
Quality of Service in Publish/Subscribe
Middleware

Angelo Corsaro
SELEX-SI - Roma

Leonardo Querzoni, Sirio Scipioni, Sara Tucci-Piergiovanni, Antonino Virgillito
Universitá di Roma La “Sapienza"

April 26, 2006

Abstract

During the last decade the publish/subscribe communication paradigm gained
a central role in the design and development of a large class of applications rang-
ing from stock exchange systems to news tickers, from air traffic control to defense
systems. This success is mainly due to the capacity of publish/subscribe to com-
pletely decouple communication participants, thus allowing the development of
applications that are more tolerant to communications asynchrony. This chapter
introduces the publish/subscribe communication paradigm, stressing those charac-
teristics that have a stronger impact on the quality of service provided to partici-
pants. The chapter also introduce the reader to two widely recognized industrial
standards for publish/subscribe systems: the Java Message Service (JMS) and the
Data Distribution Service (DDS).

1 Introduction
Since the early nineties, anonymous and asynchronous dissemination of information
has been a basic building block for many different distributed applications such as
stock exchanges, news tickers, air-traffic control, industrial process control, etc.

Publish/Subscribe systems are nowadays considered a key technology for informa-
tion diffusion. Each participant in a publish/subscribe communication system can play
the role of a publisher or a subscriber of information. Publishers produce information
in form of events, which are then consumed by subscribers. Subscribers can declare
their interest on a subset of the whole information issuing subscriptions. Subscriptions
are used to filter out part of the events produced by publishers.

The main semantical characterization of publish/subscribe is in the way events flow
from publishers to subscribers: subscribers are not directly known by publishers, but
rather they are indirectly addressed according to the content of events. This form of
anonymity completely decouples publishers from subscribers, thus possibly allowing
large scale deployments. Interactions between publishers and subscribers is mediated

1

by the publish/subscribe system, that, in general, is constituted by a set of nodes that
coordinate among themselves in order to dispatch published events to all (and possibly
only) interested subscribers.

Since publish/subscribe has been largely recognized as an effective approach for
information diffusion, several publish/subscribe-based systems, both research contri-
butions and commercial products have been presented and are actually used in many
application contexts. From the research side, much work has been done in this field
specifically by software engineering and distributed systems communities (focusing
on scalability, efficient information delivery or efficient and expressive information
matching). From the industrial side, relevant achievements are the widespread indus-
trial standards that define semantics and interfaces for pub/sub middleware (Common
Object Request Broker Architecture (CORBA) Event Service (CosEvent) [23], the
CORBA Notification Service (CosNotification) [24], Java Message Service (JMS) [21]
and, recently, Data Distribution Service (DDS) [19]). In both worlds, one important
problem is related to the definition of quality of service (QoS) provision, defined as the
guarantees that a pub/sub middleware can offer in terms of timeliness, reliability, avail-
ability etc. Market-ready solutions clearly must be able to provide QoS guarantees, for
example in order to be deployed in mission critical applications. The definition and
enforcement of QoS properties can be on the other hand a great inspiration for novel
research contributions in this field.

The first part of this chapter gives the reader an overview of publish/subscribe sys-
tems, first introducing a general framework and then analyzing in details the models
commonly used for subscriptions. Throughout this overview we focus on the defini-
tion of the very meaning of end-to-end QoS guarantees in a publish/subscribe system.
Indeed, the complete decoupling between senders and receivers makes the exact se-
mantics of the system not easily definable and subject to non-determinism. We identify
the sources of such non-determinism and how to cope with it.

In the second part of the chapter the reader will be introduced to two important in-
dustrial standards for publish/subscribe middleware: the Java Message Service (JMS)
[21] and the Data Distribution Service (DDS) [19]. JMS is a widely recognized stan-
dard for enterprise level messaging, targeted at applications such as application inte-
gration and large-scale data diffusion. Recently the Object Management Group (OMG)
tried to sum up the characteristics of various proprietary publish/subscribe middleware
products, to deliver a new standard for real-time oriented publish/subscribe; the result
of this effort was the DDS specification. The two standards are presented by con-
sidering their general characteristics, their programming model and their QoS-related
features. At the end of the chapter the reader should have gained an introductory
knowledge about the ground where publish/subscribe middleware developers are to-
day spending their efforts.

2 Framework
In this Section we define a general framework for publish/subscribe (pub/sub) systems.
First we introduce the basic elements constituting a pub/sub system, then we discuss
the semantics of the system.

2

Figure 1: High-level interaction model of a publish/subscribe system with its clients (p
and s indicate a generic publisher and a generic subscriber respectively).

2.1 Elements of a Publish/Subscribe System
A generic pub/sub communication system (often referred to in the literature as Event
Service or Notification Service) is composed of a set of nodes distributed over a com-
munication network. The clients of this system are divided according to their role
into publishers, which act as producers of information, and subscribers, which act as
consumers of information. Clients are not required to communicate directly among
themselves but are rather decoupled: the interaction takes place through the nodes of
the pub/sub system, that coordinate themselves in order to route information from pub-
lishers to subscribers. Participants’ decoupling is a desirable characteristic in a com-
munication system as applications can be easily developed just ingoring issues such as
synchronization or direct addressing of subscribers.

