
Common Terminology Services CTS2
Core Model Elements

0.96

Mayo Clinic

May 15, 2012

Contents

1 Introduction 2
Conventions . 2

Notation . 2
Identifiers . 2
Stereotypes . 2
Read Only Attributes . 3

2 Core Information Model Elements 4
Data Types . 4

Axiomatic Data Types . 4
EntryDescription and OpaqueData Types . 6
Types of URI . 8

Resources, Local Identifiers and Entity References . 9
Resource References . 9
Local Identifiers . 14
Entity References . 15

Building Blocks . 19
Annotations . 19
Statement Target Model . 22

Directories and Lists . 25
Directory and List Model . 25
Directory Types . 27

Filters and Sorting . 29
Change Model . 32

Updates . 32
Iteratable Change Sets . 36

Resource Description . 38
Resource Description Model . 38
Directories of Resource Descriptions . 43

3 Core Computational Model Elements 45
Interface Specific Structures . 45

Miscellaneous Input Structures . 45
Exception Model . 48

Service Base . 49
Functional Profiles . 52

Read Service Base . 52
Query Service Base . 53
History Service Base . 56
Maintenance Service Base . 59

Non-Resource-Specific Services . 67
Import And Export Services . 67
Update Service . 80

1

Chapter 1

Introduction

The CTS2 specification is divided into a number of separably implementable profiles. This section on Core Information
Model Components describes the data types, identifiers and common structures that are shared between two or more models.

Conventions
The CTS2 specification was developed using a combination of UML and Z notation. The classes, attributes, method signatures
and relationships were modeled using UML class diagrams, while the invariants, preconditions and post-conditions are written
in Z. The specification can be published using UML notation with the invariants expressed informally or in Z notation, where
the model can be formally validated using the FUZZ type checker. This, along with additional issues that may well reflect the
authors’ lack of understanding of some of the subtleties of UML modeling have led to a number of conventions.

Notation
Model elements are referenced using Typewriter font. Implementation profiles are referenced using BOLD

Identifiers
• Class names are capitalized camel case (CodeSystemCatalog, String)

• Attribute and role names are lower camel case (version, sourceAndRole)

• Enumeration values are all capital letters with undescores (’ ’) introduced as needed for clarity. (EMPTY, STOP ON ERROR)

• Method names are lowerCamelCase

Stereotypes
The following stereotypes are used throughout the model:

• dataType - UML dataType semantics

• enumeration - UML enumeration semantics

• interface - UML interface semantics

• mixin - a class that provides a certain functionality to be inherited by a subclass, while not meant for instantiation

• opt - an optional parameter in a method call. This stereotype should always be accompanied by a 0..1 cardinality and
is provided to make optionality visible in the modeling tool

• optparam - an optional attribute in a class instance. This indicates that an implementation must be able to distinguish
three alternatives: (1) add or change the attribute to whatever is in the class, (2) remove the attribute if its minimum
cardinality is zero and (3) leave the attribute unchanged.

2

CHAPTER 1. INTRODUCTION 3

• delta - a method call that changes the state of the service. Note that the semantics of this stereotype is the inverse of
the is query model attribute.

• exception - an exception

• exceptionSet - a set of exceptions, the members of which are represented by aggregation

Read Only Attributes
The CTS2 PIM is based on a RESTful architectural style. Resources can be created, updated, read and/or deleted, and
every resource has one or more immutable characteristics - characteristics that, if changed, would change the identity of the
resource itself. In the information model we distinguish these characteristics from those that can be modified by declaring
the identifying characteristics as ReadOnly. The computational model utilizes a pattern based on this information where the
create operation(s) supply the identifying characteristics plus any of the non-optional mutable characteristics. The update
operations then supply a unique identifier and a set of one or more mutable characteristics to be changed.

Chapter 2

Core Information Model Elements

Data Types

Axiomatic Data Types

Figure 2.1: Axiomatic Data Types

This section identifies the core data types that are used throughout the remainder of the specification. The term“data type"
refers to “a type whose instances are identified only by their value" 1

Elements:
• AmountOfTime - a quantity of time. AmountOfTime is used exclusively to represent service timeout limits.

• DateAndTime - represents an “Instant" as defined in the OWL Time Specification 2. CTS2 implementations must be
able to support temporal units of second , minute , hour , day , month , and year , and be able to represent
and compare instances represented in any of these units. DateAndTime can only provide a partial ordering and, as a
consequence, is never used as an index, unique identifier or to sequence data or events.

• LocalIdentifier - an identifier that uniquely references a class, individual, property or other resource within the context
of a specific CTS2 service implementation. LocalIdentifier syntax must match the PNAME LN 3 production
as defined in the SPARQL Query Specification 4 . LocalIdentifiers may begin with leading digits, where XML
Local Identifiers and NameSpaceIdentifier s may not

• MatchStrength - represents the relative strength of the result of a search. Represented as a real number R such that
0.0 < MatchStrength ≤ 1.0.

1UML Infrastructure 2.3, p. 100
2http://www.w3.org/TR/owl-time/
3http://www.w3.org/TR/rdf-sparql-query/#rPNAME LN
4http://www.w3.org/TR/rdf-sparql-query/

4

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 5

• NamespaceIdentifier - an identifier that uniquely references the scoping namespace of an Entity (class, role or
individual) within a the context of a CTS2 service. NamespaceIdentifier syntax must match the PNAME NS 5

production as defined in the SPARQL Query Specification - meaning that it must begin alphabetic character. 6

• NaturalNumber - a non-negative integer (N). NaturalNumber is used exclusively for representing quantities in this
specification.

• String - a non-empty sequence of characters. As terminological resources are often multilingual, it is expected that most
CTS2 Platform Specific Models (PSMs) will require that the String implementation support international character
sets.

• URI - a Universal Resource Identifier (URI) as defined in IETF RFC 3986 7. CTS2 implementations are encouraged
to consider implementing this data type using the IRI (RFC3987 8) specification.

5http://www.w3.org/TR/rdf-sparql-query/#rPNAME NS
6http://www.w3.org/TR/rdf-sparql-query/
7http://www.ietf.org/rfc/rfc3986.txt
8http://www.ietf.org/rfc/rfc3987.txt

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 6

EntryDescription and OpaqueData Types

Figure 2.2: Opaque Data

Class EntryDescription
EntryDescription is a subclass of OpaqueData . The purpose behind this is that there are certain textual fields that
some CTS2 service implementations may want constrain. As an example, Designation text is of type
EntryDescription , but implementations may want to restrict the OpaqueData value attribute to a simple string
rather than xs:anyType. When OpaqueData appears directly as a model element, implementations must be able to support
the full OpaqueData model. EntryDescription , however, may be constrained by implementations or specialized
PSMs.

Superclasses:

• Every instance of EntryDescription is also an instance of OpaqueData.

Class OpaqueData
Opaque data is the equivalent of an ASN.1 External Type 9 or the XML Schema anyType 10. An OpaqueData instance
may represent text with an optional spoken or written language code or a formal structure such as embedded HTML, XML
or MIME encoded data. When a formal structure is included, its type should be specified in the format attribute and, when
the type is an XML variant, the corresponding schema (or DTD) should be included in the schema parameter.

The OpaqueData data type must be encoded in such a way that the content can be represented by a character string.
Binary data is not permitted, although hyperlinks to binary data are.

9ISO/IEC 8824-1:2008 Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notion. Clause 37 - Notation for the
external type

10http://www.w3.org/TR/xmlschema-0/#anyType

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 7

Attributes:

• format - the format or encoding for value. This is typically recorded as the URI of a Mime Type 11.

• schema - if the format of the document involves an XML encoding, this contains the URI of a document that carries
the corresponding XML Schema or DTD.

• language - a reference to the written or spoken language used in value .

• value - the instance value. Note that instance value should be encoded in such a way that it allows embedded structures.
As an example, in XML Schema, this encoding should be to xs:anyType or an equivalent.

11http://www.ietf.org/rfc/rfc2046.txt

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 8

Types of URI

Figure 2.3: Types Of URI

URI’s serve a variety of purposes, and separate labels are used to differentiate them:

Elements:
• ChangeSetURI - the unique identifier of a set of change instructions that can potentially transform the contents of
CTS2 service instance from one state to another.

• DirectoryURI - the unique name of a query that, when executed results in a list of resources that, in the context of a
given service, satisfy the query.

• DocumentURI - a reference to a “work" in the bibliographic sense. It is not necessary that a DocumentURI be directly
or indirectly resolvable to a digital resource - it may simply be the name of a book, publication or other abstraction.

• ExternalURI - a URI that names a unique resource. CTS2 implementations should never assume that ExternalURI
is resolvable via an http: GET operation - ExternalURI s should always be passed as parameters to service imple-
mentations to get the sanctioned equivalent in a given service context

• LocalURI - a URI or handle whose scope is local to the implementing service. LocalURI cannot be used as a
permanent identifier in a message or a data record.

• PersistentURI - a Universal Resource Identifier (URI) that persists across service instances. Persistent URI’s have
enduring reference and meaning.

• RenderingURI - a URI or handle that is directly readable by a specific instance of a CTS2 service implementation.
RenderingURI must resolve to Changeable CTS2 element.

• ServiceURI - the URI or handle of a service implementation.

• URI - a Universal Resource Identifier (URI) as defined in IETF RFC 3986 12. CTS2 implementations are encouraged
to consider implementing this data type using the IRI (RFC3987 13) specification.

12http://www.ietf.org/rfc/rfc3986.txt
13http://www.ietf.org/rfc/rfc3987.txt

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 9

Resources, Local Identifiers and Entity References

Resource References

Figure 2.4: Reference Types

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 10

ReferenceType contains a list of all of the element types that appear in the CTS2 specification. It includes CTS2 resources
(CODE SYSTEM , CODE SYSTEM VERSION , CONCEPT DOMAIN , MAP VERSION , VALUE SET , VALUE SET DEFINITION
), changeable elements (ASSOCIATION , ENTITY , and STATEMENT) and external concept domains that are used in the
model.

Enum ReferenceType
Attributes:

• ASSOCIATION - an formal "semantic" assertion about a named entity, in the form of subject, predicated and object
including any provenance, qualifiers or internal BNODEs

• BINDING QUALIFIER - an assertion about the semantics of a concept domain / value set binding. This model
element exists specifically to address section 2.4.2.23 of the HL7 SFM 14, which needs a qualifier that "indicates
whether the binding is "overall", "minimal" or "maximum.

The CTS2 specification does not formally define the semantics of the various possible BINDING QUALIFIER ele-
ments - it is up to specific implementations and service clients to interpret the meaning of the specific binding qualifiers
that may be represented in references of this type.

• CASE SIGNIFICANCE - identifies the significance of case in a term or designation

• CODE SYSTEM CATEGORY - the general category of a code system (flat list, subject heading system, taxonomy,
thesaurus, classification, terminology, description logic ontology, first order predicate logic, etc.) (same as Knowl-
edgeRepresentationParadigm - OMV 5.8)

• CODE SYSTEM - a collection of metadata about the provenance, use and distribution of a code system or ontology

• CODE SYSTEM VERSION - a collection of metadata about content and distribution format of a particular version
or release of a code system

• CONCEPT DOMAIN - the description of the conceptual domain of a field in a message, column in a database, field
on a form, etc. Equivalent to the ISO 11179-3 "Data Element Concept".

• CONTEXT - external and environmental factors that serve to discriminate among multiple possible selections. While
it is assumed that the specific contexts referenced by CONTEXT are represented by entity descriptions contained in
some ontology or coding scheme, the CTS2 specification does not recommend any targets. Note, however, the CTS2
context is intended to represent the notion of "jurisdictional domain" or "realm" as described in the HL7 CTS2 SFM 15

• DESIGNATION FIDELITY - identifies how well a particular designation represents the intended meaning of a the
referenced entity. CTS2 implementations may consider using the SKOS 16 semantic relations to represent this relation-
ship

• DESIGNATION TYPE - the particular form or type of a given designation - can be "short name", "long name",
"abbreviation", "eponym", ...

