

Copyrights © 2005 Basem Almadani

RTPS middleware for Real-Time Distributed Industrial Vision Systems

Basem Almadani

Institute for Automation in Montan

University Leoben, Austria

Al.madani@unileoben.ac.at

Abstract

Designing and constructing Real-Time Distributed

Industrial Vision Systems (RT-DIVS) from scratch is

very complicated task. RT-DIVS has Conflicting

requirements such as reasonable development cost,

ease of use, reusable code and high performance. The

success key in building such systems is to recognize the

need for middleware software. Middleware plays a

major role in developing distributed systems efficiently.

Real-Time Publish-Subscribe (RTPS) model is one of

the latest developments in Real-Time middleware

technologies. Network Data Distribution Service

(NDDS) is RTPS middleware developed by Real-Time

Innovation (RTI). NDDS is widely used in Real-Time

distributed and embedded systems for mission critical

applications. The research work presented in this

paper discusses the employment of NDDS for RT-DIVS

and the advantages of NDDS’s Quality of Service

(QoS) policies in covering the requirements of RT-

DIVS. An experimental test set-up is used to verify the

NDDS’s performance for RT-DIVS. Tests results show

that RTPS middleware (and NDDS specifically) is

suitable for soft and firm timelines requirements for

distributed industrial vision systems.

1. Introduction

Industrial vision systems are employed to perform

different functions such as quality assurance and

logistic management. Those systems have usually

multiple cameras connected with sensors, actuator and

PLCs via a network. Image Processing (IP) task in RT-

DIVS must maintain a set of time constrains. There are

three types of time constrains in RT-DIVS: image

acquisition, image transportation and image processing

time. Time constrains in Real-Time systems are

specified by a limit as in Hard Real-Time systems or as

a range of time. The time constrain range can be long

as in Soft Real-Time systems or short as in Firm Real-

Time systems [1]. This paper discusses firm timelines

requirements for image transportation in RT-DIVS.

In the last two decays, different middleware

technologies are used to build distributed Real-Time

systems for industrial applications. Middleware types

differ mainly in the communication model and in the

infrastructure hardware and software technologies

used. The most famous middleware types are:

• Transaction processing middleware (TPM):

depends mainly on transactional database.

• Object Request Brokers (ORB): such as

CORBA and DCOM.

• Remote Procedure Calls (RPC)

• Message Oriented Middleware (MOM)

Each of these types has specific features that suit

certain applications. MOM is the most suitable

middleware for RT-DIVS because it support events

management and match the needs for distributed

systems as will be shown in the following section.

MOM has two categories, message queuing and

message passing middleware. Publish-Subscribe (PS)

is a message passing middleware.

Middleware exchange information between

components in different communication models such

as:

• Synchronous client/server model: reliable

request-reply oriented with flow control to

avoid network congestions.

• Asynchronous model: data sender pushes data

over the net and assumes reliable receivers on

the other end.

• Fan-Out model: central process or server sends

data to multiple clients.

• Fan-In model: Multiple processes send data to

central server.

• Point-to-point (PTP) model: connection

oriented single sender and single receiver

model.

• Many-to-many model: can be seen as a

combination of different models mentioned

above where several processes or systems are

exchanging data between each other [2].

The implementation of communication model in

certain middleware depends on the network protocol

used and the application design. In Ethernet networks,

the transport layer has two main protocols, namely

TCP/IP and UDP/IP. Ethernet networks are considered

to be statistically Real-time networks. TCP/IP protocol

is asynchronous connection oriented and reliable

protocol. TCP/IP is not designed for Real-Time

applications because it is not deterministic. UDP/IP is

asynchronous user Datagram protocol, which is faster

than TCP/IP but reliability is not assured while no

handshaking mechanism is implemented. Studies

showed that UDP/IP could perform well for a wide

range of Real-Time applications in industrial

environment. Additional services in the UDP/IP based

Copyrights © 2005 Basem Al-Madani

middleware can assure reliability for mission critical

systems [3].

In this paper, the employment of Real-time Publish-

Subscribe (RTPS) middleware for RT-DIVS is

discussed. Network Data Delivery Service (NDDS) is

RTPS middleware developed by Real-Time Innovation

(RTI) and widely used for mission critical applications

such as defense projects. This research is aimed to find

how suitable RTPS for RT-DIVS for quality assurance

and logistics applications in steel industries. The long-

term objective of this research is to build an

infrastructure platform for RT-DIVS developers to ease

design and construction process for those systems [4].

2. RT-DIVS Requirements

There are common requirements for RT-DIVS. This

section highlights some of those requirements with

special focus for quality and logistics vision systems in

steel industries.

• Soft and Firm Real-Time requirements for

image transportation (excluding image

acquisition time) with maximum latency of

35ms for 64KB image size and 20-50 images

per second rate on dedicated or fire-wall

protected network.

• Reliable image transportation and detection of

any dropped frame.

• Detecting new cameras and network

components that joined the network and add

them dynamically to live components list. Also

detecting disconnected or unreachable

components and remove them from live

components list along with generating proper

log and alarm signals.

