SysML-Embeddable Ontology & Implementation v1.1

SysML Implementation

The concepts we described in the conceptual ontology are mapped to concrete implementation
in SysML so that they can be used to actually model behavior. In this section we describe first

the embedding of the ontology into SysML (so that the user can understand how the concepts

are made concrete) and then provide a SysML example using the simple flashlight used in the

conceptual example.

SysML-Embeddable Behavior Ontology -
Description

The conceptual ontology presented the essential concepts to capture behavior. However,
several reasons exist why we do not use this ontology directly as of now.

® IMCE has developed an infrastructure to generate a SysML profile from the OWL file
that describes the ontology. This infrastructure and the tools used require for now that
the ontology follows some characteristics. For example, the ontology should use
"simple range class expressions", i.e., the relationships described in the ontology must
have a unique source class and a unique target class. Accordingly, in the case where a
relationship targets several classes, an abstract parent class is created to conform to
that principle. Also, the mapping of a single conceptual class into multiple SysML
elements is currently not supported by the IMCE tools. As a consequence, a one-to-one
mapping to SysML lead to the introduction of additional classes in the ontology.

® Some decisions were made regarding the choice of embedding of the classes and
relationships introduced in the conceptual ontology. These decisions resulted in the
introduction of intermediate classes in SysML that should be captured in the ontology
so that its existence is recognized and that validation rules can be written from an
ontological perspective. For example, it was chosen to embed state variables as value
properties in SysML. Value properties cannot exist on their own in SysML, they must
have a "container". This container was in turn given an ontological existence by adding
an associated class into the ontology.

The result of this process is an other ontology that we call "SysML-embeddable behavior
ontology". This ontology is the closest possible to the original conceptual ontology while
conforming to the constraints described above. Despite the introduction of a significant amount
of new classes and relationships, the core of the behavior ontology remains the same than what
was described in the conceptual ontology. Note that, in the future, the generation of a
pattern SysML profile for the behavior pattern will be done directly from the conceptual
ontology, and that the implementation concerns about will be handled
"behind-the-scene". In the meantime, the ontology presented on this page is the
temporary solution that was selected to obtain a behavior SysML profile using the
current infrastructure. The introduced concepts and relationships are shown graphically with a
blue fill.

The remainder of this page presents side-by-side the original conceptual ontology, the
"SysML-embeddable behavior ontology", and the SysML example so that the reader can
understand the relationships between the three representations.

Note that the concepts are represented by blocks and relationships are represented by ellipses
on directed arrows.

® SysML Implementation
® SysML-Embeddable Behavior
Ontology - Description
® State variable
® Parameter
® ElementBehavior
®* Mathematical
constraints
® State machines
® [nteration aspects
® |Interaction
® |Interaction
using
InteractionTer
minal (optional)
® Synthesis of constraints

® StateVariable,
Parameter and Value
Types
® Complete embedded
ontology
® Ontology map
® Optional usage
of stereotypes
in the SysML
model
® Summary
tables for all
non-abstract
concepts and
relationships
® Relation
multiplicity
table
SysML Example
Model Implementation Concerns
Supporting Scripts/Tooling
Tooling Tricks

State variable

In the conceptual ontology, St at eVar i abl es characterize Behavi ngEl ement s. As mentioned above, it was chosen to embed St at eVar i
abl es as value properties, hence requiring the introduction of a "container" for these value properties. The class that represent these
containers is named Pr oper t yGr oup, and is shown in Figure 1. The relationship between Pr opert yGr oup and the St at eVar i abl es it
contains is named hasAt t ri but e, and represents this containment. Pr oper t yG oup is a specialization of the Analysis:Characterization
concept (and is thus embedded as a Component.Block, i.e. a UML Component stereotyped by the SysML Block stereotype). The hasAttri b
ut e relationship is embedded using the associated UML concept of A_ownedAttribute_class: it represents the UML relation between a Class
and the attributes (here St at eVar i abl e) owned by that Class. The SysML example provided in Figure 2 shows the case of the battery St a
t eVari abl es (ignore for now the value types of the value properties in SysML, these are covered later in this page).

Note that the grouping of St at eVar i abl es into Pr opert yG- oups is left to the modeler. All the St at eVar i abl es of a Propert yG oup ch
aracterizing the Behavi ngEl enent are applicable (no notion of only certain subsets available). The same scope applies if the Pr opertyGr
oup is provided by a library.

Conceptual Ontology

Behaving
Element

A

analysis:
characterizes

StateVariable

Figure 1. St at eVar i abl e embedding

|
Embedded Ontology |
|
|
I
I
I
I
|
|
Behaving 1
Element }
|
|
|
|
Gz |
characterizes |
|
|
P it
- I
- - |
Féﬂ perty Analysis:Characterization :
oLty (Component.Block} |
|
|
|

e ————————— ,
- | AT s -——
hasAttribute A_ownedAttribute_class | s S——n
(association between a Class and the attributes | ” Seaa

(i.e., properties) owned by the Class in UML)

StateVariable Value Property

I
- - !
e ccsEES T ae-=="T
I
I
I
|

Figure 2. Battery St at eVari abl es

Embedded Ontology

Behaving
Element
analysis:
characterizes
P
éﬂrzﬁﬂy Analysis:Characterization
P (Component.Block)
haﬂﬂ@ A_ownedAttribute_class
(association between a Class and the attributes
(i.e., properties) owned by the Class in UML)
y
StateVariable Value Property

SysML Example

bdd [Package] Figure 2| Battery StateVariables lJ

|uanalys:chamc1erizesn
I
|
=~ |
“=h

«behaviorProperty Group» =
Battery StateVariables
abehavior: StateVariable» VoliageAcrossBattery : batteryVoltageSV

o

7

A -
B -

«behavior:StateVariables

— " CurrentThroughBattery

- «behavior:StateVariableValueTypes
batteryCurrentSV

_—

=ignore for now

Parameter

In the conceptual ontology, Par anet er s are related to Behavi ngEl enent s in the same fashion than St at eVar i abl es. They are also
embedded in a similar fashion, using value properties. Pr oper t yG oup can own St at eVari abl es and Par anet er s, as shown in Figure
3. The grouping of these properties into specific Pr opert yGr oups is left to the modeler's decision. It can be seen in Figure 3 that the hasAt
t ri but e relationship has Pr opert yG oup as a source and St at eVari abl e and Par anet er as targets. To conform to the simple range
class expression principle mentioned previously, an additional abstract class (i.e., a class that will not appear explicitly in models) is
introduced as a generalization of St at eVari abl e and Par anmet er, named Pr oper t y. This class becomes in turn the target of the hasAt t
ri but e relationship. Figure 4 shows examples of this pattern in SysML, and with different options for grouping St at eVari abl es and Par a
met er s for the lamp and the battery. The grouping is left to the modelers and their intent for such groups.