• FORMALITY LEVEL - the level of formality of an ontology (OMV 5.9)

• FORMAT - a particular way that information is encoded for storage in a computer file 17

• LANGUAGE - a spoken or written language intended for human consumption

• MATCH ALGORITHM - a predicate that determines whether an entity resource qualities for membership in a set
based on supplied matching criteria

• MAP - a set of rules that associate a set of entity references from one domain into those in another

• MAP CORRELATION - an assertion about the strength or significance of a specific rule in a Map

14http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3 CTS R2 DSTU 2009OCT.pdf
15http://www.hl7.org/documentcenter/ballots/2009may/downloads/V3 CTS R2 DSTU 2009OCT.pdf
16http://www.w3.org/TR/2009/REC-skos-reference-20090818/
17http://en.wikipedia.org/wiki/File format

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 11

• MAP VERSION - the state of a Map at a given point in time

• MODEL ATTRIBUTE - an attribute defined in CTS2 information model

• NAMESPACE - a reference to a conceptual space that groups identifiers to avoid conflict with items that have the same
name but different meanings

• ONTOLOGY ENGINEERING METHODOLOGY - information about the ontology engineering methodology
(OMV 5.4) (sic)

• ONTOLOGY ENGINEERING TOOL - a tool used to create the ontology (OMV 5.5)

• ONTOLOGY DOMAIN - while the domain can refer to any topic ontology it is advised to use one of the established
general purpose topic hierarchy like DMOZ or domain specific topic like ACM for the computer science domain. Only
this way it can be ensured that meaningful information about the relation of the domains of two separate ontologies can
be deduced (OMV 5.11)(sic)

• ONTOLOGY LANGUAGE - information about the language in which the ontology is implemented (OMV 5.7)

• ONTOLOGY SYNTAX - information about the syntax used by an ontology (OMV 5.6)

• ONTOLOGY TASK - information about the task the ontology was intended to be used for (OMV 5.10)

• ONTOLOGY TYPE - categorizes ontologies (OMV 5.2)

• PREDICATE - a property or relation between entities

• REASONING ALGORITHM - a set of formal rules that allow the deduction of additional assertions from a supplied
list of axioms

• RESOURCE TYPE - a class of which a referencing resource is an instance of

• ROLE - a role that a SOURCE can play in the construction or dissemination of an terminological resource

• SOURCE - an individual, organization or bibliographic reference

• STATEMENT - an atomic assertion about a CTS2 resource

• STATUS - the state of a resource or other entry in an external workflow

• VALUE SET - a set of entity references

• VALUE SET DEFINITION - a set of rules that can be applied to specified versions or one or more code systems to
yield a set of entity references

• VERSION TAG - an identifier that can be assigned to resource versions by a service implementation to identify their
state in the service workflow. Examples might include "development", "test", "production", etc.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 12

Figure 2.5: CTS2 References

This diagram identifies all of the value domains that are used within the CTS2 service itself. Each reference has a
domain , which frequently isn’t necessary to carry through to PSMs with strong type systems, a name that serves as a
unique permissible value within the context of the domain , a uri that references the intended meaning of name and an
optional href that, if present, provides a link to a CTS2 EntityDescription that provides definitions, descriptions,
etc. of the meaning.

The NameAndMeaningReference pattern represents, at the meta-level, one of the key purposes for a CTS2 based
service - to establish lists of value domains (identified here by ReferenceType) from which sets of permissible values
and meanings can be drawn.

For each specific reference below we attempt to identify an ontology or value set from which the set of possible values
could be drawn. We then state whether this set is mandatory - meaning that it must be used in a compliant CTS2 implemen-
tation, recommended - meaning that, while not required, we anticipate that significant gains in interoperability would result
were it used or simply exemplar, meaning that the set carries examples of what might be used.

Elements:
• AssociationReference - a name or identifier that uniquely names an association instance in a code system

• BindingQualifierReference - a reference to an entity that describes the role that a given value set binding plays for a
concept domain. Typical values represent "overall", "minimum" or "maximum", the significance of which can be found
in HL7 Version 3 documentation.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 13

• CaseSignificanceReference - a reference to an entity that describes significance of the case in term or designation

• CodeSystemCategoryReference - a reference to information about a paradigm model used to create an ontology (aka.
knowledge representation paradigm

• CodeSystemReference - a reference to a code system or ontology

• CodeSystemVersionReference - a reference to a specific version of code system and, if known, the code system which
it is a version of

• ConceptDomainReference - a reference to a concept domain

• ContextReference - a reference to a realm or context

• DesignationFidelityReference - a reference to a description about designation faithfulness or accuracy

• DesignationTypeReference - a reference to a designation type or form such as "short name", "abbreviation", "eponym"

• FormalityLevelReference - a reference to a description of the relative formality an ontology

• FormatReference - a reference to a particular way that information is encoded for storage or transmission

• LanguageReference - a reference to a spoken or written human language

• MapCorrelationReference - a reference to a way that the source and target in a map can be related or assessed

• MapReference - a reference to an abstract map

• MapVersionReference - a reference to a map version and the corresponding map, if known

• MatchAlgorithmReference - a reference to an algorithm used for selecting and filtering data

• ModelAttributeReference - a reference to an attribute defined in the CTS2 specification

• NameAndMeaningReference - A NameAndMeaningReference consists of a local identifier that references a
unique meaning within the context of a given domain in a CTS2 service instance and a globally unique URI that
identifies the intended meaning of the identifier.

• NamespaceReference - a reference to a conceptual space that groups identifiers to avoid conflict with items that have
the same name but different meanings

• OntologyDomainReference - a reference to a subject domain for an ontology

• OntologyEngineeringMethodologyReference - a reference to a method model that can be used to create an ontology

• OntologyEngineeringToolReference - a reference to a tool that can be used to create an ontology

• OntologyLanguageReference - a reference to a language in which an ontology may be implemented

• OntologySyntaxReference - a reference to a syntax in which an ontology may be represented

• OntologyTaskReference - a reference to a purpose for which an ontology can be designed

• OntologyTypeReference - a reference to the nature of the content of an ontology

• PredicateReference - An EntityReference that serves the role of predicate. Note that this varies slightly from the
base class of NameAndMeaningReference because the name attribute is a namespace/name combination rather
than a simple name scoped exclusively by the domain.

• ReasoningAlgorithmReference - a reference to a formal algorithm for making inferences about an ontology

• RoleReference - a reference to a role that an individual, organization or bibliographic reference can play in the con-
struction of a resource or resource component

• SourceAndRoleReference - a reference to a source that also includes the role that the source played and/or fixes the
particular chapter, page or other element within the reference

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 14

• SourceReference - a reference to an individual, organization of bibliographic reference

• StatusReference - a reference to a state in an external ontology authoring workflow

• ValueSetDefinitionReference - a reference to a set of rules for constructing a value set along with the corresponding
value set if known

• ValueSetReference - a reference to a named set of entity references

• VersionTagReference - a reference to a tag that can be assigned to versionable resources within the context of a service
implementation

Local Identifiers

Figure 2.6: Local Identifiers

This section lists the specific types of local identifiers that are used within the CTS2 specification. Instances of each type
of local identifier must be unique within the context of the service instance. As an example, "SCT" might uniquely name
the SNOMED-CT code system within the context of one service, while another service might use "SMD-CT". As a con-
sequence, local identifiers can never be used in interchanges between services - URI’s must be used instead. Note, also,
that it is ok to have the same local identifier for different types of resource. As an example, the identifier "SCT" could be a
CodeSysteName for the SNOMED-CT code system and a ValueSetName for the "Standardized Category Terms" value
set.

Elements:

• CodeSystemName - a local identifier for a CodeSystem

• CodeSystemVersionName - a local identifier for a CodeSystemVersion

• ConceptDomainName - a local identifier for a ConceptDomain.

• LocalIdentifier - an identifier that uniquely references a class, individual, property or other resource within the context
of a specific CTS2 service implementation. LocalIdentifier syntax must match the PNAME LN 18 production
as defined in the SPARQL Query Specification 19 . LocalIdentifiers may begin with leading digits, where XML
Local Identifiers and NameSpaceIdentifier s may not

• MapName - a local identifier for a Map

• MapVersionName - a local identifier for a MapVersion
18http://www.w3.org/TR/rdf-sparql-query/#rPNAME LN
19http://www.w3.org/TR/rdf-sparql-query/

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 15

• ValueSetName - a local identifier for a ValueSet

• VersionTagName - a local identifier for a VersionTag

Entity References

Figure 2.7: Entity Reference

CTS2 differentiates between a simple resource reference, such as a code system, code system version, value set, etc. and a
reference to an Entity - a class, predicate or individual. Simple resource references are identified by a single URI. Entity
references, however, are subdivided into two parts - an scoping namespace and a name that is unique within the context of
the namespace.

The diagram above contains three building blocks that are used for referencing entities throughout the specification. The
first form, URIAndEntityName provides the URI and local name by which the entity is known within the context of the
service. An optional hrefmay also be supplied that resolves to the EntityDescription that is contextually appropriate.

The second form, EntityReference , supplies the uri and name but also includes a list of code system versions that
make one or more assertions about (or using) the referenced entity. There will be at most one version of any given code
system in this list, the choice of which will depend on the context of the query.

The third form, EntityExpression , is a description of an Entity in an external language and syntax such as
RDF/OWL, Manchester OWL or SNOMED CT Compositional Grammar.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 16

Class AnonymousEntityReference
A reference to an entity whose name and description is local to the containing code system and service. Information about
anonymous entities cannot be shared between services or across code systems

Superclasses:

• Every instance of AnonymousEntityReference is also an instance of
EntityReference.

Attributes:

• about - the local URI that identifies this entity within the context of the particular service

Invariants:

1. The entityReferenceType of an AnonymousEntityReference must be ANONYMOUS ENTITY .

2. Anonymous entity references must have a local entity name, where the namespace is equal to the containing code
system version namespace .

3. An AnonymousEntityReference must be described by exactly one code system version. Anonymous entities
cannot be shared across code systems or services. .

Class DescriptionInCodeSystem
A reference to specific version of a code system that contains assertions about a given entity, including the namespace and
name by which the entity is referenced, an optional designation appropriate to the given usage context and an optional
RenderingURI that references the full EntityDescription contained in the specific code system version.

Attributes:

• describingCodeSystemVersion - a reference to the code system version that describes the entity

• designation - a contextually appropriate designation for the entity derived from the
describingCodeSystemVersion

• href - a RenderingURI that, if followed, will provide a full CTS2 EntityDescription derived from the corre-
sponding code system version

Class EntityExpression
An expression in a given ontology language and syntax that describes or defines an entity. Examples might include descrip-
tions of entities in Manchester OWL Syntax, RDF, SNOMED Concept Expression, etc.

Attributes:

• ontologyLanguageAndSyntax - the ontology language and syntax of the expression

• expression - the actual expression

Class EntityReference
The URI, namespace/name (if known) and a list of code systems that make assertions about the entity.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 17

Attributes:

• entityReferenceType - the discriminant of the entity reference - whether it is named or anonymous

• about - the entity URI. This is an ExternalURI if the entityReferenceType is NAMED ENTITY and a
LocalURI is the entityReferenceType is ANONYMOUS ENTITY.

• name - the namespace and name by which this entity is known within the context of the service implementation

• knownEntityDescription - a reference to a version of a code system that makes one or more assertions about the
referenced entity. Note that only one version of a given code system is allowed in the describingCodeSystem
list. Unless specified otherwise in a specific call, the code system version with the tag "CURRENT" must be used.

Invariants:

1. There can be at most one version of any code system in an entity reference .

Class EntityReferenceList
A list (set) of zero or more entity references

Attributes:

• entry - An entry in a list of EntityReferences

Class EntitySynopsis
The URI, local namespace and name and optional designation of an EntityDescription . EntitySynopsis rep-
resents entities when they are referenced from the context of a single code system, such as the resolution of value sets and
association graphs.

Superclasses:

• Every instance of EntitySynopsis is also an instance of URIAndEntityName.

Attributes:

• designation - a designation considered appropriate for the entity in the specific context of use

Class NamedEntityReference
A reference to an entity that is identified through a globally unique URI.