• Controls over resources such as maximum

memory buffers for senders and receivers with

low and high watermarks indications.

• Online configuration for data senders and

receivers to inform network components about

new data sources.

• Configurable data communication model. RT-

DIVS needs to deal with some components in

client/server manner with certain pooling

mechanism. The developer should be able to

choose between request-reply model and

Publish-Subscribe model when dealing with

network components.

• Distributing data according to certain criteria.

Vision systems used to have smart cameras

where the image is partially processed (e.g.

extracting the region of interest) before sent

over the net. It is important to send images over

the net to receivers those are able to use the

images. Receivers should be able to specify

certain criteria for the required images. Some

quality systems need to report only defects in

the watched material by vision system.

• The developer should be able to separate the

applications logically over the net to simplify

debugging and troubleshooting processes. The

receivers of certain function should not receive

all the images generated over the net but only

those images related to its function.

• RT-DIVS should be cost efficient and easy to

modify. Using Real-Time operating systems

such as QNX and VxWorks raises the

development cost dramatically. Ada95

programmers cost is much higher than C/C++

programmers. Common of the shelf (COTS)

technologies should be used where suitable to

reduce the need for specialized consultants. It is

recommended to use popular OS, such

Windows, Linux and Unix, and programming

languages in order to minimize the

development and maintenance costs.

• RT-DIVS should be adaptable to suit a range of

application domains. Developing application

specific solution is a high cost practice. The

solution should be configurable to suite

changing requirements in industrial

environment. Only image-processing algorithm

should be system specific for certain

application, other features should be

configurable as far as possible.

• The cost of adding new component, in terms of

the code change and configuration time, should

be kept the lowest possible limit.

• RT-DIVS should be able to exchange

information with systems based on different

platforms, OS and programming languages [5].

3. Employing NDDS for RT-DIVS

This section describes basic NDDS features1 and

those QoS related to RT-DIVS and how they are

employed to support in design and construction of RT-

DIVS.

3.1. NDDS features and QoS

NDDS is a Real-Time Publish-Subscribe message

passing middleware uses UDP/IP protocol. Each data

source over the net is defined as a Publisher. Each

publisher can publish one or more topic. New issue is a

combination of topic, type, issue-identification and

user data. Network applications can subscribe for one

or more topic. Subscribers will receive copies of new

issues generated by publishers. Publishers and

subscribers don’t need to know each other by name or

IP address. Publishers don’t need to know any thing

about subscribers; they only care about generating

correct data. Subscribers don’t care who generated the

new issues over the net. Each publisher has certain

strength for each topic. If there is more than one

1 Full NDDS description and features can be found in www.rti.com

Copyrights © 2005 Basem Al-Madani

publisher of the same topic over the net, subscribers

accept issues from the publisher who has the highest

strength value. If that publisher did not generate new

issues for certain time window, subscribers accept

issue from other publishers [6]. The following list

includes the most important QoS in NDDS those are

related to the scope of our work.

• Deadline: Subscribers can define a deadline

period, which present the maximum waiting

time the application can wait for new issues.

The application will be notified after deadline

limit and an exception will be raised.

• Durability: which specify storing mechanism

for new issues. The first possibility is to deliver

new issue to those subscribers on the net at the

time the issue is published and no issues are

stored. The second possibility is to store new

issues to serve late subscribers join the network

after the time of publication. The amount of

issues (in terms of memory size) and the

memory type (temporary or permanent) are two

configuration parameters.

• Latency budget: this is a hint about the

maximum acceptable delay from the time the

issue is generated to the time it is delivered to

subscriber. This information is important for the

middleware to optimize its internal operations.

Publisher and subscribers are not notified about

this information.

• User data: includes some information that can

be useful for the applications such as security

credentials or any data decoded for the

application.

• Reliability: this policy indicates the level of

reliability the application wants or the publisher

assures. Reliability can be Bets-Effort or

Reliable. This policy depends on History and

Resource-Limits policies.

• History: specifies the amount of issues to be

stored. History can be KEEP_ALL or

KEEP_LAST with certain depth to specify the

number of latest issues to keep.

• Resource Limits: to control the amount of

resources the middleware can use to satisfy

application or QoS needs.

• Presentation: describe the coherence and the

order of the issues when presented to

subscribers [4].

3.2. NDDS objects and functions for RT-DIVS

To explain how NDDS helps in building RT-DIVS,

NDDS objects and functions for each system

component are described.

Measurement Node (MN), which is a network

camera, should publish a registration topic to identify

itself to the Measurement Server (MS) who is

subscribed for registration topic. Registration topic’s

strength should be the same for all MN. Registration

topic includes information about the camera type,

frames rate, frame size, and its function. MN publishes

Measurement Image (MI) topic, Calibration Image (CI)

topic, Status topic and watch topic. Watch topic is used

by MS to assure that MN is connected to the network

without polling for MN. Topics names (exclude

registration topic) include a postfix of the MN ID (e.g.