Conceptual Ontology Embedded Ontology

|
|
|
|
|
|
|
|
|
|
|

Behaving } Behaving Behaving

Element I Element Element
|

/ A :
|
|
! analysis analysis:
1 characterizes charactefizes
|
|
|
|
|

Property Property . .
|
Analysis:Characterization
|
! Group Group
nalysis |
characterizes ! e mm—mm——————
! == mmmm==———— ———
} - hasAttribute A_ownedAttribute_class
|
|
|
|
|
} Property
|
|
|
|
|
StateVariable ‘ | Parameter } StateVariable ‘ | Parameter ‘ StateVariable | | Parameter |
|
| Value Property Value Property
|
|
I
Figure 3. Propert ies
bdd [Package] Battery and Lamp Properties [BehavingElement Property Groups u
«analysis:characterizes» «analysis:characterizes»

ysis:characterizess

1
«behavior:PropertyGroups = sbehavior:Property Groups =l

Battery PropertyGroup Lamp Parameters
behavior iables Voltages Battery : battery\VoltageS\W «behavior:Parameters Ohmi ist: : lampElectri
«behavior:StateVariables CurrentThroughBattery : batteryCurrentSv «behavior:Parameters L i Efficacy : lampLumi Efficacy
«behavior: Parameters inalVolt; : battery inalVolag
«behavior Property Groups =]
Lamp StateVariables
«behavior:StateVariables 0 amp : lamp o

«behavior:StateVariable» CurrentThroughLamp : lampCurrentSV
sbehavior:StateVariables LumenOutput : lampLuminous FluxSV

Figure 4. Battery and Lamp Pr opert ies

ElementBehavior

In the conceptual ontology, El ement Behavi or characterizes its Behavi ngEl ement and constrains St at eVar i abl e(s), as shown in the left
panel of Figure 5.

The embedding of El ement Behavi or depends on the intent of the modeler: two embedding are provided here, one for the capture of
mathematical constraints, and one for the capture of state machines.

Mathematical constraints

This embedding of the El ement Behavi or makes a distinction between the constraints and their owner. For this purpose, two classes are
introduced: the El ement Behavi or Const rai nt is a (Component) Constraint Block, while the El enent Behavi or Char act eri zati onis an
Analysis:Characterization that owns the potentially many Constraint Blocks. The relationship between the El ement Behavi or Char act eri zat i
on and the El ement Behavi or Const rai nt, named hasConst r ai nt, is embedded as a binary composite association (or "black-diamond"
association). An additional class is created to complete the picture: the constraint in the Constraint Block does not refer directly to the St at eVar i
abl es of interest: the elements participating in the constraint are SysML Constraint Parameters owned by the Constraint Block (through
A_ownedAttribute_structuredClassifier, the appropriate UML association in this case). The class that represents these constraint parameter is
named St at eVari abl eConstrai nt Parti ci pant. In the constraint, the participants "play the role" of the relevant state variables: this
relationship is captured through the pl aysRol ek relationship that is embedded as a binding connector between St at eVar i abl eConst r ai nt
Partici pant and St at eVar i abl e. This choice allows for potential reuse of the Constraint Block and their addition to libraries.

Conceptual Ontology Embedded Ontology

Behavin
Behaving Elemen?
Element

analysis: analysis
characterizes characterizes
Property o — | ElementBehavior . o
.) Group Characterization | Analysis:Characterization
analysis: analysis:

Binary Reference Association

w Binary Composite Association
hasAttribute N
ElementBehavior

Constraint ‘Component Constraint Block

@ A ownedAttribute_structuredCiassifier

Binding Connector

- constrains | Element
- = =
StateVariable Behavior

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S - |
charagterizes characterizes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 5. El enment Behavi or and St at eVari abl es

An El enent Behavi or Constrai nt constrains St ateVari abl es, but also uses potentially Par anet er s in the expression of the
constraint. This case is handled in a symmetrical fashion as shown in Figure 6, and the El enent Behavi or Const r ai nt owns a Par anet er Co
nstraintPartici pant (through the uses relationship) that plays the role of a Par anet er .

Conceptual Ontology Embedded Ontology

Behaving

Behaving Element

Element

analysis: analysis
characterizes characlerizes

Property - ElementBehavior . o
Group references “| Characterization | Analvsis:Characterization

Binary Reference Association
hasConstraint Binary Composite Association
hasAttribute
- ElementBehavior

Constraint Component Constraint Block

Parameter i
Parameter R ConstraintParticipant Constraint Parameter

Binding Connector

I
|
|
|
|
|
I
|
|
|
|
|
I
I
|
|
|
|
|
I
|
|
|
|
|
I
|
) I
analysis: analysis: |
charagterizes cnaracterizes |
I

I

|

|

|

|

|

I

|

|

|

|

|

I

|

|

|

|

|

I

I

|

|

|

|

|

I

|

|

|

uses Element
Behavior

Parameter

Figure 6. El enent Behavi or and Properti es

An example of the El enent Behavi or of the battery is shown in Figure 7, and displays elements described above. The "white diamond"
relationship r ef er ences allows the construction of the parametric diagram of the El enent Behavi or Char act eri zat i on in which the St at e
Var i abl e/Par anmet er - Constrai nt Parti ci pant are bound to their respective St at eVar i abl es/Par anet er s. Also note that the
Constraint Block owns a constraint that specifies the relationship between the St at eVar i abl es/ Par anmet er s: the recommended
specification of a constraint is part of an upcoming pattern.