Operationally, the interaction between client nodes and the pub/sub system takes
place through a set of basic operations that can be executed by clients on the system and
vice-versa (Figure 1). A publisher submits a piece of information e (i.e., an event) to
the pub/sub system by executing the publish(e) operation. Commonly, an event is
structured as a set of attribute-value pairs. Each attribute has a name, a simple character
string, and a type. The type is generally one of the common primitive data types defined
in programming languages or query languages (e.g. integer, real, string, etc.). On
the subscribers’ side, interest in specific events is expressed through subscriptions.
A subscription σ is a filter over a portion of the event content (or the whole of it),
expressed through a set of constraints that depend on the subscription language. A
subscriber installs and removes a subscription σ from the pub/sub system by executing
the subscribe(σ) and unsubscribe(σ) operations respectively.

We say that an event e matches a subscription σ if it satisfies all the declared
constraints on the corresponding attributes. The task of verifying whenever an event e
matches a subscription σ is called matching.

2.2 Subscription Models
Various ways for specifying the subscribers’ interest led to distinct variants of the
pub/sub paradigm. The subscription models that appeared in the literature are char-
acterized by their expressive power: highly expressive models offer to subscribers the
possibility to precisely match their interest, i.e. to receive only the events they are
interested in. In this section we briefly review the most popular pub/sub subscription

3

models.

Topic-based Model Events are grouped in topics, i.e. a subscriber declares its in-
terest for a particular topic to receive all events pertaining to that topic. Each topic
corresponds to a logical channel ideally connecting each possible publisher to all inter-
ested subscribers. For the sake of completeness, the difference between channels and
topics is that topics are carried within an event as a special attribute. Thanks to this
coarse grain correspondence, either network multicast facilities or diffusion trees, one
for each topic, can be used to disseminate events to interested subscribers.

The topic-based model has been the solution adopted in all early pub/sub incarna-
tions. Examples of systems that fall under this category are TIB/RV [25], SCRIBE [8],
Bayeux [31] and the CORBA Notification Service [24].

The main drawback of the topic-based model is the very limited expressiveness it
offers to subscribers. A subscriber interested in a subset of events related to a specific
topic receives also all the other events that belong to the same topic. To address prob-
lems related to low expressiveness of topics, several solutions are exploited in pub/sub
implementations. For example, the topic-based model is often extended to provide
hierarchical organization of the topic space, instead of a simple flat structure (such
as in [1, 25]). A topic B can be then defined as a sub-topic of an existing topic A.
Events matching B will be received by all clients subscribed to both A and B. Im-
plementations also often include convenience operators, such as wildcard characters,
for subscribing to more than one topic with a single subscription1. Another method for
enhancing expressiveness of the topic-based model is the filtered-topic variant [24, 21],
where a further filtering phase is performed once the message is received based on the
content of the message. Messages that does not satisfy the filter are not delivered to the
application.

Content-based Model Subscribers express their interest by specifying conditions
over the content of events they want to receive. In other words, a subscription is a query
formed by a set of constraints composed through disjunction or conjunction operators.
Possible constraints depend on the attribute type and on the subscription language.
Most subscription languages comprise equality and comparison operators as well as
regular expressions [7, 28, 16]. The complexity of the subscription language obviously
influences the complexity of matching operation. For this reason it is not common to
have subscription languages allowing queries more complex than those in conjunctive
form (examples are [5, 4]). A complete specification of content-based subscription
models can be found in [22]. Examples of systems that fall under the content-based
category are Gryphon [20], SIENA [29], JEDI [12], LeSubscribe [27], Hermes [26],
Elvin [28].

In content-based publish/subscribe, events are not classified according to some pre-
defined criterion (i.e., topic name), but rather according to properties of the events
themselves. As a consequence, the correspondence between publishers and subscribers

1For the sake of completeness, we point out that the word subject can be used to refer to hierarchical
topics instead of being simply a synonymous for topic. Analogously, channel-based is sometimes [23] used
to refer to a flat topic model where the topic name is not explicitly included in the event.

4

is on a per-event basis. The difference with a filtered-topic model is that events that not
match a subscriber can be filtered out in any point in the system, not only on the re-
ceiver, thus possibly saving network resources. For these reasons, the higher expressive
power of content-based pub/sub comes at the price of a higher resource consumption
needed to calculate for each event the set of interested subscribers [6, 14].

Type-based In the type-based [15] pub/sub variant events are actually objects be-
longing to a specific type, which can thus encapsulate attributes as well as methods.
With respect to simple, unstructured models, Types represent a more robust data model
for application developer, enforcing type-safety at the pub/sub system, rather than in-
side the application. In a type-based subscription the declaration of a desired type is
the main discriminating attribute. That is, with respect to the aforementioned mod-
els, type-based pub/sub sits itself somehow in the middle, by giving a coarse-grained
structure on events (like in topic-based) on which fine-grained constraints can be ex-
pressed over attributes (like in content-based) or over methods (as a consequence of the
object-oriented approach).

Concept-based The underlying implicit assumptions within all the above-mentioned
subscription models is that participants have to be aware of the structure of produced
events, both under a syntactic (i.e., the number, name and type of attributes) and a se-
mantic (i.e., the meaning of each attribute) point of view. Concept-based addressing
[11] allows to describe event schema at a higher level of abstraction by using ontolo-
gies, that provide a knowledge base for an unambiguous interpretation of the event
structure, by using metadata and mapping functions.