Superclasses:

• Every instance of NamedEntityReference is also an instance of
EntityReference.

Attributes:

• about - a URI that identifies a unique entity in a global context

Invariants:

1. The entityReferenceType of a NamedEntityReference must be NAMED ENTITY .

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 18

Class ScopedEntityName
The combination of a namespace identifier and a local name. Scoped entity names are not portable - they only work within the
context of a single service instance, as different services may assign different namespace identifiers to the same namespace
and different services may make different choices of the appropriate local identifier to use to represent an entity. As an
example, one service may choose to use the entity code while a second may use another designation that is known to be
unique.

Attributes:

• namespace - an identifier that references a unique namespace URI within the context of the service

• name - the local entity name within the context of the namespace. What is chosen for the entity name is service specific

Class URIAndEntityName
The combination of a URI and/or and ScopedEntityName.

Attributes:

• uri - a URI that uniquely references the target entity

• name - a namespace/name combination that uniquely represents the entity. This can be the primary entityID , as
determined by the service or any valid alternateId . Service implementers are encouraged to develop mechanisms
that will allow clients to choose an appropriate namespace for rendering URIAndEntityName instances. As an
example, it should be possible to view SNOMED-CT entity references by either the SctId, the "fully specified name"
or, where appropriate, the CTV3ID or SNOMED-3 identifier. Similar mechanisms would apply to ontologies that have
both id and label fields.

• href - a URI that resolves to the full EntityDescription represented by this resource

Enum EntityReferenceType
The discriminant for the type of entity reference.

Attributes:

• NAMED ENTITY - the entity reference is named

• ANONYMOUS ENTITY - the entity reference is anonymous

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 19

Building Blocks

Annotations

Figure 2.8: Note

The Note model is derived from the model defined in skos:note 20. It differs, however, on a couple of key points:

1. The CTS2 model does not group examples and definitions in the same category as comments. There are many circum-
stances where comments are appropriate but definitions and examples are not.

2. Definition has been extended to include the role that the definition plays and the contexts in which it applies.

Class ChangeNote
A change note. See: skos:changeNote

20http://www.w3.org/TR/skos-reference/#notes

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 20

Superclasses:
• Every instance of ChangeNote is also an instance of Comment.

Class Comment
A Note about the history, scope or provenance of the containing element. Comment is differentiated from Example and
Definition specifically because it is frequently searched and displayed under different circumstances and usage contexts.
Example and Definition are frequently made available to the end users of a code system while Comment s are typically
consumed by authors and editors.

Superclasses:
• Every instance of Comment is also an instance of Note.

Class Definition
Text or other representation that is intended to communicate the intended meaning of the associated entity to a human being.
While this is intended to be very close in meaning to skos:definition 21, its intent is slightly different in that the CTS2
specification does not treat definition as a subproperty of note - rather it views comments, examples and definitions as
separate entities.

Superclasses:
• Every instance of Definition is also an instance of Note.

Attributes:
• definitionRole - the role that the definition plays with respect to the defined entity

• usageContext - the context(s) in which the definition is considered applicable

Class EditorialNote
An editorial note. See skos:editorialNote

Superclasses:
• Every instance of EditorialNote is also an instance of Comment.

Class Example
An example. See: skos:example 22

Superclasses:
• Every instance of Example is also an instance of Note.

Class HistoryNote
A history note. See: skos:historyNote

Superclasses:
• Every instance of HistoryNote is also an instance of Comment.

21http://www.w3.org/TR/skos-reference/#definition
22http://www.w3.org/TR/skos-reference/#L1693

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 21

Class Note
Note corresponds to the target of skos:note 23. It contains an attributed literal that may include a language, format and, when
appropriate, schema.

Superclasses:

• Every instance of Note is also an instance of EntryDescription.

Attributes:

• assertedInCodeSystemVersion - the code system version that contains the assertion(s) represented in the Note

• externalIdentifier - an external identifier assigned to this note by an outside party

• correspondingStatement - the URI of the Statement from which this note was derived. This will only be present
in services that support the STATEMENT profile.

Class ScopeNote
A scope note. See: skos:scopeNote

Superclasses:

• Every instance of ScopeNote is also an instance of Comment.

Enum DefinitionRole
The role that a given definition plays for a given entity.

Attributes:

• NORMATIVE - the definition is considered to be official or normative by the assigning body

• INFORMATIVE - the definition is considered to be of value, but not completely normative

23http://www.w3.org/TR/skos-reference/#notes

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 22

Statement Target Model

Figure 2.9: Statement Target

StatementTarget is an extension to the object model in RDF. It provides two minor enhancements:

1. StatementTarget distinguishes between simple URI references and references to entities that are described in code
systems. In the latter case, the reference includes two additional bits if information - the namespace and local identifier
for the entity and, where appropriate, references to the code system version(s) that make assertions about the target.

2. StatementTarget does not represent BNodes as first class statements - BNodes are contained in the statement
itself. This eliminates the need to deal with pseudo-identifiers and other issues surrounding these items.

Class AnonymousStatement
A statement lacking a named subject.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 23

Attributes:

• predicate - the predicate of the anonymous statement

• target - the target of the anonymous statement

• statementQualifier - assertions whose subject is the anonymous statement

Class Property
A tag/value pair that does not have a corresponding model attribute. Property represent any statement about a resource (e.g.
CodeSystem, Entity, etc.) that does not have a corresponding attribute in the CTS2 model. As an example, the NCI Thesaurus
uses a tag named BioCarta ID (C43677) to associate appropriate thesaurus entities with Bio Carta pathway references. This
would be represented by a property, whose predicate is the URI for C436777 and the value is the actual id.

Attributes:

• predicate - the name and URI of the property predicate

• value - the target(s) of the property. Note that this can only represent the literal format of the property. The details
about the original property will be found in the correspondingStatement if the CTS2 implementation supports
the STATEMENT profile.

• correspondingStatement - a link to the original statement from which this Property is derived. Will only be present
in CTS2 implementations that support the STATEMENT profile.

• propertyQualifier - an assertion whose subject is the assertion in the property instead of the property subject

Class StatementTarget
the target of a Statement. StatementTarget represents one of a literal value, a reference to a non-entity type
resource , an entity, or an anonymous blank BNODE .

Attributes:

• targetType - the target discriminant

• externalIdentifier - an external identifier that has been assigned to the statement with this particular target by the
authoring body. As an example, this would carry the SctId if the authoring body were SNOMED-CT

• literal - the literal target when the statement type is LITERAL.

• resource - the resource URI when the statement type is RESOURCE

• entity - the URI and optional namespace/name when the target type is ENTITY

• bnode - a collection of statements about an anonymous subject

Invariants:

1. If the statement target is Resource , resource must be present .

2. If the statement target is Entity , entity must be present .

3. If the statement target is Literal , literal must be present .

4. if the statement target is a BNODE , it cannot have a literal , resource or entity .

5. if the statement target is EMPTY , it cannot have any content .

6. there can be at most one literal , resource or entity .

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 24

Enum StatementTargetType
a discriminant that determines the type of StatementTarget

Attributes:

• RESOURCE - the statement target is a resource URI

• ENTITY - the statement target is an entity reference

• LITERAL - the statement target is a literal

• BNODE - the statement target is a blank node - a collection of statements without a named subject

• EMPTY - the StatementTarget represents the empty set or null

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 25

Directories and Lists

Directory and List Model

Figure 2.10: Directories and Lists

Directories contain the results of queries. A query is formed by starting with a base DirectoryURI , applying one or
more optional filters and then invoking the appropriate resolve operation in the corresponding service. As an example,
if one wanted to get a list of all entity descriptions that have the word "oncology" in one or more designations, one would
start at the EntityDescription query service. One would first fetch the EntityDirectoryURI that represented all
entities known to the service. One would then invoke the restrict operation with a filter referencing the designation
attribute, a "contains" match algorithm and the text "oncology. This would return a second EntityDirectoryURI that
represented that set. One would then invoke the resolve operation in the service to return a Directory summarizing
the matching EntityDescriptions or, alternatively, the resolveAsList operation to return a directory of complete
EntityDescriptions.

Class Directory
Provides a directory or list of resources that match a specific filter and are ordered in a specified order. A directory is read-only
and is not necessarily immutable.

Note that the name of the link to DirectoryEntry is called "entries" rather than "entry". This allows subclasses to use
"entry" without type collisions in the Z.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 26

Attributes:

• type - the type of directory being represented. This value is asserted by the implementing subclass.

• directoryFilter - the filter(s) that were applied to generate this directory

• sortCriteria - the sort criteria used in the directory. When this is left as optional, there is the possibility that some di-
rectories may not be ordered. Some PSMs may chose to make sortCriteria mandatory, meaning that all directory
listings must reflect some sort order.

• numEntries - the number of entries in this directory segment. Note that this is not the total number of entries in the
complete directory listing - just the number of entries in this segment.

• complete - an indicator that states whether the complete directory listing is included in entries or whether additional
retrievals are needed to get the full listing.

• next - a URI that, when de-referenced, produces the next set of entries in the directory.

• prev - a URI that, when de-referenced, produces the preceding set of entries in the directory.

• entries - represents an entry that matches the supplied directory filter criteria

Invariants:

1. Either a directory is COMPLETE or it will have a next and/or a prev entry. .

2. The number of entries in the directory header is exactly the number of entries in the entry list. .

Class DirectoryEntry
an entry in a directory. DirectoryEntry is a mixin that identifies the attributes that must or may be present in any element
that can be represented as an entry in a Directory .

Attributes:

• type - the type of the entry. Note that this attribute may not appear in platform specific models (PSMs), as the type
system of the implementation itself may serve to identify the particular resource type.

• resourceName - a local identifier that names a unique resource within the context of type and the service context.
This attribute must be present if the corresponding element has a local name. Note, however, that some elements (e.g.
Association , ValueSetDefinition , etc.) do not local names and are identified exclusively by their href .

• href - a LocalURI that resolves to the full resource described by the DirectoryEntry . This should be present if
the service either (a) supports the READ functional profile for the specified type or (b) is aware of another service that
does.

• matchStrength - a relative measure of the "goodness of fit" of the directory entry within the context of the directoryFilter
in the containing Directory.

Enum CompleteDirectory
An indicator that determines whether a Directory contains all of the qualifying entries or only some.

Attributes:

• COMPLETE - the Directory contains all of the qualifying entries

• PARTIAL - the directory contains only a partial listing of the qualifying entries

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 27

Directory Types

Figure 2.11: Directory Implementations

A directory of CodeSystems

Elements:

• AssociationDirectoryURI - a DirectoryURI that references a set of Associations.

• ChangeSetDirectoryURI - a DirectoryURI that references a set of ChangeSets.

• CodeSystemCatalogEntryDirectoryURI - a DirectoryURI that references a set of CodeSystemCatalogEntries
.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 28

• CodeSystemVersionCatalogEntryDirectoryURI - a DirectoryURI that references a set of CodeSystemVersionCatalogEntries
.

• ConceptDomainBindingDirectoryURI - a DirectoryURI that references a set of ConceptDomainBindings.

• ConceptDomainCatalogEntryDirectoryURI - a DirectoryURI that references a set of ConceptDomainCatalogEntries

• DirectoryURI - the unique name of a query that, when executed results in a list of resources that, in the context of a
given service, satisfy the query.

• EntityDirectoryURI - a DirectoryURI that references a set of EntityDescriptionDirectory

• MapCatalogEntryDirectoryURI - a DirectoryURI that references a set of MapCatalogEntries

• MapEntryDirectoryURI - a DirectoryURI that references a set of MapEntrie s

• MapVersionDirectoryURI - a DirectoryURI that references a set of MapVersions

• ResolvedValueSetDirectoryURI - a DirectoryURI that references a set of ValueSetCatalogEntries

• StatementDirectoryURI - a DirectoryURI that references a set of Statements

• ValueSetCatalogEntryDirectoryURI - a DirectoryURI that references a set of ValueSetCatalogEntries

• ValueSetDefinitionDirectoryURI - a DirectoryURI that references a set of ValueSetDefinitions

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 29

Filters and Sorting

Figure 2.12: Filters and Sorting

The above diagram contains the elements that are used in the construction of query filters and return sort criteria.
AssociationDirection is also included in this diagram because it crosses modules and we didn’t want to create a
separate diagram with just one element.

