (optional use)

Relationship SysML embedding

hasAttribute A_ownedAttribute_class – represents the UML between aassociation
Class and the attributes owned by that Class

hasAutomatonConstraint Composite association ("black diamond")

hasConstraint Composite association ("black diamond")

hasFeature A_ownedAttribute_datatype – represents the UML betweassociation
en a DataType and its owned attributes

hasRegion A_region_stateMachine – represents the UML between aassociation
State Machine and its region

hasState A_subvertex_container – represents the UML between aassociation
region and its state

hasValueType A_type_typedElement – represents the UML between aassociation
TypedElement and its Type

playsRoleOf Binding connector

references Shared association ("white diamond")

Relation multiplicity table

See for rationales driving the multiplicities.Concept ontology page

Subject Verb Multiplicity Object Reverse relation
multiplicity

AttributeConstraint analysis:characteri
zes

[0..*] AutomatonScope [0..*]

ElementBehaviorChar
acterization

analysis:characteri
zes

[0..1] BehavingElement [0..*]

PropertyGroup analysis:characteri
zes

[0..1] BehavingElement [0..*]

AttributeConstraint constrains [0..*] StateVariableConstr
aintParticipant

[0..1]

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Conceptual+Behavior+Ontology+v1.1
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes

AttributeGroup hasAttribute [0..*] Attribute [0..1]

AttributeConstraint
Owner

hasAutomatonConstra
int

[0..*] AttributeAutomatonC
onstraint

[0..1]

AttributeConstraint
Owner

hasConstraint [0..*] AttributeConstraint [0..1]

StateVariableValueT
ype

hasFeature [0..1] TimeDomain [0..1]

StateVariableValueT
ype

hasFeature [0..1] Codomain [0..1]

AttributeAutomatonC
onstraint

hasRegion [0..*] AutomatonRegion [0..1]

AutomatonRegion hasState [0..*] AutomatonState [0..1]

AbstractValueTypedA
ttribute

hasValueType [0..1] AbstractValueType [0..*]

Interaction joins [0..*] AttributeGroup [0..*]

AttributeConstraint
Participant

playsRoleOf [0..1] Attribute [0..*]

ElementBehaviorChar
acterization

references [0..*] PropertyGroup [0..*]

AttributeConstraint uses [0..*] ParameterConstraint
Participant

[0..1]

*PropertySurrogate *exposes [0..1] Property [0..*]

PropertyGroup *presents [0..*] *InteractionTermina
l

[0..1]

SysML Example
The complete flashlight example presented piece-by-piece above is shown .here

Model Implementation Concerns
None for now.

Supporting Scripts/Tooling
None for now, but supporting tooling appears necessary to assist the modeler in creating behavior models.

Tooling Tricks
None for now.

Behavior Page Navigation - continue reading:

(0) Community Page

(1) Main Behavior Pattern Page

 (2) (3) Conceptual Behavior Ontology v1.1 Behavior Pattern: Conceptual Examples v1.1

 (4) (5) SysML-Embeddable Ontology & Implementation v1.1 Behavior Pattern: SysML Example v1.1

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern%3A+SysML+Example+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Behavior+Pattern+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern+-+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Conceptual+Behavior+Ontology+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern%3A+Conceptual+Examples+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern%3A+SysML+Example+v1.1

	SysML-Embeddable Ontology & Implementation v1.1