XML Some research works [9, 10, 30] describe pub/sub systems supporting a semistruc-
tured data model, typically based on XML documents. XML is not merely a matter of
representation but differs in the fact that introduces the possibility of hierarchies in the
language, thus differentiating from a flat content-based model in terms of an added flex-
ibility. Moreover, it provides natural advantages such as interoperability, independence
from implementation and extensibility. As a main drawback, matching algorithms for
XML-based language require heavier processing.

Location-awareness Pub/Sub systems used in mobile environments typically require
the support for location-aware subscriptions. For example, a mobile subscriber can
query the system for receiving notifications when it is in the proximity of a specific
location or service. Works describing various forms of location-aware subscriptions
are [18, 30]. The implementation of location-aware subscriptions requires the pub/sub
system the ability to monitor the mobility of clients.

5

2.3 Semantics of a Publish/subscribe System
In the following we intend to characterize the general semantics of a pub/sub system
in terms of three properties stating the exact behavior of any pub/sub implementation2.
This is critical for understanding the subtleties hidden behind the definition of the ex-
pected QoS offered by a pub/sub system and for highlighting what are the aspects of the
system that are influential for it. We first consider two parameters that respectively take
into account (i) non-instantaneous effects of subscribe/unsubscribe operations and (ii)
the non-instantaneous diffusion of an event to the interested subscribers after a publish
operation executed by a publisher. These parameters model the time required for the
internal processing in the system and the network delay elapsed to route subscriptions
and notifications, in a distributed implementation.

Indeed, when a process issues a subscribe/unsubscribe operation, the pub/sub sys-
tem is not immediately aware of the occurred event. In other words, at an abstract level,
the registration (resp. cancellation) of a subscription takes a certain amount of time,
denoted as Tsub, to be stored into the system. This time encompasses for example the
update of the internal data structures of the pub/sub system and the network delay due
to the routing of the subscription among all the entities constituting the system. Analo-
gously, as soon as a publication is issued, the pub/sub architecture performs a diffusion
of the information in order to reach the set of interested subscribers. This operation
takes a certain amount of time during which the system computes and issues notify
operations to interested subscribers, i.e. diffusion of events takes a non-zero time and
is represented by a parameter Tpub.

The characterization of the exact behavior of the system is actually not obvious as
(i) the interest of a subscriber is a dynamic dimension and (ii) the notification of an
event can be issued to a subscriber at any time during the diffusion interval of the event
itself. Then, semantics of a pub/sub system can be expressed by the following three
properties:

- Safety (Legality): a subscriber cannot be notified for an information it is not interested
in.
- Safety (Validity): a subscriber cannot be notified for an event that has not been previ-
ously published.
- Liveness: The delivery of a notification for an event is guaranteed only for those
subscribers that subscribed at a time at least Tsub before the event was published and
maintain their subscriptions stable for the entire time Tpub taken by the event’s dissem-
ination.

Safety properties describe facts that cannot happen during system execution, while
Liveness gives a precise definition of which subscribers must be surely notified about
an event. Obviously the longer a subscription remains stable in the system (i.e., it is
durable), the higher its probability of meeting all the events, despite Tpub. The Live-
ness property can be extended by considering the possibility for the pub/sub system to
persistently store events for a finite, non-zero amount of time, denoted as ∆. Persis-

2The discussion is here presented informally. A formalization of the pub/sub semantics can be found in
[3]

6

tence is exploited in distributed pub/sub implementations to provide reliable delivery
of events through retransmission, or to allow notification of an event also to subscribers
that subscribe after the event has been published. A revised definition of Liveness that
take into account event persistence is:

- Liveness (with persistent events): The delivery of a notification is guaranteed only for
those subscribers that subscribed at a time at most ∆−Tsub after the event is published
and maintain their subscriptions stable in the interval [Ts + Tsub, max(Ts + Tsub +
Tpub, Te + Tpub)].

where Ts and Te are the times at which the subscription and the event were issued
respectively.

3 Quality of Service in Publish/Subscribe Systems
Given the above definitions we can easily see that when considering end-to-end QoS
characteristics in a pub/sub system one cannot set aside the effect of decoupling be-
tween senders and receivers, which is the main peculiar feature of the pub/sub paradigm.
The lack of a direct producer/consumer relationship makes the definition and enforce-
ment of any end-to-end QoS policy very hard. Decoupling can introduce in several
senses a non-deterministic behavior, meaning that the exact behavior of the system is
difficult to specify, enforce and control. We give examples of how non-determinism
can act over three fundamental aspects of QoS and security, namely reliable message
delivery, timely delivery and trust relationship.

3.1 Reliable delivery
Reliable delivery of an event means determining the subscribers that have to receive a
published event, as stated by the liveness property introduced in the previous section,
and delivering the event to all of them. Event processing in the publish/subscribe infras-
tructure results in the event itself traveling several network hops, where each routing
hop is potentially a source of non-determinism due to transmissions over asynchronous
WAN channels or temporary node overloading. This can lead the value of Tpub to
grow indefinitely, leading, from our definition of liveness, to a reduced probability of
delivery of the notification to all the intended subscribers (notification loss [2]).

Persistence of events, durability of subscriptions and event retransmission can help
to reduce the non-deterministic behavior, providing higher reliability in delivery. In
general, the more an even remains in the system, the less non-determinism is experi-
enced, at the price of a higher memory occupation. For example, the effect of runs
between publications and subscriptions is limited and also the sensitivity to small de-
lays in both subscription and publication dissemination. Reduction of non-determinism
increases the probability that an intended receiver will get the information. If the in-
formation is stored in a permanently persistent way (i.e. with infinite memory) or it
is infinitely retransmitted, non-determinism is completely absent and this probability
raises to one.