Class Filter
A collection of one or more filters. The result of applying a Filter component is the intersection of the sets of qualifying
elements. As an example, a filter having two components - one which says that the rights attribute must exist and a second
that says that the text "SNOMED" must appear in the synopsis would return all resources having BOTH a rights attribute
and "SNOMED" in the description.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 30

Attributes:
• component - an entry in a filter

Class FilterComponent
A restriction on an attribute, property or special field

Attributes:
• filterComponent - the name or URI of the property or model element to be filtered. Properties are referenced by their

predicate and model elements all have URI’s that are established by this specification.

• matchAlgorithm - the algorithm to be used for testing the referenced component. Examples might include "starts
with", "regular expression match", "exists", "inRange", etc.

NOTE: The CTS2 specification needs to establish a core set of match algorithms that all compliant implementations
must support.

• matchValue - the value to be used in comparison. The structure and format of matchValue depends on the specific
matchAlgorithm . As an example, a "startsWith" algorithm would be plain text, a "regularExpression" algorithm
would have a regular expression while an "exists" algorithm would have nothing in the matchValue attribute.

Class PropertyReference
A reference to a CTS2 model element. PropertyReference may reference a model attribute, a Property or a special
element such as match strength.

Attributes:
• referenceType - the type of thing being referenced

• referenceTarget - a reference to the model attribute or predicate that is used for sorting or filtering

Class SortCriteria
An ordered list of sort criterion. The first entry in the list identifies the primary sort order, the second entry the sub sort order,
etc.

Attributes:
• entry - a rule for sorting

Class SortCriterion
The particular attribute, property or special element to be sorted along with the sort direction

Attributes:
• sortElement - the type and name of the attribute, property or special element to be sorted

• sortDirection - the sort order

Enum AssociationDirection
An indicator that determines whether an entity reference / predicate combination is to be evaluated with the entity reference
in the source (left hand side) position of the association query or the target (right hand side or "object") position.

Note: AssociationDirection doesn’t strictly belong in this diagram, but it is kind of an orphan class and we didn’t
want to create an entire new diagram just for one element.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 31

Attributes:

• SOURCE TO TARGET - the statement is to be resolved with the entity reference in the role of source .

• TARGET TO SOURCE - the statement is to be resolved with the entity reference in the role of target .

Enum SortDirection
The collating order of a sort.

Attributes:

• ASCENDING - sort in ascending collation order

• DESCENDING - sort in descending collation order

Enum TargetReferenceType
the possible types of property references

Attributes:

• ATTRIBUTE - a reference to an attribute in a CTS2 model such as formalName , designation , etc.

• PROPERTY - a reference to a model Property . The reference target carries the namespace/name or URI of the
property predicate.

• SPECIAL - the target of the reference is a special element such as the match strength of a search

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 32

Change Model

Updates

Figure 2.13: CTS2 Change Model

The UPDATE model represents a ChangeSet - an ordered collection of updates that, when applied to a service, transform it
from one consistent state to a second. ChangeSets can consist of as few as one Changeable element or can consist of a
set of changes that could be used to construct the contents of an entire service from scratch. The key rule on ChangeSets is
that, unless specifically overridden, they are considered “atomic" - either all of the (applicable) changes are applied or none
of them are applied.

The Changeable mixin must be implemented in all compliant CTS2 service implementations as it forms the core
model of resource identity. ChangeSet and ChangeDescription need only be implemented in services that support
the HISTORY , UPDATE or MAINTENANCE profiles.

Class ChangeDescription
The detailed description of what happened to a changeable resource. ChangeDescription will only be present in service
profiles that support either the HISTORY or MAINTENANCE profiles.

Attributes:

• changeType - the type of change that occurred to cause the associated Changeable element to reach the state it is in

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 33

• committed - an indicator that states whether the change has been committed and is available to service consumers or
is still pending while further authoring may occur. committed must always be COMMITTED in services that do not
support the MAINTENANCE profile

• containingChangeSet - the URI of the ChangeSet that contains the described change

• prevChangeSet - the URI of the ChangeSet that contains the change that immediately preceded this change, if any

• changeDate - the date and time when this change was applied to the local service instance. changeDate is only
present on committed changes.

• effectiveDate - the date and time that this change is (or was) scheduled to take effect in the local service instance.
Typically this attribute is used to schedule a component to become active on a given date.

A change having a future effectiveDate will not be visible to service calls whose reference time is earlier to this
time. This attribute may only be present in committed changes. A compliant CTS2 service implementation MUST
not allow a change to be written with a effectiveDate that is earlier than changeDate . The purpose of this
requirement is to prevent the “rewriting of history" - making a change effective in the past.

• changeNotes - a note, set of instructions and other information about the nature and purpose of this change

• changeSource - the person or organization responsible for this change

• clonedResource - the local identifier and URI of the resource that was cloned in this change if this is a CLONE opera-
tion.

Invariants:

1. There cannot be a previous change set on a CREATE operation. .

2. There cannot be a previous change set on a CREATE operation. .

3. Updates, deletes and metadata changes MUST have a previous image .

4. A clonedResource MUST be present if and only if changeType = CLONE .

5. Only versioned resources can be cloned .

Class ChangeSet
An ordered collection of changes that, when applied, will transform a service instance from one consistent state to another. A
ChangeSet is viewed as an atomic unit of change - either all of the Changeable elements in a change set will be applied
or none of them will be applied. It is anticipated that service implementations will provide a mechanism by which it can apply
local business rules to the validation and application of change sets. These rules may include the option to selectively apply,
reject, modify or ignore the elements of change sets as they arrive. In this case, it is up to the developers of the business rules
to determine what constitutes a "complete" change set that can be applied.

Superclasses:

• Every instance of ChangeSet is also an instance of Finalizable.

Attributes:

• changeSetURI - a globally unique identifier that signifies this particular change set

• creationDate - the date and time that the change set was initially created

• creator - the person or organization who initially created the change set

• changeInstructions - documentation and instructions about the purpose and application of the change set

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 34

• officialEffectiveDate - the date and time that this set of changes became (or should become) effective from the per-
spective of the authors. This parameter enables history queries from both the perspective of the service ("What did the
service return on July 1") and the perspective of the resource author ("What would the state of the terminology have
been on July 1 had it been loaded prior to that date and not been locally modified?").

• closeDate - the date and time that this change set was finalized (state = FINAL). Once finalized, a change set cannot
be further modified.

• entryCount - the number of Changeable members in the set

• member - A single atomic change. Members occur in the order in which they were / are to be applied

Invariants:
1. A closeDate is present if and only if the state is FINAL .

2. If any of the Changeable members have a changeDescription , all members MUST have a
changeDescription .

3. Every Changeable member must be associated with a unique changeDescription .

4. If change descriptions are present, each change description must contain the URI if this change set in its
containingChangeSet field. The change description state is COMMITTED exactly when the changeSet state
is FINAL .

5. If a given Changeable element is changed more than once in the same ChangeSet , the second and following
changes will reference the current change set URI in prevChangeSet .

6. prevChangeSet cannot be the same as containingChangeSet unless the an element is changed more than
once .

Class Changeable
An element that can evolve over time. All Changeable elements must have identity.

Attributes:
• entryID - the globally unique identifier of the resource

• entryState - an indicator that states whether the Changeable element is ACTIVE , and subject to searching and
browsing access or INACTIVE , meaning that it is only accessible if its identity is already known or if the service calls
specifically state that they want to see inactive service elements

• status - the state of this model element in an externally defined workflow

• changeDescription - Detailed information about the last change that resulted in this changeable element being in the
state that it is now. changeDescription is only present in services that support the HISTORY profile and then only when
specifically requested.

Class Finalizable
The Finalizable mixin determines whether a resource version or a change set is still undergoing change (OPEN) or has
reached its final state (FINAL).

Attributes:
• state - the state of the inheriting resource

Enum ChangeCommitted
the commitment state of an individual change

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 35

Attributes:

• PENDING - the specific change is part of an OPEN change set and has not yet been committed to the database. The
change is only visible through queries that carry the ChangeSetURI of the open ChangeSet.

• COMMITTED - the specific change is a part of a ChangeSet that has reached a FINAL state, meaning that it is (or
will be) considered an official part of the service content.

Enum ChangeType
An indicator that shows the type of change that occurred that transformed a Changeable element from its immediately
previous state to the state that the ChangeType is associated with.

Attributes:

• CREATE - the element was newly created.

• UPDATE - one or more non-identifying attributes of the element changed. Note that UPDATE does not include changes
to the Changeable attributes (entryState , status , and owner). These are considered to be METADATA
changes.

• METADATA - a change occurred to the entryState or status attributes. METADATA changes are separated
because they may often be service specific.

• DELETE - the changeable element was completely removed from the service and may no longer be retrieved by id or
search. Service implementations may choose to disable and/or map DELETE operations to some other form, but this
exists to allow the complete removal of errors and historically irrelevant information.

• CLONE - create the new versionable resource and create a (virtual) copy of all of the resource’s dependents

• IMPORT - include the contents of an external resource version as a read-only part of the importing version

Enum EntryState
the current state of the Changeable element. Note that entryState represents the state of the element itself - not the
state of a given change. The applicability of a given change is identified by its effectiveDate, not entryState .

Attributes:

• INACTIVE - the ChangeAble element is no longer considered to be an active component. The element may still be
retrieved if its entryID is known, but it does not appear in search and browse operations unless specifically requested.

• ACTIVE - the Changeable element is considered to be an active member of the containing resource and may appear
in any search, browse or query operations.

Enum FinalizableState
possible states of a Finalizable resource

Attributes:

• OPEN - the contents of a ChangeSet or ResourceVersionDescription may change, meaning that the con-
tents cannot be determined by using the ChangeSetURI or DocumentURI.

• FINAL - the contents of a ChangeSet or ResourceVersionDescription cannot be changed, meaning that
they can be unambiguously referenced via the corresponding URI.

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 36

Iteratable Change Sets

Figure 2.14: Iteratable Change Set

A ChangeSet can potentially grow to be quite large making it necessary to provide an version of a set that can be iterated
for retrieval. The current version of the CTS2 API does not specify any way to select contents from a change set resource -
from the change set perspective, it is a complete unit and can only be viewed via retrieval and iteration.

Class ChangeableAsDirectoryEntry
A changeable element that occurs in an IterableChangeSet

Superclasses:

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 37

• Every instance of ChangeableAsDirectoryEntry is also an instance of
Changeable.

• Every instance of ChangeableAsDirectoryEntry is also an instance of
DirectoryEntry.

Class IteratableChangeSet
A change set whose contents is available as a set of directory entries that allows iteration.

Superclasses:

• Every instance of IteratableChangeSet is also an instance of Directory.

• Every instance of IteratableChangeSet is also an instance of ChangeSet.

Attributes:

• entry - An entry in an iteratable change set

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 38

Resource Description

Resource Description Model

Figure 2.15: Resource Description

Class Resource
Anything that can have identity. Examples might include an electronic document, an image, a service (e.g. "today’s weather
report for Los Angeles"), and a collection of other resources. 24

Class ResourceDescription
ResourceDescription represents the shared characteristics common to both abstract and resource version descrip-
tions. ResourceDescription is an abstract type and, as such, cannot be directly created. Resource descriptions are
Changeable , meaning that they have identity and can be created, updated and deleted.

Superclasses:
• Every instance of ResourceDescription is also an instance of Changeable.

24http://tools.ietf.org/html/rfc2396

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 39

Attributes:

• about - the (or a) definitive URI that represents the resource being described. Note that this is NOT the URI of
the resource description in the CTS2 format, but of the resource itself. As an example, the about URI for the
Wine ontology would be "http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#". The NCI Thesaurus 25 has,
amongst others, the about URI of http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#. HL7 uses ISO Object Iden-
tifiers (OIDs) to label resources so, from the HL7 perspective, the about URI of the NCI Thesaurus would be
"urn:oid:2.16.840.1.113883.3.26.1.1"

• describedResourceType - the type of resource being defined. From the perspective of the CTS2 specification, these
types are limited to those specified in CTS2ResourceType .

