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Simple Naval CMS



Important Customer 
requirements

• Adaptable to new threats.

• Adaptable to new tasks.

• Affordable.

• Advanced functions.

• Best of breed.



Architectural goals

• Open Architecture / Open Standards
”Standards that are widely used, consensus based, published and maintained by recognized industry 
standards organizations” (The Open Systems Joint Force, US DoD).

• Service oriented

• Support modular system design with low coupling

• High degree of runtime configuration

• Rapid integration.

• Reuse across platforms and domains.

• Leverage civil investments.

• Easy to upgrade (functionality and performance)
• Rapid capability insertion

• Rapid technology insertion.

• Facilitate cooperation and competition (open market).



Mk4 approach to OA

• Comply with defined standards

• Apply modular design and low coupling.

• Apply design patterns to isolate areas where standards are missing
• Use existing SW (Mk3e or COTS) in these areas

• Await standards

• Define and publish key interfaces using open standards and a formal 
semantic/syntactic model.
– To ensure openness / flexibility.

– To enable use of MDD.

– To enable runtime configuration / consistency check.

• Apply design patterns with plug-able translators (data brokers) between data models

• Used well established concepts (e.g. j-messages) as a basis for information models



Interface management

• Key interfaces should be identified. 

• Put under control early in the system life cycle. 

• Characteristic of key interfaces: 

– Common boundaries between system modules. 

– Provide access to critical data, information, services.

• Key interfaces are defined syntactic and 
semantically (information model) using standardized 
formal language (e.g OWL). 



Modular design principles 

Fully Mk4
Compliant 
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Status
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Data
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• Self containment

• Cohesiveness

• Encapsulation

• High binding 



Typical Modules
• Sensor (e.g. radar, sonar) (control).

• Director

• Missile (e.g. SSM, SAM) control.

• Platform sensor control

• Gun control.

• C3 functions

• Data link processor (I/f)

• DFE (Data Fusion Engine).

• ADC (Air Defense coordination).

• MTD (Main Tactical Display).

• JMTB (Java MMI Tool Box).

• General Services.

• Etc.



9LV Modular System Structure

• Flexibility in configuration

• Low project risk

• Enables incremental system growth



Basic System 
building blocks

• COE Common 
operating 
Environment.

• Enterprise Bus.

• Functional 
Modules.
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Common operating environment

• An virtual execution environment for applications. 

• Defined by open standards (IEEE, IETF, ANSI).

• Stable over time.

• Enables:

– Reuse / portability of modules.

– Heterogeneous systems.

– Rapid technology insertion.

– Enhance life-cycle supportability.

– Mitigate the risks associated with technology obsolescence.

– Mitigate the risk of a single source of supply over the life of a system.



Enterprise bus
• Provides the information highway that 

interconnects the modules in the system.

• Built on Publish-Subscribe (OMG DDS).

• All interfaces are defined in standardized formal 
languages.

• All interface definitions are available online in the 
system.

• Four distinct classes of interface are supported:
– Business data (publish-subscribe).

– Control (request-response).

– Status / State (publish-subscribe).

– Interface specifications (request-response).

• Enables NCW and rapid capability insertion 
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Enabling easy integration



Design guidelines 

• Use DDS features as much as possible 

• Use Content Based Addressing when possible (for group addressing) 

• Use DDS Instances to differentiate between object of same class

• Limit number of topics

• Design messages with placeholders for extensions

• Specialize / extend messages though XML part

• Use partitions to isolate subsystems internals

• Use domains to create virtual systems e.g. for mixed mode simulation



Design guidelines cont.

• No special provisions for HMI

• Avoid complex protocols on top of DDS

• Use stateless interfaces whenever possible

• Design for general case and specialize 

• Model request-response on to of DDS

• Start with model and include requirements 

• Generate artifacts from model



Model driven development

A single high level information model is used to generate

• Interface specifications

• Interface code

• XML descriptions of services

• UML models

• IDL

• Test code



Experiences

Pros
• Good set of features

• Facilitates low coupling

• Facilitates interface specifications

• Facilitates integration

Cons
• IDL has limited expressional power for interface contract

• Poor IDL support for versioning and backward compatible extensions

• Null values not supported

• Transition from message to data centric thinking is sometimes hard
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