7

3.2 Timeliness
Real-time applications often require strict control over the time elapsed by a piece of
information to reach all its consumers. They are typically deployed over dedicated
infrastructures or simply managed environments where synchronous message delivery
can be safely assumed. Even in a completely managed environment, a pub/sub infras-
tructure which decouples publishers and subscribers, can introduce non-determinism
through routing anomalies and unpredictable processing delays at each node. In over-
all, where timeliness constraints must be enforced, the design of the pub/sub system
should privilege point-to-point communications where decoupling is limited or totally
absent. The drawback of this choice lies in the main benefit introduced by the decou-
pling, that is the higher scalability obtainable by delegating the infrastructure, rather
than the publishers, to know all the subscribers and determine the recipients for each
event. Designing a QoS-driven pub/sub system which at the same time can scale to
massive sizes is one major challenge in this area, particularly important for future im-
plementations of the DDS specification (see Section 5).

3.3 Security and trust
Security issues represent one major problem in pub/sub systems, only marginally ad-
dressed at present by both researchers and industry. Aside from the obvious problem
of granting access to the system only to authorized participants, an important aspect
regards enforcing trust between publishers and subscribers. A subscriber wants to trust
authenticity of the events it receives from the system, i.e. they has been generated by
a trusty publisher and the information they contains have not been corrupted. On the
system side, subscribers have to be trusted for what concerns the subscriptions they
issue.

Since an event is in general delivered to several subscribers, the producer/consumer
trust relationship that commonly occur in a point-to-point communication, in pub/sub
system must involve multiple participants. Moreover, the fact that message traverses
several infrastructure nodes during routing forces both publishers and subscribers to
rely such intermediary nodes not to corrupt events, subscriptions or some of the partic-
ipants’ identities.

Designing trust measures implies knowing with certainty the identity of other par-
ticipants and this is in clear contrasts with the anonymity which is at the base of pub/sub
itself. Under the assumption of trust the decoupling can be preserved by using a solu-
tion like the one presented in [13], where trust between a publisher and each subscriber
is enforced through a chain of trust relationships involving all the nodes in the infras-
tructure that are met on the event path. In other words, when forwarding a message
(either an event or a subscription), an infrastructure node is also responsible for letting
the trust relationship flow with the message.

In the most general case where one cannot assume the whole infrastructure to
be trustworthy, the possibility of an event traveling potentially malicious networks or
nodes should be taken into account. In [17] a solution to this scenario is proposed. The
idea is to organize groups of trust in scopes, i.e. logical domains within the pub/sub in-
frastructure. The organization in scopes limits the visibility of publishers, subscribers,

8

events and subscriptions within a single scope in order to allow each scope to be inde-
pendent under the points of view of management, routing algorithm and so on. Since
a scope isolates its participants from outside traffic it allows to relax the assumption
of a fully trusted infrastructure to each single scope. [17] describes a method to add
a new trusted node to an existing trusted scope, so that the assumption of completely
trusted scope is preserved. If the node to be added can be reached only through one or
more untrusted nodes the request is tunneled so that only encrypted information transits
through the non-trusted part of the network.

4 Java Message Service
Java Message Service [21] is a standard promoted by Sun Microsystems to define a
Java API, including a common set of interfaces and semantics, for the implementa-
tion of message-oriented middleware. It is part of the Java Enterprise Edition (J2EE)
architecture since version 1.3. The compliance to the specification allows implementa-
tions from various vendors to be perfectly interoperable. In this way JMS guarantees a
portable way for Java applications to exchange messages through products of different
vendors.

Besides a message-centric publish-subscribe communication model, the JMS API
also supports a point-to-point mode. With point-to-point, each application produces
messages that are explicitly targeted toward a single receiver. A JMS implementation
then represents a general-purpose message oriented middleware (MOM) that acts as an
intermediary between heterogeneous applications, allowing to choose the communica-
tion mode that better suits the specific application needs.

JMS is specifically targeted at distributed enterprise systems, frequently present-
ing problems such as integration among heterogeneous components, management of
complex workflows, dissemination of large-size data on a large scale and reliable data
delivery. Those issues can be easily faced by means of a loosely coupled, flexible and
standard communication mechanism such as a JMS MOM, that can effectively help in
reducing development costs and time.

4.1 JMS Conceptual Model
The JMS conceptual model marks a clear separation between the point-to-point and the
publish-subscribe models; nevertheless, in both cases, only non strongly typed mes-
sages are considered. Each message is characterized by a header (which includes mes-
sage type, priority, etc.), by a set of extension of header metadata used to support, for
example, compatibility with specific implementations and provider-specific properties,
and a body which includes the application specific data core of the message. In the
following we provide a characterization of entities that constitute the JMS conceptual
model.

Topics. the JMS publish-subscribe API is based on topics. Publishers and Sub-
scribers are anonymous and can dynamically publish and subscribe to various topics
(see Figure 2). Applications can define reliability and QoS requirements for each topic.

9

Figure 2: JMS Topic Model.

Publishers and Subscribers. Publishers and Subscribers are the classes used for im-
plementing producers and consumers for a topic. Multiple receivers can subscribe to
the same topic and receive the same message. Topics, contrarily to queues, retain mes-
sages only as long as it takes to distribute them to current subscribers. The interaction is
one-to-many and it has a timing dependency between senders and receivers: consumers
receive only messages sent after their subscription and they must continue to be active
in order to consume new messages (see Section 2.3). That is, events are not persistent.
Non-determinism can be reduced by means of a durable subscription. Durable sub-
scriptions provide the reliability of queues but nevertheless maintain the one-to-many
interaction model. This aspect will be further analyzed in following section.