Embedded Ontology SysML Example

Behaving

Eloment bad Package Batey ElmertBenavior(Batory Ekmenieravir |

7=~ aanalysis:characterizes»
Seels
-
-

«behavior:PropertyGroup»
Battory PropertyGroup

“behavior.
«behavior. Y
«behavior Parameter» +NominaNotage : batieryNominalVottage

Property “constrains” and “uses” cannot be
visualized on SysML diagrams. S e
o e e - ~ REEEE ot e EEE SR Rt Tk
Block with its constraint parameters * ~ __ _ parameers The \eccmmcnde:i specification of the
(‘eb_batteryVoltage” for example) " = = — — — — = b_batiryVotage batory VolageSV constfaint is part of an upcoming pattern

Sttvarable | ____\---mmmmmTT T
- J
Binding Connector T

Constraint Paraimeler == ==ole o _ __ _

BehaviorParameter |,
playsRoleOf ConstraintParticipant |

Binding Connector "~ Constraint Parameter

‘ebohavior ElementBahavierConstraints a
 Battery Simplo Model
{equals(eb_batieryVotage,eb_batteryNominalVotage)}

Behavior
Parameter

{7] oot

«benavior.playsRoleOfs

] oo

Figure 7. Battery El enent Behavi or example

State machines

There are cases where state machines are a more compact and efficient representation, for example to capture the discrete modes of a device.
We have added to the embedding for the El ement Behavi or of the conceptual ontology support for using UML state machines, as they fit in the
"St at eVar i abl e constraint” definition of El ement Behavi or . However, the only semantics of the UML state machines that are recognized in
this embedding of the behavior pattern are the ones listed below. The remaining semantics of UML state machines are out of the purview of the
behavior pattern and their usage is left to the agreements between modelers.

The El ement Behavi or Char at eri zat i on can own a UML state machine, represented by the hasAut omat on relationship and the At t ri but
eAut omat onConst r ai nt . The UML state machines can have regions, and states and these are captured in the ontology as Aut omat onRegi o
n and Aut omat onSt at e, with the appropriate hasRegi on and has St at e relationships. These concepts and relations are shown in Figure 8.

As in the flashlight example, some constraints can be applied while in some states: the switch voltage is constrained to be zero in the closed state
and the switch current is constrained to be zero in the open state. To capture these constraints, we make use of the first embedding of El enent B
ehavi or presented above. The constraints are described using an El ement Behavi or Const r ai nt, and the domain of applicability to a specific
state/region is handled by pointing a anal ysi s: char act eri zes relationship from the El enent Behavi or Const r ai nt to the appropriate Aut
omat onSt at e/ Regi on (these two concepts are generalized into the Aut omat onScope). This convention allows to clearly state what is the
scope of the constraint:

® if an El ement Behavi or Constrai nt points at an Aut onat onSt at e (or a set of Aut ormat onSt at es), then the constraint specified by
this El ement Behavi or Const r ai nt is valid only in the context of these Aut omat onSt at es;

® if an El ement Behavi or Constrai nt points at an Aut onat onRegi on (or a set of Aut onat onRegi ons), then the constraint specified
by this El ement Behavi or Const r ai nt is valid only in the context of these Aut onat onRegi ons;

¢ if an El enent Behavi or Const r ai nt does not point to Aut omat onSt at e(s) or Aut omat onRegi on(s) in the presence of an Attri bu
t eAut onat onConst r ai nt, it means that the constraints specified by the El ement Behavi or Const r ai nt is valid for all Aut onat onR
egi ons and Aut onat onSt at es of that At t ri but eAut omat onConstrai nt .

Conceptual Ontology

Behaving
Element

Embedded Ontology

Behaving
Element
analysis:

characterizes

Property

Groﬂ

Binary Composite Association

hasAutomaton
Constraint
Attribute B
AutomatonConstraint | State Machine

I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
|
|
I
I
I
analysis: analysis: }
charagterizes characterizes |
|

|

I

I

I

I

I

I

I

|

|

I

I

I

I

I

I

|

|

I

I

I

I

I

I

|

|

I

I

I

A_region_stateMachine

) constrains | Element
StateVariable

analysis
characterizes
Automaton

Region Region

Automaton

A_subvertex_container
Scope

- StateVariable
StateVariable playsRoleOf ConstraintParticipant

State

Automaton
State

Figure 8. El enent Behavi or and state machines

Figure 9 shows the switch El ement Behavi or of the flashlight example captured using the embedding presented above. Note that the Codonai
n of the Switch position St at eVar i abl e is defined using the state machine, as seen in the structure of the value type typing the Switch position
St at eVari abl e. More details on value types is provided later in this page. The Switch position has two St at es: OPEN and CLOSED, and
represented using states in the state machine. The constraint on the voltage for the CLOSED state is captured using an El enent Behavi or Cons
trai nt that points an anal ysi s: char act eri zes dependency to the CLOSED state. The constraint on the voltage for the OPEN state is
captured using an El enment Behavi or Const rai nt that points an anal ysi s: char act eri zes dependency to the OPEN state.

Note that in Figure 9, no triggers were modeled, but they could have been captured using the semantics of UML State Machine.