• resourceID - a local identifier that uniquely names the resource within the context of the describedResourceType
and implementing service. As an example, this might be "SCT" for the SNOMED-CT code system, "SCT-2010AA"
for a SNOMED-CT code system version.

• formalName - the formal or officially assigned name of this resource, if any

• keyword - additional identifiers that are used to index and locate the resource

• resourceType - the class(es) that this resource instantiates

• resourceSynopsis - a textual summary of the resource - what it is, what it is for, etc.

• additionalDocumentation - a reference to a document that provide additional information about the resource

• sourceAndRole - a reference to an individual, organization of bibliographic reference that participated in the creation,
validation, review, dissemination of this resource and the role(s) they played

• rights - copyright and IP information. Note that rights applies to the source resource, not the CTS2 rendering.

• note - an additional note or comment about the resource

• property - additional information about the resource that does not fit into any of the attributes described above

• alternateID - an alternative identifier that uniquely names this resource in other environments as contexts. As an
example, if a resource had both an ISO Object Identifier and a DNS name, the DNS name might be assigned as the
entryID of the resource by one service while the ISO OID would be recorded as an alternateURI using the
"urn:oid" prefix. Note that alternateId s can be added or removed during resource updates.

• sourceStatements - a DirectoryURI that references the set of statements that were used to construct the containing
resource. This attribute must (may?) be present if and only if the service supports the STATEMENT profile

Enum CTS2ResourceType
the resource types that can be described in a CTS2 service

Attributes:

• CODE SYSTEM - an ontology, classification scheme, thesaurus or code system

• CODE SYSTEM VERSION - a specific release or version of an ontology, classification scheme, thesaurus or code
system.

• CONCEPT DOMAIN - a "data element concept" - a specification of the conceptual domain of an element in a
database, form, message, etc.

• MAP - a set of rules for transforming a set of entity references into a second set of entity references, drawn from a
different code system or value set.

• MAP VERSION - a specific version or release of a MAP

25http://ncit.nci.nih.gov/ncitbrowser/

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 40

• VALUE SET - a set of entity references

• VALUE SET DEFINITION - a set of rules for establishing which entity references belong to a value set at a given
point in time

Figure 2.16: Detailed Resource Description

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 41

Class AbstractResourceDescription
the description of the characteristics of a resource that are independent of the resource content

Superclasses:

• Every instance of AbstractResourceDescription is also an instance of
ResourceDescription.

Attributes:

• releaseDocumentation - documentation about the frequency and nature of releases (version) of this resource.26

• releaseFormat - a format and notation that the releases (versions) of this resource are published in

Invariants:

1. An abstract resource description must be one of CodeSystem , ConceptDomain , ValueSet , or Map .

2. The unique id of an abstract resource is the about URI .

Class ResourceVersionDescription
information about the source, format, release date, version identifier, etc. of a specific version of an abstract resource

Superclasses:

• Every instance of ResourceVersionDescription is also an instance of
ResourceDescription.

• Every instance of ResourceVersionDescription is also an instance of
Finalizable.

Attributes:

• documentURI - a URI that identifies the specific version, language and notation of the about resource. This URI
needs to be constructed in such a way that, if necessary, it will be possible to differentiate resource versions that were
loaded from different document syntaxes. As an example, if an image of a the wine ontology was loaded from a
resource that was in Manchester Syntax, it should be given a different URI than the image loaded from the RDF/XML
syntax. The reasoning behind this is, even in cases where different syntaxes are 100

• sourceAndNotation - a description of where the (or a) source of the version may be found, what format and language
it is available in, etc.

• predecessor - a reference to the name and URI version of the resource from which this current version is derived - the
version of the resource that immediately preceded it

• officialResourceVersionId - an official label or identifier that was assigned to this version by its publisher

• officialReleaseDate - the date that this version of the resource officially became available

• officialActivationDate - the date that this version of the resource is stated by its publishers to go into effect

Invariants:

1. A resource version description must be one of CodeSystem , ConceptDomain , MapVersion , or ValueSetDefinition
.

2. The documentURI is the unique identifier for a ResourceVersionDescription. .

26OMV 2.4.1 pp 18

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 42

Class SourceAndNotation
A description of the source from which the ResourceVersionDescription was derived. When possible,
SourceAndNotation should include a reference to the actual source document from which it was derived. As an
example, if the resource was derived from the W3C Wine Ontology, the URI http://www.w3.org/TR/2003/CR-owl-guide-
20030818/wine would unambiguously name the document. In the cases, however, when a definitive source document is not
available, a textual description should be provided, instead, in sourceAndNotationDescription . Where possible,
the ontology language and ontology syntax should also be provided. In the case of the Wine Ontology above, the ontology
language would be http://www.w3.org/2002/07/owl# (OWL) and the syntax would be application/rdf+xml.

Attributes:

• sourceAndNotationDescription - a textual description of where the specified resource version was derived from. This
parameter must be supplied if a reasonable PersistentURI for the source document is not available.

• sourceDocument - a persistent URI that references the document from which the resource version was derived. This
URI may be resolvable to a digital resource or may be the name of a book, publication or other external document.

• sourceLanguage - the formal language, if any, that the source for the resource version is expressed in. Examples
include Common Logic, OWL, OWL-DL, CLAML 27, etc.

• sourceDocumentSyntax - the syntax of the source of the resource version, if known. Examples might include rdf/xml,
Turtle, Manchester Syntax, CSV, etc.

Invariants:

1. SourceAndNotationmust supply either a textual description of the source in sourceAndNotationDescription
or the URI of the document from which the resource was derived in sourceDocument .

27http://esearch.cen.eu/Details.aspx?id=4244858

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 43

Directories of Resource Descriptions

Figure 2.17: Directory Mixin for Resource Version Description

Class AbstractResourceDescriptionDirectoryEntry
a summary of an abstract resource description

Superclasses:
• Every instance of AbstractResourceDescriptionDirectoryEntry is also an instance of
ResourceDescriptionDirectoryEntry.

Class ResourceDescriptionDirectoryEntry
A DirectoryEntry that identifies the elements of a resource description that appear in every directory of resources of
a particular type. ResourceDescriptionDirectoryEntry is an abstract type and is realized in the implementing
subtypes listed in CTS2ResourceType

Superclasses:
• Every instance of ResourceDescriptionDirectoryEntry is also an instance of
DirectoryEntry.

Attributes:
• about - the (or a) definitive URI that represents the resource being described.

• resourceID - a local identifier that uniquely names the resource within the context of the describedResourceType
and implementing service

CHAPTER 2. CORE INFORMATION MODEL ELEMENTS 44

• formalName - the formal or officially assigned name of this resource

• describedResourceType - type of resource represented in the entry

• resourceSynopsis - a textual summary of the resource - what it is, what it is for, etc.

Class ResourceVersionDescriptionDirectoryEntry
A summary of a resource version.

Superclasses:

• Every instance of ResourceVersionDescriptionDirectoryEntry is also an instance of
ResourceDescriptionDirectoryEntry.

Attributes:

• documentURI - a URI that identifies the specific version, language and notation of the about resource

• officialResourceVersionId - a label or identifier that was assigned to this version by its publisher

• officialReleaseDate - information about the source, format, release date, version identifier, etc. of a specific version of
an abstract resource

Chapter 3

Core Computational Model Elements

This section of the specification describes the interface characteristics common to one or more CTS2 service specifications.
It defines the attributes and methods common to all services and the attributes and methods common to each individual
functional profile. It also defines the various parameters that are used in the interface specification and an exception model.
The functional profiles that do not have any structural dependencies (IMPORT, EXPORT, and TEMPORAL) are also
included in this section.

Interface Specific Structures

Miscellaneous Input Structures

Figure 3.1: Interface Building Blocks

45

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 46

We begin this section by describing a set of interface elements that are shared among some or all of the CTS2 service
implementations.

Class EntityNameOrURI
A reference to a class, property or individual that is described in some Code System. EntityNameOrURI may either refer-
ence an entity that is known locally to the service or an entity that is described elsewhere. If the entity is known to the service,
it is possible to use the entityName variant, but note that neither scopingNamespace nor the entityName are guar-
anteed to be the same in different CTS2 implementations. The entityName variant is intended for use in human/browser
interactions and should not be hard-coded into data tables or applications.

Attributes:

• entityName - a combination of a namespace identifier and a local name that, together, uniquely references an entity
known to the service

• uri - an ExternalURI that references a class, property or individual

Invariants:

1. Either an entityName or a uri must be present but not both .

Class EntityNameOrURIList
A set of zero or more EntityNmeOrURI elements

Attributes:

• entry - an element in a list of entity identifiers in the form of either a name or a URI

Class NameOrURI
Carries either a local identifier (name) or a URI (uri) that references a resource in the service. NameOrURI is only used
as an input parameter and its type is always defined by the usage context. Note that service calls that use the name option
may not be portable across implementations, as there is no guarantee that any two CTS2 service implementations will use the
same local identifiers for the same resources.

Attributes:

• name - a LocalIdentifier that references a unique resource within the context of the service implementation and
type of resource being accessed

• uri - an ExternalURI that references a unique resource within the context of the resource type

Invariants:

1. Either a name or a uri must be present but not both .

Class NameOrURIList
A set of zero or more NameOrURI elements

Attributes:

• entry - an entry in list of local resource names or global URIs

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 47

Class QueryControl
Parameters that control the return format, number of elements and amount of time that can be taken for a query to complete.
If omitted, the service implementation may determine the default setting for all of the parameters.

Attributes:
• maxToReturn - the maximum number of entries that may be present in a return Directory . Note that a service

may choose to return less than maxToReturn entries - this is simply an upper limit. If maxToReturn is not supplied,
the service may use whatever return block size it determines to be most appropriate.

• timeLimit - the maximum amount of time that may be taken to process a query before a time out exception occurs. If
not present, the service determines the maximum query time out.

• format - the local identifier or URI of the return format for query results. This parameter defaults to the defaultFormat
in the BaseService interface if not supplied.

• sortOrder - the the sort order of the returned query if its output is a Directory

Class ReadContext
The context that controls the behavior of a read or query. The ReadContext parameter should be present in any read
or query method call that returns data. ReadContext is always optional and, if not supplied the defaults are: active
= ACTIVE ONLY , referenceLanguage = (default language for the service or user), referenceTime = now ,
changeSetContext = (none).

Attributes:
• active - determines whether the query only applies to only active or all entries.

• referenceLanguage - the spoken or written language that should be used for the results of the inquiry, where appropri-
ate. Should default to the default reference language of the service if omitted.

• referenceTime - the contextual date and time of the query. referenceTime is may only be present in services that
support the TEMPORAL profile. If omitted, referenceTime defaults to the current system date and time.

• changeSetContext - the URI of an open change set whose contents should be included in the results of the access
request. changeSetContext is only applicable in services that support the AUTHORING profile. If omitted, no
change set context is supplied in the service call.

Enum ActiveOrAll
an indicator that determines whether the given service access request applies only to elements that are currently marked as
ACTIVE in the context of the particular query or to both ACTIVE and INACTIVE entries.

Attributes:
• ACTIVE ONLY - the inquiry only applies to ACTIVE entries

• ACTIVE AND INACTIVE - the inquiry applies to both ACTIVE and INACTIVE entries

Enum Boolean
a return type that indicates a positive or negative answer to the specific question that was posed.

Attributes:
• TRUE - represents an affirmative answer to an inquiry

• FALSE - represents a negative answer to an inquiry

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 48

Enum RestrictionType
a parameter used in queries where multiple elements are provided. It determines whether a candidate element must satisfy all
restrictions or just one or more restriction in order to be considered as satisfying the restriction composite

Attributes:
• ALL - the candidate passes only if all of the elements are present

• AT LEAST ONE - the candidate passes if any of the supplied elements are present

Exception Model

Figure 3.2: Exception Model

CTS2Exception represents the minimum exception element that MUST be returned by CTS2 service implementations. It
includes a general slot for a message as well as a severity indicator. The determination of the relative severity of individual
exceptions has been left to the service implementer, which means that, at the moment, one service implementation may treat
an error as FATAL and refuse to proceed while a second may choose to treat it simply as a warning. Obviously this is less
than ideal and we anticipate that a future release of this specification will categorize errors more strictly.