Subscriptions. In the JMS API subscriptions are topic-based. Applications requir-
ing higher expressiveness can exploit a form of filtered-topic model, as defined in the
Message Selector API, where filters can be applied directly on receiver-side to received
messages. A message selector is an expression whose syntax is based on SQL92. It
is evaluated when an attempt is made to receive a message, and messages that do not
match the selection criteria are discarded. Message selectors only work on header fields
and properties: body and content of the message cannot be used for selection. Con-
trarily to a pure content-based model, message filtering in JMS is executed only on
receiver-side.

Point-to-point (Queues). The point-to-point model of JMS exploit queues, where
messages are stored until they are consumed or expire. Senders and receivers have to
bind to a queue to use it and once they subscribe they can start sending and retrieving
messages (see Figure 3).

Messages are explicitly addressed to a queue, and analogously receivers extract
messages directly from a queue. There is no timing dependency between the execu-
tion of send and receive operations: the receiver can retrieve a message even if it was
not running when the sender sent it. Finally the consumer of a message can send an

10

Figure 3: JMS Queue Model.

acknowledgment as a result of the delivery of the message to queue.

Discovery Another feature of JMS API is the ability to dynamically discover infor-
mation related to topics: clients can explore topics and queues through a search on a
centrally managed JNDI namespace.

4.2 JMS Programming model

Figure 4: JMS Topic Model.

A JMS application is composed from the following elements (Figure 4):

Administrated Objects. These are pre-configured objects that are created by admin-
istrators. They are of two types: ConnectionFactory and Destination.
JMS clients access these objects through interfaces that have been standardized
in the JMS specification, while the actual underlying technology strictly depends
on the implementation. ConnectionFactory objects are used by clients to

11

connect with a provider3. Each of these objects encapsulates a set of connection
configuration parameters defined by an administrator. Destination objects
are used by a sender to specify the target of a message it produces and by a
receiver to specify the source of messages it consumes. In the point-to-point do-
main, Destination objects represent queues, while in the publish/subscribe
domain they are called topics. Administrative and proprietary tools allow to cre-
ate and to bind these two objects into a JNDI namespace. A JMS client can
use JNDI to look up ConnectionFactory and Destination objects and
establish a logical connection through the JMS provider.

Connections. Represent virtual connections to JMS providers. A connection is used
to create sessions.

Sessions. Each Session object represents a single-threaded context for message pro-
ducers, message consumers and messages. A session provides a transactional
context where a set of sends and receives can be grouped in an atomic unit of
work.

Message Producers and Consumers. Objects used for sending/receiving messages
to/from destinations. Message production is asynchronous but JMS interface
supplies two modality for message delivery: synchronous and asynchronous.
Synchronous messages are delivered by calling the receive method. This
method blocks the application until a message arrives or a timeout occurs. Asyn-
chronous messages are consumed by creating a message listener. Its
onMessage method is executed by the JMS provider when a message arrives
at its destination.

4.3 Quality of Service
The only Quality of Service policy defined in the JMS specification is related to relia-
bility. An application can require every message to be received once and only once or
it rather can choose a more permissive (and generally more efficient) policy, allowing
dropped and duplicated messages. JMS API specification provides various degree of
reliability through various basic and advanced mechanisms.

4.3.1 Basic Reliability Mechanisms

The most interesting basic mechanisms are:

Specifying message persistence : a JMS application can specify that messages are
persistent, thus ensuring that a message will not be lost in the event of a provider
failure. Two delivery modes are defined in the JMS specification: persistent
require JMS providers to log messages in a stable storage, while non persistent
delivery mode does not require it.

3JMS provider is a proprietary part of JMS application, which realizes the messaging system and provides
administrative and control features.

12

Setting message priority levels : applications can set a message priority level; in this
case the JMS provider will deliver urgent messages first. The JMS API provides
methods to set priority levels for all messages sent by a producer, through the
setPrioritymethod of the MessageProducer interface, or to set priority
level for specific messages, through send or publish methods of same interface.

Allowing messages to expire : in order to prevent duplicated messages an application
can set an expiration time for a message. As in the previous case JMS API pro-
vides methods that allow to set a time to live counter for all messages produced
from a publisher, or just a single one.

4.3.2 Advanced Reliability Mechanisms

The most advanced mechanism to provide reliable message delivery in the JMS speci-
fication is the creation of durable subscriptions. A durable topic subscription allows a
subscriber to receive messages sent while it is not active. A durable subscription imple-
ments the reliability of queues in the publish/subscribe model. A durable subscription
can have only one active subscriber at a time. When a durable subscriber registers a
durable subscription, it specifies a unique identity by setting an ID for the connection
and a topic and subscription name for the subscriber. Other subscriber objects that
have the same identity resume the subscription in the state in which it was left by the
preceding subscriber. The subscriber can be closed and reloaded, but the subscrip-
tion continues to exist until the subscriber invokes the unsubscribe method. When the
subscriber is reactivated the JMS provider sends it the stored messages.

Other features common in MOM products, like load balancing, resource usage con-
trol, and timeliness of messages, are not explicitly addressed in the JMS specification.
Although recognized in the specification as fundamental for the development of robust
messaging applications, they are considered provider-specific.