Embedded Ontology

Behaving
Element

analysis
characterizes

Property

analysis:
characterizes

Group

hasAttribute

ElementBehavior
Characterization

ElementBehavior
Constraint

hasAutomaton
Constraint

Binary Composite Assaciation

AutomatonConstraint | State Machine

~
N
‘\
/ N
I| Region
]
]
i
; StateVariable » | Automaton
A_subvertex_container
StateVariabla playsfoleOr ConstraintParticipant : Scope
]
SysML Example I. S
-~
] e
bdd [Package] Switch ElementBehavior [Switch ElementBenavior || H -~
]
]
1 R R
'. abehavior:StateVariableValusTypes T
\ _SwitchPositionSV ____ -~~~
. N i . eDoraculenain. Jeshiohl
e ~ \ RSN Tk - Swich Plos flor
Pe ~ A]
eanalysis:characterizess . «analysis:characterizeys !
N ' 1
- ~ ‘| /
s ~ \ \
- ~ [) A
s ~ 1 N
abehavior PropertyGroup» | «behav «ebehavior iorChl E Y !
Switch PropertyGroup. Switch ElementBehavior Chamcterization / H
\
«behavior Itage - swil }
« +Cu : switchCurrentSV \
«behavior: SN \
\
«behavior:ElementBehaviorConstraints N
— SP_OPEN Constraint N
constaints LR
{equals (eb_switchCurrent 0]) LN
— \
eb_switchCurrent : switchCurrentS\ L
e \
~ AY N
. «behavior AutomatonStates | M
OPEN
.
analysis:characterizes relationship,
from blockfothe %,
R OPEN state of the STM
L SP_CLOSED r «
A 5 «behavior AutomatonState
{equals (eb_swilchVotage,0)} CLosED
eb_switchVoltage : swichVolageSV
L e
~
~ ~
S _ ~ 0~
[Pathage] Swich [OPEN consraint-sate]
miﬁlﬁﬂﬁ i [EISP_OPEN Consua;‘ﬁ - O OPEN
CLOSED state of the STM
[Package] Swich [[CLOSED consirani-stato |]
par [behavior Switch © 1E§ Switch ior C tzaton] [=I SP_CLOSED Constraint® -~ © CLOSED
sbehaviorElementBehaviorConstraints
: SP_OPEN Constraint
{equals(eb_switchCurrent,0))
,,,,,,,,,,,,, ebehavior:playsRoleOfs eb_switchCurrent : switchCurrentSV
0 abehavior.PropertyGroup»]
| : Switch PropertyGroup
' 7 7 JbehaviorStateVariables _|T
1 :
|
|7 T ubehaviorStaisVarihine «behavior-ElementBehaviorConstraints
I : 9 — : SP_CLOSED Constraint
| {equals (ab_switchVolage,0)}
«behavior:playsRoleOf»
eb_swilchVoltage : swilchVollageSV

Figure 9. Switch El ement Behavi or

Interation aspects

Interaction

Another constraint type for St at eVar i abl e is in the context of an | nt er act i on. The right part of of Figure 10 describes the new classes
introduced to capture the constraints that occur during Behavi ngEl enent interactions.The relationship j oi ns is embedded as a shared
association ("white-diamond" association) from the | nt er act i on block to the different Pr oper t yGr oups that have the St at eVari abl es
or Par anet er s that are involved in the interaction constraints.

The pattern to capture the interaction constraints is exactly symmetrical with the capture of El ement Behavi or constraints: the I nt eracti o
n (embedded as a Component Block) owns through the hasConst r ai nt relationship | nt er act i onBehavi or Const r ai nt s (embedded
as Component Constraint Block). These constraint blocks in turn own (through the const r ai ns relationship) St at eVari abl eConst r ai nt
Parti ci pant s that are related to St at eVar i abl es using binding connectors stereotyped by pl aysRol eOf . The | nt er acti onBehavi o
r from the Conceptual Ontology is fulfilled by the | nt er act i onBehavi or Const r ai nt in the SysML-embeddable Ontology.

In a similar fashion, | nt er act i onBehavi or Const r ai nt can use Par anet er s, and this pattern is shown in Figure 11.

An example of the | nt er acti onBehavi or Const r ai nt is shown in Figure 12 using the flashlight example (mesh-analysis constraint
version). Note once again that the recommended specification of a constraint is part of an upcoming pattern.

Conceptual Ontology Embedded Ontology

Behaving
Element
Behavin joins .
E\emen? Interaction
analysis
describes characterizes
Interaction
Behavior
Propert .)
Grgﬁpy KI’JD Interaction Component Block
Association Block
characterizes

@ Binary Composite Association
hasAttribute X N
InteractionBehavior

Constraint ‘Component Constraint Block

@ A_ownedAttribute_structuredClassifier
StateVariable playsRoleOf Cnni:?;;‘:gralﬁ?é?pam Constraint Parameter

Binding Connector

constrains
StateVariable

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
analysis: }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 10. I nteracti on and St at eVari abl es

Conceptual Ontology Embedded Ontology

StateVariable "
Parameter playsRoleOf ConstraintParticipant Constraint Parameter

Binding Connector

|
|
|
|
|
|
|
|
|
|
|
| Behaving
; Element
Behaving joins . !
Interaction |
Element |
|
A ; analy:
describes | characterizes
|
|
|
Interaction |
Behavior !
| Propert P A
! P Cions) Interaction | Component Block
i roup
| Association Block
|
analysis: }
characterizes |
|
| w Binary Composite Association
|
|
|
|
! hasAttribute N 3
; InteractionBehavior -
i | Constraint ‘Component Constraint Block
= — constrains !
|
|
| @ A_ownedAttribute_structuredClassifier
|
|
|
|
|
|
|
|
|
|
|

Figure 11. I nteracti on and Par anet er s

bdd [Package] Circutt Interaction [Gircutt Interaction y

«behaviorjoinss «behavior:PropertyGroups =
Switch PropertyGroup
«behavior StateVariables VoltageAcross Switch : switchVoltageSV
«behavior StateVariablas CurrentThroughSwitch : switchCurrentSV.

| «behavior StateVariable» SwitchPostion : SwitchPositionSV'
«analysis:characterizes»
|
ebehavior:PropertyGroups = «behaviorjins ebehavior.Interactions .
Battory PropertyGroup Cireuit
“behavior:StateVariables VoltageAcrossBattery : batieryVoltageSV'

«behavior StaleVariables CurrentThroughBatlery : batteryCurrentSV
«behavior:Paramelers NominalVoltage : batteryNominalVoltage

+analysis:characterizes»

wanalysis:characterizes»

«behaviorjoins»

wbehavior:| forCons =)