Class CTS2Exception
An exception generated by the CTS 2 service.

Attributes:
• message - An structured or unstructured message detailing the cause and reason for the exception.

• severity - An indicator of the relative severity of the particular exception.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 49

Enum LoggingLevel
The LoggingLevel entries are modeled after the corresponding levels in the Apache log4j package 1. As with the log4j
package, each level includes the entries in the lower level. In particular, levels are ordered. For the standard levels, we have
DEBUG < INFO < WARN < ERROR < FATAL.

Attributes:

• DEBUG - detailed (verbose) information about the process or operation that allows a user to determine exactly what
transpired

• INFO - informative messages about the progress of or results of a requested operation

• WARN - represents potential problems that do will not prevent completion of the requested operation, but may require
attention or intervention.

• ERROR - represents an error that, while serious, may under circumstances be ignored and processing may continue

• FATAL - represents an error that prevents further processing. FATAL errors cannot be ignored or overridden.

Service Base

Figure 3.3: Service Base

1http://logging.apache.org/log4j/

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 50

This diagram shows the set of elements and attributes that must be present at the service root of any CTS2 service implemen-
tation. It provides basic metadata about the service itself as well as information about what formats, profiles and platform
specific implementations the service supports. It also lists all of the local namespace identifiers and namespace URIs known
to the service implementation.

All of the elements in the BaseService resource are readOnly, meaning that they are established and updated by the
service implementation and cannot be changed via a CTS2 function call.

Note that CTS2 namespace identifiers are service wide. As opposed to many ontology editors where a namespace such
as XML Schema may be identified with the local name "xs:" in one schema and "xsd:" in a second, CTS2 requires that
namespaces be consistent across the service level.

Class BaseService
BaseService contains the components that are common to any CTS2 service implementation. It includes information
about the service itself, the namespaces and formats that are known to the service and the structural, functional and represen-
tation profiles that are supported by the service instance.

Attributes:

• serviceName - a short name that identifies the particular service and implementation

• serviceDescription - a description of the service, its use, etc.

• serviceProvider - a reference to the individual or organization that provides the service.

• serviceVersion - the version or release identifier of the service

• supportedFormat - alist of the representation formats supported by the service. Example: text/html, text/xml, appli-
cation/json

• defaultFormat - the default format used by the service unless otherwise specified

• supportedProfile - the set of service profiles that are supported by this service implementation

• implementationType - the particular implementation type(s) supported by this profile

• knownNamespace - the set of namespaces recognized by this service. Because many namespace identifiers tend to be
cryptic (i.e. HL7 OIDs, BioPortal URL’s, etc.), knownNamespace includes the namespace name, an optional URI
and a place to provide textual detail describing what the namespace references. Note that namespace names must be
unique across an entire CTS2 implementation - the same namespace name cannot represent one namespace in code
system A and a second in code system B. Note also that namespace names are local to a service instance. Information
that is communicated between service instances, recorded in data tables or client software must use full URIs.

Invariants:

1. Every supportedProfile entry describes a unique structural profile .

2. Every supported format name must be unique .

3. The default format is one of the supported formats .

4. Every known namespace must be unique .

Class DocumentedNamespaceReference
A namespace reference that may include additional documentation about the scope of the namespace.

Superclasses:

• Every instance of DocumentedNamespaceReference is also an instance of
NamespaceReference.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 51

Attributes:

• description - documentation about the scope and origin of the namespace

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 52

Functional Profiles

Read Service Base

Figure 3.4: Read Service

Class BaseReadService
The common metadata about a CTS2 service instance that is shared among all service instances. The BaseReadService
interface does not add any additional information beyond that supplied by BaseService.

Superclasses:

• Every instance of BaseReadService is also an instance of BaseService.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 53

Query Service Base

Figure 3.5: Common Query Service Components

The QueryService provides search and filtering access to the Changeable components of the corresponding structural
profile. QueryServices constrain directories of the appropriate type. Each structural profile extends the query service
to: (a) provide a starting directory handle (DirectoryURI) of the appropriate type and (b) provide resolution services to
resolve directory URI’s into Directories of the appropriate type and (c) provide additional filters where appropriate.

Class BaseQueryService
BaseQueryService represents the set of attributes and operations that are common across all query service implemen-
tations. It includes generic directory manipulation functions as well as enumerations of the permissible values for query
parameters in the given service context.

Superclasses:
• Every instance of BaseQueryService is also an instance of BaseService.

Attributes:
• supportedMatchAlgorithm - the match algorithms that can be used in filters for this service instance

• supportedModelAttribute - the set of model attributes that can be referenced in filter instances for the given service
implementation

• knownProperty - The set of properties that are used in one or more instances of the resource represented by this
service. This list includes all properties that can be used in queries in this service, independent of the entryState or
temporal state of the resource(s) being searched.

Operation: restrict
Return a DirectoryURI that references the set of all elements represented by directory that match the criteria specified
in filter.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 54

Input Parameters:

• directory - a URI that references a homogeneous set of resources (Type: DirectoryURI)

• matchAlgorithmOPT - The name or URI of the match algorithm to use when selecting values. The default value
if the parameter isn’t supplied is "CONTAINS" - the supplied match value appears anywhere in the target. (Type:
NameOrURI)

• matchValueOPT - The value to be used in comparison. The structure and format of matchValue depends on the
specific matchAlgorithm . As an example, a "startsWith" algorithm would be plain text, a "regularExpression"
algorithm would ahve a regular expression, while an "exists" altorithm would have nothing in the matchValue
argument. (Type: String)

• filterComponentOPT - The name or URI of a property or model element to be filtered. If omitted, all properties are
searched. (Type: EntityNameOrURIList)

Return Type: DirectoryURI

Exceptions:

• InvalidDirectoryURI - The supplied directory URI is not valid

• InvalidDirectoryType - The type represented by the supplied directory URI is not the one required by the service
invocation.

• UnsupportedMatchAlgorithm - The matchAlgorithm is not supported by the service

• UnsupportedPredicate - The predicate name or URI is not recognized by the service

• UnsupportedNamespaceName - The supplied namespace name is not one that is known to the service.

• UnsupportedModelAttribute - The name or URI of a CTS2 model attribute is not recognized and/or supported by the
service implementation

Operation: union
Return a directory that represents the combination of the contents of the supplied two supplied directories, with duplicate
entries removed. Note that both of the directory URIs must resolve to entries of the same type.

Input Parameters:

• directory1 - the first of the two directories to be combined (Type: DirectoryURI)

• directory2 - the second of the two directories to be combined (Type: DirectoryURI)

Return Type: DirectoryURI

Exceptions:

• InvalidDirectoryURI - The supplied directory URI is not valid

• InvalidDirectoryType - The type represented by the supplied directory URI is not the one required by the service
invocation.

Operation: intersect
Return a directory that represents the set of elements that are common to the two supplied directories. Note that both Direc-
toryURIs must represent resources of the same type.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 55

Input Parameters:

• directory1 - the first directory to be intersected (Type: DirectoryURI)

• directory2 - the second directory to be intersected (Type: DirectoryURI)

Return Type: DirectoryURI

Exceptions:

• InvalidDirectoryURI - The supplied directory URI is not valid

• InvalidDirectoryType - The type represented by the supplied directory URI is not the one required by the service
invocation.

Operation: difference
Remove any of the elements in elementsToRemove from initialSet if present. Elements in elementsToRemove
that are not in initialSet are ignored.

Input Parameters:

• initialSet - the initial directory of elements (Type: DirectoryURI)

• elementsToRemove - thy set of elements to be removed from initialSet if present (Type: DirectoryURI)

Return Type: DirectoryURI

Exceptions:

• InvalidDirectoryURI - The supplied directory URI is not valid

• InvalidDirectoryType - The type represented by the supplied directory URI is not the one required by the service
invocation.

Operation: count
Return the number of elements currently represented by the supplied directory URI.

Input Parameters:

• directory - a reference to the set of elements (Type: DirectoryURI)

• contextOPT - the context of the count - whether active or all elements are to be counted and the temporal reference
point for the count (Type: ReadContext)

• timeoutOPT - the maximum amount of time allowed to do the count (Type: NaturalNumber)

Return Type: NaturalNumber

Exceptions:

• QueryTimeout - The timeLimit was exceeded by the service.

• InvalidDirectoryURI - The supplied directory URI is not valid

• InvalidDirectoryType - The type represented by the supplied directory URI is not the one required by the service
invocation.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 56

History Service Base

Figure 3.6: History Service

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 57

HistoryService documents the changes that have been applied to a service over time. It documents when the first change
occurred, when the last change occurred and provides access to a set of changes in the order that they were applied.

Class BaseHistoryService
The BaseHistoryService provides access to ChangeSets and the history of what happened to individual elements.

Superclasses:

• Every instance of BaseHistoryService is also an instance of
BaseQueryService.

Attributes:

• earliestChange - the date and time of the first change that occurred in the service. Note that the granularity of "change"
is the application of an import operation or the submission of a change set, so the first change might encompass the
loading of an entire ontology or even a complete ontology with history.

• latestChange - the date and time that the last change was applied to the service.

• changeHistory - a DirectoryURI that resolves to the set of all changes that have been applied to the service

Operation: readChangeSet
Return the change set referenced by the supplied URI.

Input Parameters:

• changeSetURI - the URI of the change set to be returned (Type: ChangeSetURI)

Return Type: ChangeSet

Exceptions:

• UnknownChangeSet - The change set specified could either not be read or located by the service.

Operation: resolve
Retrieve a change set as an iterable resource - a handy function for viewing large change sets

Input Parameters:

• changeSet - the URI of the change set to retrieve (Type: ChangeSetURI)

• queryControl - parameters the effect the iteration and ordering of the return values (Type: QueryControl)

Return Type: IteratableChangeSet

Exceptions:

• UnknownChangeSet - The change set specified could either not be read or located by the service.

• UnsupportedMatchAlgorithm - The matchAlgorithm is not supported by the service

• UnsupportedPredicate - The predicate name or URI is not recognized by the service

• UnsupportedNamespaceName - The supplied namespace name is not one that is known to the service.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 58

• UnsupportedModelAttribute - The name or URI of a CTS2 model attribute is not recognized and/or supported by the
service implementation

• UnsupportedFormat - The format is not supported by the service implementation

• QueryTimeout - The timeLimit was exceeded by the service.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 59

Maintenance Service Base

Figure 3.7: Maintenance Service

An maintenance service is an extension of an update service that allows change sets to be created through a sequence of create,
update and/or delete method calls. An maintenance interaction always begins with a createChangeSet call, which returns
the URI of a new, OPEN ChangeSet . This URI must be supplied in all subsequent create, update and/or delete method
invocations. Each successful method call becomes a member of the open change set. These changes will not appear in the

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 60

state of the running service until the commitChangeSet method is successfully invoked. The impact of the changes can
be examined, however, by including the open ChangeSet URI in the ReadContext of any method that supports the
readContext parameter. When included, the service will respond as if the referenced ChangeSet had been committed.

An open ChangeSet can also be rolled back, which has the effect of removing all of the uncommitted changes as well
of the change itself from the service. Once a ChangeSet is successfully committed, its state is changed to FINAL ,
and no further changes may be added to it. The current CTS2 specification provides no mechanism to allow committed
ChangeSets to be rolled back. Clever service extensions, however, should be able to devise an "inverse change set" that,
when applied, undoes all of the changes in an existing change set.

Note that a change set contains both the "before" image (if any) of any change that is being applied as well as the URI of
the last change set that contained a change that effected the named resource. This allows the service to detect incompatible
changes - if the before image of any resource does not match the before image recorded in the change set the service should
flag this as an error and not apply any of the changes in the set. The putChangeSet method carries an errorResponse
parameter, however, that allows this behavior to be overridden.

Class BaseMaintenanceService
the set of attributes and functions common to all maintenance services

Superclasses:

• Every instance of BaseMaintenanceService is also an instance of
UpdateService.

