
Saab Systems

9LV Mk4
Use of DDS for system integration

June, 2007
Thomas Jungefeldt



Saab’s capabilities

Support 
Solutions

Aviation

Simulation and
Training

Command and
Control

Sensor Systems

Signature
Management

Communication

Space
Unmanned
Systems

Electronic
Warfare

Weapon
Systems



9LV Ship projects (Mk3e & Mk4)

OHJV 
Rauma
Finland

HMAS 
ANZAC
Australia

HMNZS 
Te Kaha
New Zeeland

RNO 
Al Bushra
Oman

Hamina
Finland

Ban Yas
Class
UAE

HMS 
Flyvefisken
Denmark

HMS Skjold
Norway

HMS 
Niels Juel
Denmark

HMS 
Göteborg
Sweden

PNS Tariq
Pakistan

HMS 
Stockholm
Sweden

Visby Class
Sweden

HMS 
Gotland
Sweden

HMS 
Absalom
Denmark



Simple Naval CMS



Important Customer 
requirements

• Adaptable to new threats.

• Adaptable to new tasks.

• Affordable.

• Advanced functions.

• Best of breed.



Architectural goals

• Open Architecture / Open Standards
”Standards that are widely used, consensus based, published and maintained by recognized industry 
standards organizations” (The Open Systems Joint Force, US DoD).

• Service oriented

• Support modular system design with low coupling

• High degree of runtime configuration

• Rapid integration.

• Reuse across platforms and domains.

• Leverage civil investments.

• Easy to upgrade (functionality and performance)
• Rapid capability insertion

• Rapid technology insertion.

• Facilitate cooperation and competition (open market).



Mk4 approach to OA

• Comply with defined standards

• Apply modular design and low coupling.

• Apply design patterns to isolate areas where standards are missing
• Use existing SW (Mk3e or COTS) in these areas

• Await standards

• Define and publish key interfaces using open standards and a formal 
semantic/syntactic model.
– To ensure openness / flexibility.

– To enable use of MDD.

– To enable runtime configuration / consistency check.

• Apply design patterns with plug-able translators (data brokers) between data models

• Used well established concepts (e.g. j-messages) as a basis for information models



Interface management

• Key interfaces should be identified. 

• Put under control early in the system life cycle. 

• Characteristic of key interfaces: 

– Common boundaries between system modules. 

– Provide access to critical data, information, services.

• Key interfaces are defined syntactic and 
semantically (information model) using standardized 
formal language (e.g OWL). 



Modular design principles 

Fully Mk4
Compliant 

Module

Status
P-S

I/F Spec
R-R

Ctrl
R-R

Data
P-S

• Self containment

• Cohesiveness

• Encapsulation

• High binding 



Typical Modules
• Sensor (e.g. radar, sonar) (control).

• Director

• Missile (e.g. SSM, SAM) control.

• Platform sensor control

• Gun control.

• C3 functions

• Data link processor (I/f)

• DFE (Data Fusion Engine).

• ADC (Air Defense coordination).

• MTD (Main Tactical Display).

• JMTB (Java MMI Tool Box).

• General Services.

• Etc.



9LV Modular System Structure

• Flexibility in configuration

• Low project risk

• Enables incremental system growth



Basic System 
building blocks

• COE Common 
operating 
Environment.

• Enterprise Bus.

• Functional 
Modules.

Functional
Module

HW+OS
Middleware

Programming
Language

Enterprise 
bus

COE

Functional
Module

HW+OS
Middleware

Programming
Language

COE



Common operating environment

• An virtual execution environment for applications. 

• Defined by open standards (IEEE, IETF, ANSI).

• Stable over time.

• Enables:

– Reuse / portability of modules.

– Heterogeneous systems.

– Rapid technology insertion.

– Enhance life-cycle supportability.

– Mitigate the risks associated with technology obsolescence.

– Mitigate the risk of a single source of supply over the life of a system.



Enterprise bus
• Provides the information highway that 

interconnects the modules in the system.

• Built on Publish-Subscribe (OMG DDS).

• All interfaces are defined in standardized formal 
languages.

• All interface definitions are available online in the 
system.

• Four distinct classes of interface are supported:
– Business data (publish-subscribe).

– Control (request-response).

– Status / State (publish-subscribe).

– Interface specifications (request-response).

• Enables NCW and rapid capability insertion 



•A

•P

•P

•L

•I

•C

•A

•T

•I

•O

•N

IP Network

A
d
a
p
t
o
r

A
p
p
l
i
c
a
t
i
o
n

COE

A
d
a
p
t
o
r

Enterprise BUS (Middleware)

M
F
C

COE COE COE

G
e
n
e
r
a
l

S
e
r
v
i
c
e
s

W
e
b
s
e
r
v
i
c
e
s

Enabling easy integration



Design guidelines 

• Use DDS features as much as possible 

• Use Content Based Addressing when possible (for group addressing) 

• Use DDS Instances to differentiate between object of same class

• Limit number of topics

• Design messages with placeholders for extensions

• Specialize / extend messages though XML part

• Use partitions to isolate subsystems internals

• Use domains to create virtual systems e.g. for mixed mode simulation



Design guidelines cont.

• No special provisions for HMI

• Avoid complex protocols on top of DDS

• Use stateless interfaces whenever possible

• Design for general case and specialize 

• Model request-response on to of DDS

• Start with model and include requirements 

• Generate artifacts from model



Model driven development

A single high level information model is used to generate

• Interface specifications

• Interface code

• XML descriptions of services

• UML models

• IDL

• Test code



Experiences

Pros
• Good set of features

• Facilitates low coupling

• Facilitates interface specifications

• Facilitates integration

Cons
• IDL has limited expressional power for interface contract

• Poor IDL support for versioning and backward compatible extensions

• Null values not supported

• Transition from message to data centric thinking is sometimes hard



?