5 Data Distribution Service
The pub/sub paradigm is a natural match, and often a fundamental architectural build-
ing block, for a large class of real-time, mission, and safety critical application do-
mains, such as industrial process control, air traffic control, defense systems, etc. These
application domains are characterized by real-time information which flows from sen-
sors to controllers and from controllers to actuators. The timeliness of data distribution
is essential for maintaining the correctness and the safety of these systems, i.e., failing
in timely delivering data could lead to instability which might result in threats to either
infrastructures of human lives.

Historically, most of the pub/sub middleware standards such as the CosEvent [23],
the CosNotification [24], and JMS [21], etc., as well as most proprietary solutions,
have lacked the support needed by real-time, mission, and safety critical systems. The
main limitations are typically due to the limited or non-existent support for Quality of
Service (QoS), and the lack of architectural properties which promote dependability
and survivability, e.g., lack of single point of failure.

13

Recently, in order to fill this gap, the OMG has standardized the DDS [19]. This
standard gathers the experience of proprietary real-time pub/sub middleware solutions
which had been independently engineered and evolved in niches, within the industrial
process control, and in the defense systems applications domain. The resulting stan-
dard, which will be described in detail in the reminder of this Section, is based on a
completely decentralized architecture, and provides an extremely rich set of config-
urable QoS.

Before proceeding with a detailed explanation of the DDS, it is worth mentioning
that the standard defines two level of interfaces. At a lower level, it defines a Data
Centric Publish Subscribe (DCPS) whose goal is to provide an efficient, scalable, pre-
dictable, and resource aware data distribution mechanism. Then, on top of the DCPS,
it defines the Data Local Reconstruction Layer (DLRL), an optional interface which
automates the reconstruction of data, locally, from updates received, and allows the
application to access data as if it was local.

5.1 DDS Conceptual Model
The DDS conceptual model is based on the abstraction of a strongly typed Global
Data Space (GDS) (see Figure 5), where publisher and subscriber respectively write
(produce) and read (consume) data. In the reminder of this Section we will provide a
precise characterization of the entities that constitute this global data space.

P1

P2

Pn

S1

S2

Sm

S3Ta

Tb

Tc

P: Publisher – S: Subscriber – T: Topic

Figure 5: DDS Global Data Space.

Topic. A topic defines a type that can be legally written on the GDS. In the present
standard, topics are restricted to be nonrecursive types defined by means of OMG In-
terface Definition Language (IDL). The DDS provides the ability to distinguish topics
of the same type by relying on the use of a simple key. Finally, topics can be associated
with specific QoS. From an applicative perspective, topics are the mean used by de-
signer to define the application information model. The model supported by the DDS
is not as powerful as that found in contemporary relational Data Base (DB)s, however
it provides the ability to perform simple topic aggregation, as well as content based

14

filtering.

Data Object

Identified by

means of a Topic

Subscriber

DataReader

data values

Subscriber

DataReader

data values

Publisher

DataWriter

data values
dissemination

Identified by

means of a Topic

Figure 6: DDS ConceptualModel.

Publisher. Topics allow the definition of the application data model, as well as the
association of QoS properties with it. On the other hand, publishers provide a mean
of defining data sources. A publisher, can declare the intent of generating data with an
associated QoS, and to write the data in the GDS. The publisher declared QoS has to
be compatible with that defined by the topic. More specifically, as depicted in Figure 6,
the DDS relies on a topic specific DataWriter which serves as a typed writer to the
GDS. On the other hand, the Publisher encapsulate the responsibility associated
with the dissemination of data in agreement with the required QoS.

Subscriber. Subscribers read topics in the global data space for which a matching
subscription exist (the rules that define what represents a matching subscription are
described below). The DDS relies on a topic specific DataReader which serves as
a typed reader into the GDS. On the other hand, the Subscriber encapsulates the
responsibility associated with the reception of data in agreement with the required QoS.

Subscription. A subscription is the logical operation which glues together a sub-
scriber to its matching publishers. In the DDS a matching subscription has to satisfy
two different kind of conditions. One set of conditions relate to concrete features of
the topic, such as its type, its name, its key, its actual content. The other set of con-
ditions relate to the QoS. More specifically, the DDS provides a subscription scheme

15

which is more general than the typical topic-based model described in Section 2.2 as
it also allows for content based subscription – a subset of Structured Query Language
(SQL) is used for specifying subscription filters. Regarding the QoS, the matching fol-
lows an requested/offered model in which the requested QoS has to be the same, or
weaker, then the offered. As an example, a matching subscription for a topic which is
distributed reliably, can be requesting the topic to be distributed either reliably or as
best effort.

Discovery. Another key feature at the foundation of DDS is that all information
needed to establish a subscription is discovered automatically, and, in a completely
distributed manner. The DDS discovery service, finds-out and communicates the prop-
erties of the GDS’s participants, by relying on special topics and on the data dissemi-
nation capability provided by the DDS.

Finally, for sake of completeness, it is worth pointing out that the DDS supports
the concept of domains. A domain allows to administratively separate and confine the
distribution of different data flows. A DDS entity can belong to different domains,
however data cannot flow across domains.

5.2 DDS Programming Model
Now that we have seen what are the core concepts at the foundation of DDS, we are
ready to move to its programming model. Figure 7, contains an Unified Modeling
Language (UML) diagram which represents the core DDS Application Programming
Interface (API) in terms of its key classes and their relationships.