Mesh Constraints |

{equals3(ib_batteryCurrent,ib_switchCurrent,ib_lampCurrent), -

equals (adds(minus ib_batteryValtage),ib_switchVoltage, ib_lampVoliage),0), «behavior:PropertyGroup» =]
} Lamp StateVariables

paramters «bahavior 0 Lamp : lampVottag
ib_batteryVoltage : batteryVoltageSV «behavior:StateVariables CurrentThroughLamp : lBmpCurrentSy
ib_batteryCurrent : batteryCurrentSV «behavior:StateVariables LumenOutput : lampLuminous FluxSV
ib_switchVoltage : swilchVollageSV
ib_switchCurrent : switchCurrentSV
ib_lampVoltage : lampVoltageSV
ib_lampCurrent : lampCurrentSV
SysML Parametric Diagram [[B§ Circuit Interaction u
«behavior:InteractionBehaviorConstraints =)
: Mesh Constraints
{equals3(ib_batteryCurrent,lb_switchCurrent ib_lampCurrent),
equals(adds(minus(ib_battery\oltage) lb_switchVottage, ib_lampVottage),0],
______________ }
| battery PropertyGroup : Battery PropertyGroup 7] | | 1amp StateVariables : Lamp StateVariablos 7] |
| = — — — |
| L'_Vﬂlhﬂ-mesBaﬂsry:bm-wc\msﬂ ,—'7Z|m,mnew\mnzge batteryVoltageSy ib_lampVoltag ! | Mvoltagsacro sLamp : lampVoltage _I :
77777777777 (E————
! e - i amar | | |
| ‘Cumnﬂ'hmughhﬂvry: batteryCurrentSV \—|7jlb_baﬂerycurrem.batlerycurremSV Io_lampCurrent : lampCurrentSy || | CurrentThroughLamp : lampGurrentsV |
_— — = J
ib_switchVoltage : switchVoltageSV ib_switchCurrent : switchCurrentSV

Figure 12. Flashlight circuit | nt er acti on
Interaction using InteractionTerminal (optional)

As discussed in the conceptual ontology, this ontology gives to the modeler the choice to use InteractionTerminal for experimentation. This
section explains how the related concepts and relationships are embedded in SysML. These concepts will be present and shown greyed in
the rest of this page.

Expand this section if you want to read more.

Synthesis of constraints

As described in the previous two sections, some relationships appears several times with different sources or targets. To conform to our simple
range class expression pattern, some synthesis is necessary and presented below.

® Let's address first the case of the hasConst r ai nt relationship: it is shown in the upper panel of Figure 16 that it has two sources (El em
ent Behavi or Charact eri zati on and | nt eracti on) and two targets (El enent Behavi or Constrai nt and | nt er act i onBehavi
or Const rai nt). As a consequence, two abstract superclasses are created, namely the At t ri but eConst r ai nt Omer and the Attri
but eConst r ai nt as shown in the lower part of Figure 16. Range restrictions are defined to prevent incorrect mapping between
subclasses. Range restrictions are defined and shown using red dashed lines in Figure 16 for the allowed use cased for the
hasConstraint relationship. This visual representation will be used in the remainder of this page.

ElementBehavior .
Characterization Interaction
@nstrai nt + @nstrai nt
ElementBehavior InteractionBehavior
Constraint Constraint

Attribute
ConstraintOwner

ElementBehavior |
Characterization

< Interaction

onstraint

@nstraint

asC

ElementBehavior . . InteractionBehavior
\ —{> < :
Constraint AttributeConstraint Constraint

Figure 16. hasConst r ai nt synthesis

® Next, let's address the cases of the const r ai ns, uses and pl aysRol e relationships. As shown in the upper panel of Figure 17, the
const r ai ns relationship has two source classes (El enent Behavi or Const rai nt and | nt er act i onBehavi or Const r ai nt) and
one target. These two source classes were already grouped into the At t ri but eConst r ai nt abstract class just above, so this class is
reused and is defined as the source of the const r ai ns relationship. The same observation can be made for the uses relationship,
whose source is defined as the At t ri but eConst r ai nt class and the target is the Par anet er Constrai nt Parti ci pant.

®* The pl aysRol e relationship case is more complex: it has two source classes (St at eVar i abl eConst rai nt Parti ci pant and Par
amet er Constrai nt Parti ci pant) and four target classes (St at eVari abl e, St at eVar i abl eSurr ogat e (optional), Par anet er a
nd Par anet er Sur r ogat e (optional)). In the case of the source classes, a new abstract superclass is introduced, named At t ri but eCo
nstraintPartici pant. Inthe case of the four target classes, a previous grouping can be reused (featuring Pr operty, PropertySur
r ogat e (optional) and At t r i but e shown in Figure 12). Range restrictions were not defined in this case due to the complexity of the

restriction expression: it will instead be handled by validation rules that will check that the model only has relationships that fall only in the
four cases presented in the upper panel of Figure 17. The optional classes related to InteractionTerminal (see discussion in the
previous section) are grayed out, and this visual representation will be used in the remainder of this page.

ElementBehavior ElementBehavior InteractionBehavior InteractionBehavior
Constraint Constraint Constraint Constraint
StateVariable Parameter StateVariable Parameter
GonstraintParticipant ConstraintParticipant ConstraintParticipant ConstraintParticipant
L
. StateVariable Parameter
StateVariable Parameter Surrogate Surrogate

ElementBehavior .) Interaction
] —> < .
Constraint AttributeConstraint Constraint
StateVariable | E Attribute 1 Parameter
ConstraintParticipant ConstraintParticipant ConstraintParticipant
plavsﬂg@
_ | StateVariable
StateVariable ¥ : Surrogate
Yty |
—> Property —— Attribute - === L:E llurE:L]“L < - -
N I
Parameter | Parameter
Surrogate

Figure 17. pl aysRol e embedding
StateVariable, Parameter and Value Types

As explained in the conceptual ontology, the St at eVari abl e is defined as having a Ti meDonai n and a Codonai n, as shown in Figure 19. This
is captured in the SysML embedding by using Value Types. The St at eVari abl e value property is typed by a specific value type named St at eV
ari abl eVal ueType. This value type in turn owns two value properties: a Ti neDonai n one and a Codonai n one. Each of these value
properties are typed by distinct value types respectively named Ti neDomai nVal ueType and At t ri but eCodonai nVal ueType (note that the
latter is greyed in Figure 18 as it will be expanded upon later in this page). As a consequence, the St at eVar i abl eVal ueType is a structured
value type.