Operation: createChangeSet
Create a new change set and set it in an OPEN state

Input Parameters:

Return Type: ChangeSet

Postconditions:

1. A new change set is always created OPEN

2. changeSetURI is the new unique URI

3. The creation date is set to the current date and time

4. there is no creation source

5. There are no changeInstructions

6. There is no close date

7. The members list starts empty

Operation: readIteratableChangeSet
Return a change set with an iterator that allows its contents to be read in chunks.

Input Parameters:

• changeSet - the URI of the change set to be read (Type: ChangeSetURI)

• queryControlOPT - parameters that control the format, timeout and number of entries per block (Type: QueryControl)

Return Type: IteratableChangeSet

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 61

Exceptions:

• UnknownChangeSet - The change set specified could either not be read or located by the service.

• UnsupportedMatchAlgorithm - The matchAlgorithm is not supported by the service

• UnsupportedPredicate - The predicate name or URI is not recognized by the service

• UnsupportedNamespaceName - The supplied namespace name is not one that is known to the service.

• UnsupportedModelAttribute - The name or URI of a CTS2 model attribute is not recognized and/or supported by the
service implementation

• UnsupportedFormat - The format is not supported by the service implementation

• QueryTimeout - The timeLimit was exceeded by the service.

Operation: readChangeSet
Read a complete change set.

Input Parameters:

• changeSet - the change set to be retrieved (Type: ChangeSetURI)

• queryControlOPT - parameters that control the format and time limit (Type: QueryControl)

Return Type: ChangeSet

Exceptions:

• UnknownChangeSet - The change set specified could either not be read or located by the service.

• UnsupportedMatchAlgorithm - The matchAlgorithm is not supported by the service

• UnsupportedPredicate - The predicate name or URI is not recognized by the service

• UnsupportedNamespaceName - The supplied namespace name is not one that is known to the service.

• UnsupportedModelAttribute - The name or URI of a CTS2 model attribute is not recognized and/or supported by the
service implementation

• UnsupportedFormat - The format is not supported by the service implementation

• QueryTimeout - The timeLimit was exceeded by the service.

Operation: updateChangeSetMetadata
Update the descriptive information of a change set.

Input Parameters:

• changeSet - the URI of the open change set to update (Type: ChangeSetURI)

• creatorOPT - the name or URI of the change set creator (type SOURCE) (Type: NameOrURI)

• changeInstructionsOPT - instructions about when or how to apply the change set (Type: OpaqueData)

• officialEffectiveDateOPT - the date that the set of changes officially becomes effective (Type: DateAndTime)

Return Type: Changeable

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 62

Exceptions:

• ChangeSetIsNotOpen - The changeSetContext is recognized by the service, but its state is not OPEN .

• UnknownChangeSet - The change set specified could either not be read or located by the service.

• UnsupportedSource - The supplied source is not recognized by the service

Operation: commitChangeSet
Apply the proposed changes specified in the change set transaction to the changeable being updated.

Input Parameters:

• changeSet - the URI of an open changeset to finalize (Type: ChangeSetURI)

Return Type: ValidationResponse

Exceptions:

• ChangeSetIsNotOpen - The changeSetContext is recognized by the service, but its state is not OPEN .

• UnknownChangeSet - The change set specified could either not be read or located by the service.

Operation: rollbackChangeSet
Cancel the proposed changes specified in a change set transaction to the changeable being updated.

Input Parameters:

• changeSet - the URI of an OPEN change set to rollback and delete (Type: ChangeSetURI)

Return Type: ValidationResponse

Exceptions:

• ChangeSetIsNotOpen - The changeSetContext is recognized by the service, but its state is not OPEN .

• UnknownChangeSet - The change set specified could either not be read or located by the service.

Operation: updateChangeableMetadata
Update the metadata for a change set and return an image of the updated resource.

Input Parameters:

• changeSet - the URI of an OPEN change set (Type: ChangeSetURI)

• entryID - the entryID of the resource whose state is to be updated (Type: PersistentURI)

• statusOPT - the name or URI of valid workflow status (Type: NameOrURI)

• entryStateOPT - the new state of the resource (ACTIVE or INACTIVE) (Type: EntryState)

• effectiveDateOPT - the new effective date of the resource (Type: DateAndTime)

• changeNotesOPT - the new change notes of the resource (Type: OpaqueData)

• changeSourceOPT - the new change source of the resource (Type: SourceReference)

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 63

Return Type: Changeable

Exceptions:

• ChangeSetIsNotOpen - The changeSetContext is recognized by the service, but its state is not OPEN .

• UnknownChangeSet - The change set specified could either not be read or located by the service.

• UnknownEntity - The EntityNameOrURI is not known to the service

• UnsupportedStatus - The name or URI of the Changeable status property is not recognized by the service.

Operation: deleteChangeable
Remove the changeAble resource from the service.

Input Parameters:

• changeSet - the identifier of an OPEN change set that will record the deletion (Type: ChangeSetURI)

• changeableResource - the image of the resource to remove (Type: Changeable)

Return Type: void

Exceptions:

• UnknownChangeSet - The change set specified could either not be read or located by the service.

• ResourceStateMismatch - The resource being deleted did not match the state of the resource in the service. A change
has occurred since the resource image has been retrieved.

• ChangeSetIsNotOpen - The changeSetContext is recognized by the service, but its state is not OPEN .

• ResourceIsNotOpen - The target resource version description has been finalized and cannot be updated.

Operation: newProperty
Create a new Property for inclusion in a resource or statement construct

Input Parameters:

• predicate - the namespace/name or URI of the statement predicate (Type: EntityNameOrURI)

• value - the property target (Type: StatementTarget)

• externalIdentifierOPT - an external identifier that will eventually be assigned to the resource or entity or association
triple (Type: String)

Return Type: Property

Exceptions:

• UnsupportedNamespaceName - The supplied namespace name is not one that is known to the service.

• UnknownPredicateNamespaceName - The namespace in the predicate identifier is not known to or supported by
the service

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 64

Operation: newResourceTarget
Create a new StatementTarget of type RESOURCE . This is a helper function that is used in the creation and update of
other resources and does not change the state of the service. Note that URI’s that reference classes, predicates or individuals
should be created using the newEntityReferenceTarget method

Input Parameters:

• resource - the resource URI (Type: ExternalURI)

Return Type: StatementTarget

Operation: newLiteralTarget
Create a new StatementTarget of type LITERAL . Note that this is a helper function and does not change the state of
the service itself.

Input Parameters:

• literal - The target literal (Type: OpaqueData)

Return Type: StatementTarget

Operation: newEntityReferenceTarget
Create a StatementTarget of type ENTITY . Note that this is a helper function and does not effect the state of the service.
Services may choose to validate the input parameters of this method when it is invoked or may postpone validation until the
corresponding create or update service call is invoked.

Input Parameters:

• entity - the name or URI of the entity reference (Type: EntityNameOrURI)

Return Type: StatementTarget

Exceptions:

• UnsupportedNamespaceName - The supplied namespace name is not one that is known to the service.

• UnknownEntity - The EntityNameOrURI is not known to the service

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 65

Figure 3.8: Resource Maintenance

The diagram above contains the common model elements that can be changed when updating an instance of an AbstractResourceDescription
and a ResourceVersionDescription.

Class UpdateAbstractResourceDescription
The list of attributes that can be updated in an abstract resource.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 66

Superclasses:
• Every instance of UpdateAbstractResourceDescription is also an instance of
UpdateResourceDescription.

Attributes:
• releaseDocumentation - documentation about the frequency and nature of releases (version) of this resource.2

• releaseFormats - a format and notation that the releases (versions) of this resource are published in

Class UpdateResourceDescription
The list of attributes that can be updated in any existing resource.

Attributes:
• formalName - the formal or official name of this resource

• keywords - additional identifiers used to index and locate this resource

• resourceTypes - the class(es) that this resource instantiates

• resourceSynopsis - a textual summary of the resource - what it is, what it is for, etc.

• additionalDocumentation - references to documents that provide additional information about the resource

• sourcesAndRoles - the sources that participated in the creation, validation, review, dissemination, etc. of this resource
and the role(s) that they played

• rights - copyright and IP information about the referenced resource

• notes - additional notes and comments about the resource

• property - additional attributes that do not fit into any of the above areas

• alternateID - alternative URI’s that uniquely name this resource in other environments and contexts

Class UpdateResourceVersionDescription
The set of attributes that can be updated in the description of a resource version

Superclasses:
• Every instance of UpdateResourceVersionDescription is also an instance of
UpdateResourceDescription.

Attributes:
• state - the state of the resource version. Note that resource versions can change state from OPEN to FINAL , but not

the other direction. Once a resource version description is finalized and committed, it becomes immutable.

• sourceAndNotation - a description of where the (or a) source of the version may be found, what format and language
it is available in, etc.

• predecessor - the name or URI of the resource version that immediately preceded this version on an evolutionary path

• officialResourceVersionId - an official label or identifier that was assigned to this version by its publisher

• officialReleaseDate - information about the source, format, release date, version identifier, etc. of a specific version of
an abstract resource

• officialActivationDate - the date that this version of the resource is stated by its publishers to go into effect
2OMV 2.4.1 pp 18

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 67

Non-Resource-Specific Services

Import And Export Services
Import and Export Resources

Figure 3.9: Import Export Log

Class LogEntries
A ordered sequence of log entries. The order of the entries is determined by the specific CTS2 service implementation and
should not be assumed by client applications.

Attributes:

• entry -

Invariants:

1. Log entries occur in reverse temporal order .

Class LogEntry
an entry in a sequence of messages related to a process or task

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 68

Attributes:

• processID - the identifier of the process that made the entry

• entryTime - the time the entry was made

• entryType - the significance of the particular message

• message - the text of the message

• programName - the name of the program or application that created the entry

• messageID - an external identifier that uniquely names the message. ExternalURI is present to enable automated
processing of log entries where appropriate. The significance and use of messageID is not addressed within the
context of the CTS2 specification

Enum LoggingLevel
The LoggingLevel entries are modeled after the corresponding levels in the Apache log4j package 3. As with the log4j
package, each level includes the entries in the lower level. In particular, levels are ordered. For the standard levels, we have
DEBUG < INFO < WARN < ERROR < FATAL.

Attributes:

• DEBUG - detailed (verbose) information about the process or operation that allows a user to determine exactly what
transpired

• INFO - informative messages about the progress of or results of a requested operation

• WARN - represents potential problems that do will not prevent completion of the requested operation, but may require
attention or intervention.

• ERROR - represents an error that, while serious, may under circumstances be ignored and processing may continue

• FATAL - represents an error that prevents further processing. FATAL errors cannot be ignored or overridden.

3http://logging.apache.org/log4j/

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 69

Figure 3.10: Import Export Process Status

Class ProcessStatus
The state of a running or completed load or export process.

Attributes:

• startTime - the date and time that the process began execution

• endTime - the date and time that the process finished execution if it isn’t still running

• finalState - an indicator that determines whether the process completed successfully.

• completionMessage - a message summarizing the final results of the process

• numErrors - the number of errors (LoggingLevel = ERROR or FATAL) encountered by the process so far

• numWarnings - the number of warnings (LoggingLevel = WARN) encountered by the process so far

• log - the set of log records created by the process

Invariants:

1. If a process completes with errors, numErrors must be > 0 .

2. If a process completes with warnings, there can be no errors and the number of warnings must be > 0.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 70

3. If a process completes successfully there can be no errors or warnings .

4. Either a process doesn’t have an endTime , meaning that it is still running, or there is a finalState and completionMessage
available .

5. If there are no errors reported, there will be no errors in the log. Otherwise there are at least as many log entries with
an entryType of ERROR .

6. If there are no warnings reported, there will be no warnings in the log. Otherwise there are at least as many log entries
with an entryType of WARN .

Enum ProcessCompletionState
An indicator of the completion state of a process

Attributes:

• PROCESS FAILED - the process did not complete successfully

• PROCESS COMPLETE WITH ERRORS - the process completed, but there were errors encountered

• PROCESS COMPLETE WITH WARNINGS - the process completed and there were no errors but warnings were
issued

• PROCESS COMPLETED SUCCESSFULLY - no errors, no warnings. Ship it!