Watch_MN201, Status_MN201, MI_MN201 and

CI_MN201), where MN201 is the MN identification

number. MS should publish Registration Confirmation

(RC) topic to MN only once in each registration

process. MN should subscribe for RC_MNId topic,

with specific deadline, immediately after publishing

the registration topic. If the deadline for RC is expired,

MN will publish a new registration issue until the MS

is up, or back to the network, and a registration is

confirmed.

On the other hand, MS keeps a list of registered

MN, and any other active network components if any,

and updates the status for any MN that didn’t send an

issue of its watch topic (Watch_MNId) within deadline

period. MS publishes Calibration topic for each MN

(e.g. CALIB_MNId) includes measurement and device

calibration instructions. MN should subscribe for

calibration topic after receiving RC_MNId issue. MS

publishes a Command topic (e.g. COM_MNId), which

includes certain instructions such as restart MN or

flush history to remove old images from MN

temporary memory if there is one. Issue ID should be

checked in MS to assure that images are in sequence if

high reliability is required. Reliability setting depends

on the parameters mentioned in the previous section,

which differ upon the application requirements.

Two image acquisition modes are required in RT-

DIVS, streaming and request. In streaming mode, MN

should publish new MI issue at least once in each

deadline period specified in the publication properties

for that MN and NDDS will raise an exception to MS

otherwise. In request mode, MI issues are generated

when MN receives a signal from position sensor for

example or measurement command by MS.

4. Experimental work

The aim of this part in the research is to test NDDS

capabilities in transporting images with different sizes

and frequencies under several configurations. The

objective is to measure image transmission time

between two computers without clocks synchronization

as recommended by several middleware vendors [7]. In

order to do that, the image is transmitted from one

computer to another and bounced back to its source. A

timestamp is attached to the image and the round trip

time is calculated when the image is back. The test

software was programmed in Java and we believe C or

C++ programmes can achieve a better performance.

An initial test was performed based on:

• 10KB image size with 35 image/second (35Hz)

Copyrights © 2005 Basem Al-Madani

• Number of images transmitted = 4414

• Java processes were given Real-Time priority on

WS2000.

• Forced garbage collection on both computers.

 The following results was obtained:

• Test duration=126081ms

• Max. Round Trip Time (RTT) = 150ms

• Min. RTT= 10ms

• Mean RTT= 25.6590ms

• Median RTT= 20ms

• STD RTT= 17.2987ms

Figure (1): MATLAB Plot for RTT

Table 1: RTT analysis

Figure (2): One direction transmission.

The second test was for:

• 30KB image size with 50Hz image rate.

• Image transmission in one direction.

The obtained behavior is shown in figure (2). With

buffer size tuning, a more deterministic behavior was

obtained as in Figure (3).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure (3): Tuned one direction transmission.

The time difference between the two clocks should

be around to represent stable behavior. The behavior in

the firs 800 images is not stable and the reason is not

obvious for us yet but tuning and configuration work

continue.

5. Conclusion

The implementation of RTPS in NDDS middleware

is suitable for soft and firm timelines requirements in

RT-DIVS and specifically for quality assurance and

logistics management applications. NDDS simplifies

the design and construction phases for distributed

vision systems and the overall system’s development

and maintenance cost is reasonable. NDDS helps to

build a reusable system that is configurable for wide

range of industrial applications with low modification

effort. Additional test are planned to achieve better and

more deterministic performance.

References

[1] Bruce Powel Douglass, “Real-Time UML”,

ADDISON-WESELY 1998

[2] Talarian Corporation, “Everything you Need To Know

About Middleware”, 2000

[3] Real-Time Innovation (RTI) Inc., “Build-Your-Own

Middleware Analysis Guide”, 2001

[4] Object Management Group (OMG), “Data Distribution

Service for Real-Time Systems Specification”, 2003

[5] D. AI. Wu, L. Guan, G. Lau and D. Rahija, “DESIGN

AND IMPLEMENTATION OF A DISTRIBUTED

REAL-TIME IMAGE PROCESSING SYSTEM”,

Proceedings of the 1st International Conference on

Engineering of Complex Computer Systems

(ICECCS’95)

[6] Real-Time Innovation (RTI) Inc., “NDDS Getting

Started Guide”, 2002

[7] Talarian Corporation, “Guidelines for Evaluating

Middleware Products”, 2000

RTT (ms) Images %

10 1635 37

20 918 20,80

30 440 9,97

40 819 18,55

50 168 3,80

60 136 3,08

70 82 1,86

80 26 0,59

90 10 0,23

100 7 0,16

>100 5 0,11

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

Image No.

R
T
T
(m

s
)

Image size:10KB, Freq. 35Hz

0 2000 4000 6000 8000 10000 12000
10

20

30

40

50

60

70

80

90

100

Image No.

T
ra
n
m
is
s
io
n
 T
im
e
 (
m
s
)

One direction transmission (Image size= 30KB and Freq.=50Hz)