Figure 18 shows a simple example for generic St at eVar i abl es such as Voltage, Current or LuminousFlux. Note that the Value Types of the
domain and codomain properties are not Ti neDonai nVal ueType and At t ri but eCodonai nVal ueType, as they are extracted from the
1ISO-80000 library. One could specialize these library Value Types for their components, and type the specialized St at eVar i abl e's Ti neDomai
n and Codonai n with these. Guidance on how to handle Value Types is under evaluation and Value Type modeling may be part of a
separate pattern. This section is afirst attempt at capturing Value Types from a behavior perspective and might evolve in future
iterations.

bdd [Package] Time and Primitive Value Types [Value Type Example]/J

e
IMCE.1S0-80 B E.IEC80000-6 E g
electric current

«Quantity Kind:»
electric current : SimpleQuantityKind
description = "IEC BO000-6, 6-1"

«behavior:StateVariableValueTypes ubehavior:Codomainy codomain «ValueTypes
currentSV electric current

VahieTypen
quantitykind = =electric current

IMCE.IS0-80000::IMCE.ISO80000-3 Space and Time::Quantities::
fime IMCE.150-80000::IMCE.|EC80000-6 E g
voltage
«QuantityKinds
time : SimpleQuantityKind «Quantity Kind:»
description = IS0 80000-3, 3-7" Yoltage ; SimpleQ ind
description = "IEC 80000-6, 6-11.3"
sbehavior: TimeDomains domain
«ValueTypes
e «behavior TimeDomainy _domain «behavior SlaleVariableValueTy pe» sbehavior.Codomainy codomain WHIUIETVDE”
WakeTypen voltageSV [E=tage
quantityKind = =itime sbehavior:TimeDomains domain aValueTypes
quantityKind = @voltage

IMCE.ISO- E.ISC 7 Light::Q

luminous flux

«Quantity Kind»
flux : Derived QuantityKind

description = "ISQ 80000-7, 7-32"

«behavior:StateVariableValue Typex «behavior:Codomains codomain «ValueTypen
luminousFluxSV luminous flux
aValueTypen
quantityKind = [@luminous flux

Figure 18. Value Type Example

The fact that a value property is typed by a value type is captured in the embedded ontology by the hasVal ueType relationship (embedded by
the appropriate UML concept, A_type_typedElement). The St at eVar i abl eVal ueType owns two value properties and this is captured through
the hasFeat ur e relationship. Once again to conform to the single range class expression pattern, the introduction of abstract superclasses is
necessary as the hasVal ueType and the hasFeat ur e have several sources or targets. In the case of hasVal ueType, all the value properties
that are typed (St at eVari abl e, Ti neDonmai n and Codonai n) are grouped into the Abst r act Val ueTypedAt t ri but e class, and all the value
types (St at eVar i abl eVal ueType, Ti neDonai nVal ueType and At t ri but eCodomai nVal ueType) are grouped into the Abst r act Val ueT
ype class. The hasVal ueType relationship is now defined as having Abst r act Val ueTypedAt t ri but e as source and Abst r act Val ueType
as target. Range restrictions are defined as appropriate and are shown in Figure 18. In the case of the hasFeat ur e relationship, the abstract
superclass Abst r act Val ueTypedFeat ur e is created and groups the Ti meDomai n and Codomai n value properties.

Conceptual Ontology Embedded Ontology

StateVariable

StateVariable
@@ A_type_typedElement

hasTimeDomain hasCodomain

‘ TimeDomain

‘ Codomain ‘

StateVariable
ValueType

hasFeaiure A ownedAttribute_datatype

Value Property ‘ TimeDomain

Value Type

Codomain Value Property

TimeDomain Attribute
Value Type ValueType CodomainValueType Value Type
. AbstractValue
StateVariable TypedFeature ‘ ‘
v
AbstractValue
TypedAttribute ‘ TimeDomain ‘ Codomain ‘
Abstract
ValueType
i . i
o StateVariable TimeDomain Attribute
ValueType ValueType CodomainValueType

Figure 19. St at eVari abl e's Ti neDonai n and Codonai n

There are however cases where the nature of the St at eVari abl e calls for a different way of capturing its type. For example, the case of a
discrete St at eVar i abl e with a small number of St at es, such as the switch position St at eVar i abl e in the flashlight example that can either
be in the open or closed St at es. It is more natural then to capture these St at es using a State Machine (that has region and states). The Codom
ai n of the St at eVar i abl e is defined by the configuration of the State Machine (i.e., the combination of the active states in different regions). In
the case of a single region, the configuration of the state machine and the currently active state are confounded. The state machine is also used
to capture the behavior of the Behavi ngEl enent associated with the St at eVari abl e, and as such the state machine is owned by the Attri b

ut eConst r ai nt Oaner class, as shown in Figure 20. Figure 22 shows specifically the value type of the switch position state variable. This case
was already touched upon in Figure 9.

Different constraints might be applicable when in different states (such as in the case of the switch position: an open switch constrains the current
to be zero, while a closed switch constrains the voltage to be zero), and this is captured by linking the appropriate constraint blocks to the states
using the anal ysi s: char act eri zes relationship.The anal ysi s: char act eri zes relationship points at the Aut omat onScope concept,
specialized by Aut omat onRegi on and Aut onat onSt at e. This gives the possibility to the model to constraint several St at es at once by
pointing at a state machine region.

To go back to the original point regarding the fact that the state machine could type a state variable, or more exactly its Codomai n, the At t ri but
eCodomai nVal ueType is expanded in Figure 20 into two child classes, one of which is the At t ri but eAut omat onConst r ai nt that captures
the state machines.