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 71

Import and Export Services

Figure 3.11: Shared Import and Export Service Components

Class ImportExportBase
Superclasses:

• Every instance of ImportExportBase is also an instance of BaseService.

Attributes:
• supportedLanguageAndSyntax - an ontology language and syntax supported by an import or export package

Operation: clearLog
Clear the log entries for the supplied process or, if none is supplied clear all log entries

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 72

Input Parameters:
• processIdOPT - if present, all log entries are removed for this process. If absent, all log entries are removed for the

package (Type: LocalURI)

Return Type:

Exceptions:
• UnknownProcessId - The processId is not known to the service

Operation: getLog
Retrieve the log entries for the supplied process and logging level. If a process id isn’t supplied, return all log entries and if a
log level isn’t supplied, return all level of entries

Input Parameters:
• levelOPT - If present, this parameter restricts the returned log entries to those equal to or more "severe" than the stated

level. If absent, all log entries are returned. (Type: LoggingLevel)

• processIdOPT - If present, only log entries for the supplied process are returned. If absent, log entries for all running
or completed processes are returned. (Type: LocalURI)

Return Type: LogEntries

Exceptions:
• UnknownProcessId - The processId is not known to the service

Enum ErrorResponse
An indicator that determines the server’s response to encountering warnings or errors.

Attributes:
• CONTINUE ON ERROR - continue processing if at all possible. Do not stop unless a FATAL error is encountered.

• STOP ON ERROR - continue processing unless a FATAL or ERROR event occurs

• STOP ON WARNING - stop processing if a WARN , ERROR or FATAL event occurs

Enum LoggingLevel
The LoggingLevel entries are modeled after the corresponding levels in the Apache log4j package 4. As with the log4j
package, each level includes the entries in the lower level. In particular, levels are ordered. For the standard levels, we have
DEBUG < INFO < WARN < ERROR < FATAL.

Attributes:
• DEBUG - detailed (verbose) information about the process or operation that allows a user to determine exactly what

transpired

• INFO - informative messages about the progress of or results of a requested operation

• WARN - represents potential problems that do will not prevent completion of the requested operation, but may require
attention or intervention.

• ERROR - represents an error that, while serious, may under circumstances be ignored and processing may continue

• FATAL - represents an error that prevents further processing. FATAL errors cannot be ignored or overridden.
4http://logging.apache.org/log4j/

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 73

Enum SyncOrAsync
An indicator that determines whether an import, export or other potentially lengthy request occurs in the foreground or returns
control to the user.

Attributes:

• SYNCHRONOUS - the method call does not return until the operation is complete

• ASYNCHRONOUS - the method returns control to the client as soon as the process begins execution

Enum ValidationLevel
An indicator that determines the detail level of a validation request.

Attributes:

• VL WARN - report all WARN (warning) and ERROR (error) level validation errors

• VL ERROR - only report ERROR (error) level validation errors

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 74

Figure 3.12: Shared Import Service Components

The ImportService provides basic access to the Changeable components of the corresponding structural profile.
Each structural profile extends the base import service to provide access to that profile’s components.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 75

Class BaseImportService
Superclasses:

• Every instance of BaseImportService is also an instance of
ImportExportBase.

Operation: getStatus
Return the import status for the supplied process identifier

Input Parameters:
• processId - The import process to return the status of (Type: LocalURI)

Return Type: ImportStatus

Exceptions:
• UnknownProcessId - The processId is not known to the service

Operation: import
Load structured content from a specified source and return a URI that references the "process" that performed or is performing
the import

Input Parameters:
• languageAndSyntax - the formal language and syntax of the resource to be imported. languageAndSyntax must be in

the service supportedLanguageAndSyntax (Type: OntologyLanguageAndSyntax)

• source - the source document or resource to import from (Type: DocumentURI)

• metadataOPT - the URI of additional metadata to control the import process (Type: DocumentURI)

• errorResponse - an indicator that determines how the service should behave when it encounters an error or warning
(Type: ErrorResponse)

• synchronicity - an indicator that determines whether the service should return as soon as the process starts or should
wait until it is completed (Type: SyncOrAsync)

Return Type: LocalURI

Exceptions:
• UnableToOpenDocument - the process is unable to open the primary document to be imported

• UnsupportedOntologySyntax - The supplied ontology syntax is not supported by the service

• UnsupportedOntologyLanguage - The supplied ontology language is not supported by the service

• MetadataError - An error was encountered in the metadata document. This error includes formatting errors, missing
parameters and invalid content.

• UnableToOpenMetadataDocument - the service is unable to access the supplied metadata document

• MetadataDocumentRequired - Additional metadata must be supplied to perform this operation

Operation: validate
Determine whether the source document would import successfully if it were imported

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 76

Input Parameters:

• languageAndSyntax - the language and syntax of the import source (Type: OntologyLanguageAndSyntax)

• source - the URI of the resource to import (Type: DocumentURI)

• metadataOPT - metadata that controls the import process (Type: DocumentURI)

• validationLevel - level of validation to perform (Type: ValidationLevel)

Return Type: LogEntry

Exceptions:

• UnableToOpenDocument - the process is unable to open the primary document to be imported

• MetadataError - An error was encountered in the metadata document. This error includes formatting errors, missing
parameters and invalid content.

• UnableToOpenMetadataDocument - the service is unable to access the supplied metadata document

• MetadataDocumentRequired - Additional metadata must be supplied to perform this operation

• UnsupportedOntologySyntax - The supplied ontology syntax is not supported by the service

• UnsupportedOntologyLanguage - The supplied ontology language is not supported by the service

Class ImportStatus
ImportStatus represents the state of an import process that is currently running or has completed.

Superclasses:

• Every instance of ImportStatus is also an instance of ProcessStatus.

Attributes:

• languageAndSyntax - the ontology language and syntax of the imported document

• source - the uri of the document or resource being imported

• metadata - the URI of the associated metadata document if any

• synchronicity - an indicator whether the import was done synchronously or asynchronously

• errorResponse - an indicator that determines how the process should (or did) behave when it encountered warnings or
errors

• numElementsImported - the number of elements that have been successfully imported

• loadedURI - the CTS2 URI(s) of the loaded resources

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 77

Figure 3.13: Shared Export Service Components

The ExportService provides basic access to the Changeable components of the corresponding structural profile.
Each structural profile extends the base export service to provide access to that profile’s components.

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 78

Class BaseExportService
Superclasses:

• Every instance of BaseExportService is also an instance of
ImportExportBase.

Operation: getStatus
Obtain a current status of the export process.

Input Parameters:

• processId - the URI or handle of a running or completed export process (Type: LocalURI)

Return Type: ExportStatus

Exceptions:

• UnsupportedStatus - The name or URI of the Changeable status property is not recognized by the service.

Operation: export
Export structured content to a specified location with a specified format and return a URI that represents the (results of) the
process that did the exporting

Input Parameters:

• languageAndSyntax - the language and syntax of the target resource (Type: OntologyLanguageAndSyntax)

• resourceDirectory - the URI of a directory that references the list of the CTS2 resources / entities / associations to
export (Type: DirectoryURI)

• destination - the URI of the export destination. May reference a file, directory or other resource depending upon the
type of export implementation (Type: URI)

• overwrite - an indicator that determines whether existing resources can be overwritten or, if they already exist, the
export operation fails (Type: OverwriteRule)

• errorResponse - what to do when an error is encountered (Type: ErrorResponse)

• synchronicity - an indicator that determines whether the operation is to block until completed or whether it is to run in
the background (Type: SyncOrAsync)

Return Type: LocalURI

Exceptions:

• UnsupportedResourceType - the type of resource referenced by the directory is not supported by the service - either
it can’t be exported period or it can’t be exported in the supplied language or format

• ResourceAlreadyExists - a referenced resource already exists and overWrite is set to FAIL IF EXISTS

• UnableToOpenOrCreateTargetDirectory - the export service is unable to open or create the supplied target directory

• ResourceWriteError - an error occurred while trying to write the exported image of a resource into the directory

• UnsupportedOntologySyntax - The supplied ontology syntax is not supported by the service

• UnsupportedOntologyLanguage - The supplied ontology language is not supported by the service

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 79

Preconditions:

1. The supplied language and syntax must be one of those supported by the service

Class ExportStatus
ExportStatus represents the state of an export process that is currently running or has completed.

Superclasses:

• Every instance of ExportStatus is also an instance of ProcessStatus.

Attributes:

• languageAndSyntax - the output language and syntax

• resourceDirectory - The directory of resources being exported

• destination - The export destination

• overwrite -

• errorResponse -

• synchronicity -

• numElementsExported - The number of elements that have been exported so far

• exportedURI - A list of URIs of the actual exported resources. This may match the destination URI or may represent
separate resources (files) in the context of the destination URI

Enum OverwriteRule
Attributes:

• OVERWRITE IF EXISTS -

• FAIL IF EXISTS -

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 80

Update Service

Figure 3.14: Update Service

Class ChangeSetEntry
A change set URI along with the date and time it was applied to a particular service implementation

Attributes:

• applicationDate - the date and time that a change set was applied to a given service instance

• changeSetURI - the he URI of the change set that was applied

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 81

Class ChangeSetEntryList
An ordered list of ChangeSetEntries. The order of the list reflects the order in which the change sets were applied
to the service instance.

Attributes:

• - An entry in a ChangeSetEntryList

Class UpdateService
An update service provides the ability to apply incremental changes to one or more structural elements that are supported by
the service

Superclasses:

• Every instance of UpdateService is also an instance of BaseService.

Attributes:

• supportedStructures - the set of structural profiles that the update service can apply changes to

Invariants:

1. Every structure listed in supported structures must also exist as a supportedProfile associated with a FP UPDATE
functional profile .

Operation: validateChangeSet
Validate the change set and report any errors or warnings that would occur were it to be applied.

Input Parameters:

• validationLevel - an indicator that determines whether just errors are reported or both errors and warnings (Type:
ValidationLevel)

• changeSet - a uri the resolves to a valid change set. This could be the address of a change set in another service or an
image of a change set on a network drive (Type: DocumentURI)

Return Type: ProcessStatus

Exceptions:

• UnableToOpenDocument - the process is unable to open the primary document to be imported

Operation: putChangeSet
Install the supplied change set into the service.

Input Parameters:

• changeSet - a uri the resolves to a valid change set. This could be the address of a change set in another service or an
image of a change set on a network drive (Type: ChangeSetURI)

• errorResponseOPT - an indicator that determines how errors and warnings are processed. (Type: ErrorResponse)

Return Type: ProcessStatus

CHAPTER 3. CORE COMPUTATIONAL MODEL ELEMENTS 82

Operation: listChanges
List the URIs of all the changes that were applied between fromDate and toDate . If fromDate is absent or is less than
toDate , entries will be listed in forward chronological order, otherwise they will be listed in reverse order.

Input Parameters:

• fromDateOPT - list change sets that were applied on or after this date. If not supplied, start with the first change set
that was applied (Type: DateAndTime)

• toDateOPT - list all changes that were applied before this date. If not supplied, list all changes that were applied later
than or equal to the toDate (Type: DateAndTime)

Return Type: ChangeSetEntryList

	Introduction
	Conventions
	Notation
	Identifiers
	Stereotypes
	Read Only Attributes

	Core Information Model Elements
	Data Types
	Axiomatic Data Types
	EntryDescription and OpaqueData Types
	Types of URI

	Resources, Local Identifiers and Entity References
	Resource References
	Local Identifiers
	Entity References

	Building Blocks
	Annotations
	Statement Target Model

	Directories and Lists
	Directory and List Model
	Directory Types

	Filters and Sorting
	Change Model
	Updates
	Iteratable Change Sets

	Resource Description
	Resource Description Model
	Directories of Resource Descriptions

	Core Computational Model Elements
	Interface Specific Structures
	Miscellaneous Input Structures
	Exception Model

	Service Base
	Functional Profiles
	Read Service Base
	Query Service Base
	History Service Base
	Maintenance Service Base

	Non-Resource-Specific Services
	Import And Export Services
	Update Service

