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Motivation: Digital Twins
Definition (2000 – today)
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Many Application Domains

• Virtual representation of a physical object or system that operates across the system lifecycle 
(not just front end).

• NASA, manufacturing processes, building operations, personalized medicine, smart cities, …

• Mirror implementation of physical world through real-time-monitoring and synchronization of 
data with events.

• Provide algorithms and software for observation, reasoning and physical systems control.

?
Required Functionality



Importance and Timeliness (Why?)
Business Drivers (Why this project is timely?)

Siemens, IBM, now see Digital Twin 
Era as the successor to MBSE with 
SysML

• AI and ML will be deeply embedded in new software and algorithms.

Digital Twin Era (Business Spin)
• New methods and tools for model-centric engineering.
• New operating system environments for observation, reasoning and physical systems control.
• Superior levels of system performance, agility, economy, etc.

Technical Implementation (2020, Google, Apple, Amazon, Siemens, IBM … )



Proposed Approach (Why?)
Definition of AI and ML

• AI: Knowledge representation and reasoning with ontologies and rules. Construction of 
semantic graphs, executable event-based processing, multi-domain reasoning.

• ML: Modern neural networks (closely related to signal processing of data streams). Data 
Mining. Input-to-output prediction, Learn structure and sequence. Identify objects, events, 
anomalies. Remember stuff.

AI/ML Strengths and Weaknesses

State-of-the-art AI and ML technologies are fragmented in their capability:

• AI provides a broad view of concepts needed for reasoning. Decision making 
processes are transparent; semantic graphs are flexible.

• Semantic reasoning is decision making in-the-moment (no memory).
• Data mining algorithms can organize information from large data sources.
• ML procedures developed to solve very specific tasks.
• ML decision making procedures lack transparency.  
• ML procedures can identify anomalies (events) in streams of data.



Proposed Approach (What’s New?) 

• Explore design of digital twin architectures that support AI and ML formalisms working side-
by-side as a team.

• How to design digital twin elements and their interactions to support: (1) methods and tools for model-
centric engineering, and (2) digital twin operating system environments for observation, reasoning, 
control.
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Key Research Challenge

Project Success (What does it look like?)
• Knowledge to guide architectural development of future digital twins enabled by AI / ML technology.

Digital Twins (What’s New?)



Digital Twins à Digital Threads (What?)
AI4SE: Cradle-to-Grave Lifecycle Support (Digital Threads) 

Observation: A lot of model-centric engineering boils down to representation of systems as graphs and 
sequences of graph transformations punctuated by decision making and work / actions.

Reasonable Starting Point: Understand the range of possibilities for which machine learning of graphs
and their attributes support and enhance activities in model-centric engineering and systems operation.



Digital Twin Architecture (2017-2022)

relationships.
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Teaching Machines to Understand Graphs

Predictions: graph nodes and labels, dependency

• Step 1: Multi-Domain Semantic Modeling
• Step 2: Semantic Modeling + Data Mining
• Step 3: Teaching Machines to Understand 

Graphs

What will the machine 
learning do?
Maria Coelho’s PhD Research
Explore opportunities for teaching machines 
to understand graphs.



• Traditional approaches to graph 
modeling employ adjacency 
matrices. 

• Topology properties can then be 
extracted through graph analysis
tasks: e.g., connectivity analysis, 
traceability analysis, cycle detection.

Classical Graph Models and Graph Analysis

Traditional Approach to Graph Analysis

A graph is defined as G = (V, E), where V is a set of vertices (i.e. nodes), 
E = set of edges, and each edge is formed from pair of distinct vertices in V.



Algorithms that use statistics to learn patterns and hidden insights in 
data without being explicitly programmed for it.

Machine Learning



• Adjacency matrices suffer from data sparsity, high-dimensionality, and a lack 
of support for capturing graph attributes.

• Surge in graph embedding approaches.
• Output vectors are statistical, should be interpreted as graph analytics.
• Learned embeddings could advance various downstream learning tasks:

Ø Node Classification
Ø Node Clustering
Ø Anomaly Prediction
Ø Attribute Prediction
Ø Link Prediction
Ø Recommendation
Ø Etc.