Figure 16"
ElementBehavior
Characterization
r Attribute
ConstraintOwner
Interaction

Binary Composite Association

@@ hasAutomaton
Constraint

ElementBehavior
Constraint

—1> AttributeConstraint

InteractionBehavior Attribute
Constraint A 4 AutomatonConstraint

State Machine

e hasRegion A_region_stateMachine
7 analysis: N

i N]
“~._characterizes_~
a =

'\ | Automaton)
\ Hegi on Region
\‘h.
Automaton
Scope < hass@ A_subvertex_container
Automaton
L State State

Figure 20. State machines

Attribute
CodomainValueType

Attribute
CodomainValueType L?
. Attribute
CodomainValueType AutomatonConstraint
Value Type State Machine

Figure 21. Codonmi n value types

bdd [Package] Switch Value Types [Switch Positicn Value Type y

«WalueTypes |
«behavior: StateVariableValue Types

SwitchPosition SV

r:TimeDomainsdomain : flashlight time
mainscodomain ;| Switch Position STM

«behavior BehaviorattributeAutomatonConstraint s
Switch Position STM

stm [State Machine] Switch Position STM [@ Switch Positicn STI'-."IU

OPEN

CLOSED

Figure 22. Switch position value type

To conclude on the topic of value type, the Par anet er value properties can also be typed by their specific value type, namely Par anet er Val ue
Type. This is shown in Figure 23. Figure 24 a synthesis of all the classes and relationships discussed in this section, with the addition of another
class, named Quant i t yVal ueType (extreme right of the figure) that specializes the Codomai nVal ueType and the Par anmet er Val ueType cla
sses. This value type class is introduced to allow for flexibility in capturing value types in model and particularly to allow the reuse of the same
value type for typing Par anet er s and Codonmi ns of St at eVari abl es, when appropriate (there are cases when this reuse is not possible,
such as when the quantity kind associated with the value type is specific to some behavior properties). The modeler will have the choice to reuse
value types from libraries such as the ISO 80000, or define their own. Examples of defining specific value types are given in the flashlight SysML
model and the interested reader is referred to the MagicDraw file. <<<insert link/reference>>>

Parameter

hasValueType

Parameter

ValueType Value Type

Figure 23. Behavior attribute Codonai n

AbstractValue Abstract
DTypedAnr\bute' hasValuellype ValueType <
Parameter
hasval Type
Parameter hasValueType h i ~ .| Parameter
Surrogate 7| ValueType
Parameter
ConstraintParticipant
StateVariable
StateVariable hasValueType S ~ .| StateVariable Quantity
Surrogate — -~ 7| ValueType ValueType
StateVariable S
ConstraintParticipant
AbstractValue
TypedFeature
N
TimeDomain nasvalETyRe .| TimeDomain
| ValueType
Codomai asValueType) Attribute
2ooman CodomainValueType

CodomainValueType

Attribute
AutomatonConstraint

Figure 24. Value type synthesis
Complete embedded ontology

Ontology map

Figure 25 shows the complete embedded ontology map that was step-by-step described in this page. As explained before, range restrictions are
displayed using red dotted lines, and the optional concepts related to InteractionTerminal are grayed out.

Behaving
B -~
_— Element —

AttributeGroup

>I
/
//

Binary Reference Association

Component Block

ElementBehavior
Characterization

Attribute

Inter: n ConstraintOwner

o
—->| Terminal

Cpresents) _ _ _
Full Port

references
A_ownedattribute_class

Binary Reference Association

Binding Connector

Attribute

playsRoleOf Binary

ElementBehavior
Constraint
Gomponent Consfraint Block

¢

AbstractValue 1
TypedAttribute

Property
oY

StateVariable |<-- P2

Value Property

AbstractValue
TypedFeature

PP
77777777777 (exposes) -—----—--
Binding Gonnector

s | StateVariable - - — - -
e

UML Port

A t |
InteractionBehavior
Constraint
Compongnt Constraint Block

~_
N
C

‘State Machine \

i
I
i
| z ; \
| hasValueType l Attribute \
| AutomatonConstraint \
| A ownedattrjbute datatype A gypel ypedElement \
Parameter |<--:--2x00ses Parameter o r or \
Surrogate ip:

Value Property - UL Port

Alregion_stateMachine

Atribute
ConstraintParticipant

Automaton
Region

v
StateVariable
ValueType

Value Type

> Automaton
Scope

Parameter
ValueType
vatue Type 2 " u
TimeDomain AttributeCodomain
ValueType ValueType
Value Type N
Quantity
ValueType bl C ype
Value Type Vaiue Type

Figure 25. Complete embedded ontology

Optional usage of stereotypes in the SysML model

Several of the concepts introduced here are necessary for the definition of the ontology, but their usage can be optional in the model, as the
information they would provide is already unambiguously provided by the combination of other stereotypes, or as the elements that should be
stereotyped do not have that capability. This in turn alleviate the number of stereotypes the modeler needs to use for capturing behavior.

pr esent s: optional use, as the port's meaning is unambiguously defined between a Pr opert yGroup and an | nt eracti onTer m nal

exposes: optional use, unambiguous context provided by Properti es and | nt eracti onTer ni nal

pl aysRol e : optional use, as the binding connector's meaning is unambiguously defined between a At t ri but eConstrai nt Partic
i pant andaAttribute

hasConst r ai nt : optional use, as the association's meaning is unambiguously defined between a At t ri but eConst r ai nt Oaner and

aAttribut eConstraint

hasAut omat onConst r ai nt : optional use, as the association's meaning is unambiguously defined between a At t ri but eConstrai nt
Omner and a At tri but eAut omat onConst r ai nt

Aut omat onRegi on and Aut onat onSt at e: optional use, as the context is unambigously defined by the At t ri but eAut omat onConst
raint

const rai ns: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_structuredClassifier. Relationship
unambiguously defined from a At t ri but eConst r ai nt to a St at eVari abl eConstrai nt Parti ci pant

uses: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_structuredClassifier. Relationship
unambiguously defined from a At t r i but eConst r ai nt to a Par armet er Constrai nt Parti ci pant

hasAttri but e: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_class. Relationship unambiguously
defined froma Attri buteGouptoaAttribute

hasFeat ur e: stereotype cannot be applied due to the SysML specification of A_ownedAttribute_datatype. Relationship unambiguously
defined from a St at eVar i abl eVal ueType to an Abst r act Val ueTypedFeat ur e

hasRegi on and hasSt at e: stereotype cannot be applied due to the SysML specification of A_region_stateMachine and
A_subvertex_container.

hasVal ueType: stereotype cannot be applied due to the SysML specification of A_type_typedElement. Relationship unambiguously

defined from a Abst r act Val ueTypedFeat ur e to an Abst r act Val ueType

If using I nteracti onTerm nal :