From Figure 7 it is worth noticing how the DDS API is mostly based on a rooted
hierarchy at the base of which we find the Entity class. This class, by means of the
association with the QoSPolicy class, defines the basic mechanisms for associating
QoS with DDS entities. At the same time, with the association with the Listener
and the StatusCondition classes define the two interaction model supported by
the DDS API – the reactive and selective interaction model. The reactive model is
supported by the Listener class. Instances of this class can be registered with any
kind of DDS entity to receive callbacks on specific events, such as data being avail-
able for being read, etc. On the other hand, the selective model is supported by the
StatusCondition class. Instances of this class can be used in a way similar to the
UNIX select system call to poll or wait on specific conditions.

The DomainParticipant represents the local membership to a specific do-
main. Only publisher and subscribers belonging to the same domain can communicate.
The DomainEntity exists essentially to enforce the fact that DomainParticipant
cannot be nested. Finally, the diagram shows the classes defined by the DDS stan-
dard in order to write and read data from the GDS, i.e., Publisher, Subscriber,
DataWriter, etc.

16

QoSPolicy Entity-qos

* *

-listener

0..1

WaitSet Condition

StatusCondition

* *

*

-status_condition

*

DomainEntity DomainParticipant1*

Publisher

DataWriter

Topic

Data

Subscriber

DataReader

1

*

1

*

*

1

*
*

<interface>

Listener

<interface>

TypeSupport

Figure 7: DDS Programming Model.

17

5.3 Quality of Service
One of the key distinguishing features of the DDS when compared to other pub/sub
middleware is its extremely rich QoS support. By relying on a rich set of QoS policies,
the DDS gives the ability to control and limit (1) the use of resources, such as, network
bandwidth, and memory, and (2) many non functional properties of the topics, such as,
persistence, reliability, timeliness, etc. In the reminder of this Section we will provide
an overview of the most interesting QoS defined by the DDS classifying them with
respect to the aspect they allow to control.

Resources

The DDS defines a specific QoS policy to control the resources which can be used to
meet requested QoS on data dissemination. Below are reported the most relevant QoS
policies which allow to control computing and network resources.

• The RESOURCE_LIMITS policy allows to control the amount of message buffer-
ing performed by a DDS implementation.

• The TIME_BASED_FILTER allows applications to specify the minimum inter-
arrival time between data samples. Samples which are produced at a faster pace
are not delivered. This policy allows to control both network bandwidth as well
as memory and processing power for those subscribers which are connected over
limited bandwidth networks and which might also have limited computing capa-
bilities.

The DDS provides other means to control the resources consumed, however, these will
be presented below as they also have an impact on application visible properties of
data.

Data Timeliness

The DDS provides a set of QoS policies which allow to control the timeliness properties
of distributed data. Specifically, the supported QoS are described below.

• The DEADLINE QoS policy allows application to define the maximum inter-
arrival time for data. Missed deadline can be notified by Listeners (see Fig-
ure 7).

• The LATENCY_BUDGET QoS policy provides a means for the application to
communicate to the middleware the level of urgency associated with a data com-
munication. Specifically, the latency budget specifies the maximum amount of
time that should elapse from the instant in which the data is written to the instant
in which the data is placed in the queue of the associated readers.

18

Data Availability

The DDS provides the following QoS policies which allow to control the data avail-
ability.

• The DURABILITY QoS policy provides control over the lifetime of the data
written on the GDS. At one extreme it allows the data be configured to be
volatile, at the other it allows to have data persistency. It is worth noticing that
transient and persistent data enables time decoupling between the writer and the
reader by making the data available for late joining reader, in the case of transient
data, or even after the writer has left the GDS, for persistent data.

• The LIFESPAN QoS policy allows to control the interval of time for which a
data sample will be valid. The default value is infinite.

• The HISTORY QoS policy provides a mean to control the number of data sam-
ples, i.e., subsequent write of the same topic, have to be kept available for the
readers. Possible values are the last, the last n samples, or all the samples.

Data Delivery

The DDS provides several QoS which allow to control how data is delivered and who
is allowed to write a specific topic. More specifically the following QoS policies are
defined.

• The RELIABILITY QoS policy allows application to control the level of re-
liability associated with data diffusion. The possible choices are reliable and
best-effort distribution.

• The DESTINATION_ORDER QoS policy allows to control the order of changes
made by publishers to some instance of a given topic. Specifically the DDS
allows different changes to be ordered according to the source or the destination
time-stamp.

• The OWNERSHIP QoS policy allows to control the number of writers permitted
for a given topic. If configured as exclusive, then it indicates that a topic instance
can be owned and thus written by a single writer. The ownership of a topic is
controlled by means of another QoS policy, the OWNERSHIP_STRENGTH. This
additional policy makes it possible to associate a numerical strength to writers,
so that the owner of a topic is defined to be the one available with the highest
strength. If the OWNERSHIP QoS policy is configured as shared then multiple
writer can concurrently update a topic. The concurrent changes will be ordered
according to the DESTINATION_ORDER policy.

In addition to the QoS policies defined above, the DDS provides some mean of
defining and distributing bootstrapping information by means of the USER_DATA,
TOPIC_DATA and GROUP_DATA. These policies apply at different level, as it can
be guessed by the name, and are distributed by means of built-in topics.