Machine Learning Approach to Graph Analytics

Graph Analytics

Captures graph
Attributes.



Recent Research at UMD, 2021

Frame Graph Learning as a Binary 
Classification Problem



One Region
Ø One Hidden Layer
Ø Hidden Layer Size = 

number of hyperplanes 
required to form region

Ø Output neuron

Many Regions
Ø Two Hidden Layers
Ø Hidden Layer 1 Size = 

number of hyperplanes 
required to form regions

Ø Hidden Layer 2 Size = 
number of regions

Ø Output neuron

Source: Lippmann, R., 1987

Network Architecture for Classification

Key Observation: Input-output relations (logic) can 
be framed in terms of node-to-node connectivity in a 
graph. It’s only a question of interpretation!



Topology:
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Directed Line Problem (One Region)



Topology:

𝐴 =

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
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Architecture:

x y

Line Problem (Multiple Regions)



Topology:

𝐴 =

0 0 1 1 1 1
0 0 0 0 1 1
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Key Benefit:
Good physical
intuition.



Topology:

𝐴 =

0 1 1 0 0 1
1 0 1 0 0 0
1 1 0 1 1 0
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1 0 0 0 1 0

Architecture: 
Visually hard to determine required architecture, need for matrix reordering 
approach. 
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Matrix Reordering: Automation to Reveal Visual Patterns
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lntuition: Failing.



Topology:

𝐴 =

Matrix Reordering for Graph Learning 
Example: Water Distribution Network



Heatmap:

Matrix Reordering for Graph Learning 
Water Distribution Network



Traveling Salesman:

runtime of 
~2 secs.

Matrix Reordering for Graph Learning 
Matrix Reordered Water Distribution Network



Current Research, 2021-2022.

Transition to Networked 
Decomposition and Incremental 

Learning of Multi-Domain Graphs 



Time

Transition to Networked Decomposition 

Component Characteristics

Connection Characteristics

Temporal Characteristics

Spatial Characteristics

Attribute-Driven Decomposition of System Graphs



Shanthamallu et al., 2019

Transition to Networked Decomposition 
Supra Graph Framework: Support for multi-layer / multi-
domain graphs, graph zones, viewpoints, etc.



• Washington DC’s drinking 
water is distributed by 
elevation levels. 

• Distribution network is 
divided into “pressure 
zones”.

Transition to Networked Decomposition 
Example: Washington DC Water Network
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Transition to Networked Decomposition 

Water Network Decomposition into Graph Layers



~91.9 s

~81.6 s

~91.1 s

~90.6 s

~92.3 s

~98.2 s

~8.2 s

GPU RuntimeDecomposed Network

Total GPU Runtime = 553.9 s

Original Network

Total GPU Runtime = 2935.4 s

Transition to Networked Decomposition 
Incremental Learning of Network / Graph Zones

Accelerated 
Learning



Transition to Networked Decomposition 
Washington DC Metro System Network

A =



Transition to Networked Decomposition 
Washington DC Metro System Network



~115.03 s

~97.26 s

~98.33 s

~102.95 s

~102.86 s

~101.12 s

GPU RuntimeDecomposed Network

Total GPU Runtime = 617.55 s

Original Network

Total GPU Runtime = 25582.10 s

Accelerated Learning of Network / Graph Zones

Transition to Networked Decomposition 



Results and Future Work
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Results: Teaching Machines to Understand Graphs

Next Steps: Focus on AI-ML Collaboration in Digital Twins

Semantics

Semantic
Modeling

Machine
Learning

Experience
Provide 

Inject

• Small graphs that have static graph topologies. 
• Formulae for synthesis of neural network architectures and 

incremental learning.
• Modeling of attributed multi-domain graphs. 

• Understand mechanisms of AI – ML interaction.
• Reasoning with events, time and space.
• Dynamic graph topologies.
• Inject semantics into Machine Learning.



Thank You

Questions?

Contact Information

Mark Austin: austin@umd.edu
Maria Coelho: mecoelho@terpmail.umd.edu
Mark Blackburn: mblackbu@stevens.edu
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