® StateVari abl eSurrogat e and Par anet er Sur r ogat e: optional use, as meaning is provided by the I nt eract i onTer m nal and

binding connector to Properti es

Summary tables for all non-abstract concepts and relationships

¢ from the original Conceptual ontology

Concept
Par anet er
Codonai n

El ement Behavi or

I nt eracti onBehavi or

Interaction

State

StateVari abl e

Ti meDomai n
*InteractionTerm nal
Relationship

constrains

exposes

i sDescri bedBy

i sEl ement O

joins

uses

*presents

SysML embedding
Value property
Value property

no direct embedding — see El ement Behavi or Char act eri zati on
and El enent Behavi or Constr ai nt

embedded as | nt er acti onBehavi or Constrai nt —seelntera
cti onBehavi or Const r ai nt

Component Block

no direct embedding — see Aut omat onSt at e
Value property

Value property

Interface Block (optional use)

SysML embedding

A_ownedAttribute_structuredClassifier — represents the UML
association between a StructuredClassifier and its owned attributes

Binding connector

represented by hasConst r ai nt , composite association ("black
diamond")

no direct embedding — convention on the configuration of the State
Machine typing the St at eVari abl e's Codonai n

Association Block

A_ownedAttribute_structuredClassifier — represents the UML associat
ion between a StructuredClassifier and its owned attributes

Full port (optional use)

Scenari o, Fam | yOF Traj ectori es, Traj ect ory, bel ongsTo and pr escri bes are not embedded in this pattern, as their full specification
is part of an upcoming pattern.

® introduced in the SysML-embeddable ontology

Concept SysML embedding
Attri but eAut omat onConst rai nt State Machine
Aut omat onRegi on Region

Aut omat onSt at e State

Codonai nVal ueType

El ement Behavi or Char act eri zati on
El ement Behavi or Constr ai nt

I nt eracti onBehavi or Const r ai nt

I nt eract i onModel

Par anmet er Constrai nt Parti ci pant
Par anet er Val ueType

PropertyG oup

Quant i tyVal ueType

St at eVari abl eConstrai ntParti ci pant
St at eVari abl eVal ueType

Ti meDomai nVal ueType

*Par anmet er Surrogat e

*St at eVar i abl eSurrogat e
Relationship

hasAttri bute

hasAut omat onConst r ai nt
hasConstr ai nt

hasFeat ure
hasRegi on
hasSt at e
hasVal ueType

pl aysRol eCf

ref erences

Relation multiplicity table

See Concept ontology page for rationales driving the multiplicities.

Value type

anal ysi s: Char act eri zat i on (Component Block)
Component Constraint Block

Component Constraint Block

anal ysi s: Anal ysi s (Component Block)
Constraint parameter

Value type

anal ysi s: Char act eri zati on (Component Block)
Value type

Constraint parameter

Value type

Value type

UML port (optional use)

UML port (optional use)

SysML embedding

A_ownedAttribute_class — represents the UML association between a
Class and the attributes owned by that Class

Composite association ("black diamond")
Composite association ("black diamond")

A_ownedAttribute_datatype — represents the UML association betwe
en a DataType and its owned attributes

A_region_stateMachine — represents the UML association between a
State Machine and its region

A_subvertex_container — represents the UML association between a
region and its state

A_type_typedElement — represents the UML association between a
TypedElement and its Type

Binding connector

Shared association (“white diamond")

Subject Verb Multiplicity
AttributeConstraint analysis:characteri [0..%]

zes
El ement Behavi or Char anal ysi s: characteri [0..1]
acterization zes
PropertyG oup anal ysi s: characteri [0..1]

zes
AttributeConstraint constrains [0..%]

Object Reverse relation
multiplicity

Aut omat onScope [0..%]

Behavi ngEl enent [0..%]

Behavi ngEl enent [0..%]

St ateVari abl eConstr [0..1]

ai nt Parti ci pant

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Conceptual+Behavior+Ontology+v1.1
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes
http://analysischaracterizes

AttributeG oup

Attribut eConstraint
Oaner

AttributeConstraint
Owner

St at eVari abl evVal ueT
ype

St at eVari abl eval ueT
ype

At tri but eAut omat onC
onstraint

Aut omat onRegi on

Abstract Val ueTypedA
ttribute

I nteraction

AttributeConstraint
Parti ci pant

El ement Behavi or Char
acterization

Attribut eConstraint

*PropertySurrogate

PropertyG oup

SysML Example

The complete flashlight example presented piece-by-piece above is shown here.

hasAttri bute

hasAut omat onConstr a
i nt

hasConstrai nt
hasFeat ure

hasFeat ur e

hasRegi on

hasSt at e

hasVal ueType

joins

pl aysRol eCf

ref erences

uses

*exposes

*presents

Model Implementation Concerns

None for now.

Supporting Scripts/Tooling

A
A

]

]

1]

A

A
1]

A
]

]

A

Attribute

Attri but eAut omat onC
onstraint

AttributeConstraint

Ti meDonai n

Codonai n

Aut ormat onRegi on

Aut omat onSt at e

Abstract Val ueType

AttributeG oup

Attribute
PropertyG oup

Par anmet er Const r ai nt
Parti ci pant

Property

*| nteractionTerm na
|

None for now, but supporting tooling appears necessary to assist the modeler in creating behavior models.

Tooling Tricks

None for now.

Behavior Page Navigation - continue reading:

(0) Community Page

(1) Main Behavior Pattern Page

(2) Conceptual Behavior Ontology v1.1

(4) SysML-Embeddable Ontology & Implementation v1.1

(3) Behavior Pattern: Conceptual Examples v1.1

(5) Behavior Pattern: SysML Example v1.1

[o..

[o..

[0..

[0..

[o..

[o..

[o..

[0.7]

[0.

[0.

[0.

[0..

1]

1

1]

1]

1

1]

1

A
A

]

1]

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern%3A+SysML+Example+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Behavior+Pattern+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern+-+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Conceptual+Behavior+Ontology+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern%3A+Conceptual+Examples+v1.1
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Behavior+Pattern%3A+SysML+Example+v1.1

	SysML-Embeddable Ontology & Implementation v1.1