19

References
[1] S. Baehni, P. Th. Eugster, and R. Guerraoui. Data-aware multicast. In Proceed-

ings of the 2004 International Conference on Dependable Systems and Networks
(DSN 2004), pages 233–242, 2004.

[2] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. Virgillito. Measuring noti-
fication loss in publish/subscribe communication systems. In Proceedings of the
10th International Symposium Pacific Rim Dependable Computing (PRDC ’05),
2004.

[3] R. Baldoni, R. Beraldi, S. Tucci Piergiovanni, and A. Virgillito. On the modelling
of publish/subscribe communication systems. Concurrency and Computation:
Practice and Experience, 17(12):1471–1495, 2005.

[4] S. Bittner and A. Hinze. On the benefits of non-canonical filtering in pub-
lish/subscribe systems. In Proceedings of the International Workshop on Dis-
tributed Event-Based Systems (ICDCS/DEBS’05), 2005.

[5] A. Campailla, S. Chaki, E. M. Clarke, S. Jha, and H. Veith. Efficient filtering in
publish-subscribe systems using binary decision diagrams. In Proceedings of The
International Conference on Software Engineering, pages 443–452, 2001.

[6] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving Scalability and Ex-
pressiveness in an Internet-Scale Event Notification Service. In Proceedings of
the ACM Symposium on Principles of Distributed Computing, pages 219–227,
2000.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-
Area Notification Service. ACM Transactions on Computer Systems, 3(19):332–
383, Aug 2001.

[8] M. Castro, P. Druschel, A. Kermarrec, and A. Rowston. Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications, 20(8), October 2002.

[9] R. Chand and P. Felber. Xnet: A reliable content-based publish/subscribe system.
In 23rd International Symposium on Reliable Distributed Systems (SRDS 2004),
pages 264–273, 2004.

[10] R. Chand and P. Felber. Semantic peer-to-peer overlays for publish/subscribe
networks. In Parallel Processing, 11th International Euro-Par Conference (Euro-
par 2005), pages 1194–1204, 2005.

[11] M. Cilia. An Active Functionality Service for Open Distributed Heterogeneous
Environments. PhD thesis, Department of Computer Science, Darmstadt Univer-
sity of Technology, August 2002.

[12] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure
to develop complex distributed systems. In Proceedings of the 10th International
Conference on Software Engineering (ICSE ’98), April 1998.

20

[13] I. Dionysiou, D. Frincke, D. E. Bakken, and C. Hauser. Actor-oriented trust.
Technical Report EECS-GS-006, School of Electrical Engineering and Computer
SCience, Washington State University, Pullman, WA, USA, 2005.

[14] P.Th. Eugster, P. Felber, R. Guerraoui, and S.B. Handurukande. Event Systems:
How to Have Your Cake and Eat It Too. In Proceedings of the International
Workshop on Distributed Event-Based Systems (DEBS’02), 2002.

[15] P.Th. Eugster, R. Guerraoui, and Ch.H. Damm. On Objects and Events. In
Proceedings of the Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA), 2001.

[16] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast publish/subscribe. In Proceedings of
the 20th Intl. Conference on Management of Data (SIGMOD 2001), pages 115–
126, 2001.

[17] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and G. Muhl. Security aspects
in publish/subscribe systems. In Proceedings of the 3rd International Workshop
on Distributed Event-Based Systems, 2004.

[18] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and Andreas Zeidler. Supporting
mobility in content-based publish/subscribe middleware. In ACM/IFIP/USENIX
International Middleware Conference (Middleware 2003), pages 103–122, 2003.

[19] Object Management Group. Data distribution service for real-time systems spec-
ification, 2002.

[20] Gryphon Web Site. http://www.research.ibm.com/gryphon/.

[21] Sun Microsystems Inc. Java message service api rev 1.1, 2002.

[22] G. Muhl. Generic Constraints for Content-Based Publish/Subscribe. In Pro-
ceedings of the 6th International Conference on Cooperative Information Systems
(CoopIS), 2001.

[23] Object Management Group. CORBA event service specification, version 1.1.
OMG Document formal/2000-03-01, 2001.

[24] Object Management Group. CORBA notification service specification, version
1.0.1. OMG Document formal/2002-08-04, 2002.

[25] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The information bus - an architec-
ture for extensive distributed systems. In Proceedings of the 1993 ACM Sympo-
sium on Operating Systems Principles, December 1993.

[26] P. Pietzuch and J. Bacon. Hermes: a distributed event-based middleware architec-
ture. In Proceedings of the International Workshop on Distributed Event-Based
Systems (DEBS’02), 2003.

21

[27] R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. Fabret, K. Ross, and D. Shasha. Pub-
lish/subscribe on the web at extreme speed. In Proc. of ACM SIGMOD Conf. on
Management of Data, Cairo, Egypt, 2000.

[28] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based
Routing with Elvin4. In Proceedings of AUUG2K, Canberra, Australia, June
2000.

[29] SIENA Web Site. http://www.cs.colorado.edu/users/carzanig/siena/.

[30] T. Sivaharan, G. Blair, and G. Coulson. GREEN: A Configurable and Re-
configurable Publish-Subscribe Middleware for Pervasive Computing. In Pro-
ceedings of DOA 2005, 2005.

[31] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. Katz, and J. Kubiatowicz. Bayeux:
An architecture for scalable and fault-tolerant wide-area data dissemination. In
11th Int. Workshop on Network and Operating Systems Support for Digital Audio
and Video, 2001.

22

