
Discipline-Specific Computational Modelers
vs.

Systems Modelers:

Identifying A Shared Perspective and
Organizational Interface

Systems
Modelers’
Perspective

Computational
Modelers’

PerspectiveSh
ar

e
d

P
e

rs
p

e
ct

iv
e

V1.3.1

The Challenge of Two Different Perspectives

• Discipline-specific computational modelers’ perspectives often emphasize:
1. Dynamical behavior frequently represented by time-based simulation of that behavior
2. Optimization or analysis at the level of the simulated phenomena
3. Numerical methods, simulation platforms, simulation languages
4. Physical sciences (for physics-based models), or . . .
5. Machine learning (for data-driven models)
6. High performance computing

• System modelers’ perspectives often emphasize:
1. Multi-level organizing frameworks of collective structure, behavior, interfaces
2. Architectures, partitioning (decomposition) and hierarchical viewpoints
3. Global, emergent system behavior represented, not necessarily by dynamical simulation
4. All dimensions represented, not just behavior, multiple views, product lines and families
5. Systems modeling languages, tools, platforms

Systems
Modelers’

Perspective

Computational
Modelers’

Perspective

2

Challenge of different human perspectives is not
just a matter of integrating different models

• Technical standards such as FMI can help greatly in integrating different
technical models, but . . .

• The challenge discussed here is the very different human perspectives of
systems versus discipline-specific engineers

Bond Time (t) Bond Temp (T)

MTBF

Systems
Modelers’

Perspective

Computational
Modelers’

Perspective

3

Good news: There is a shared perspective

• It is not necessary to demand that these skilled specialists fully
adopt each others’ overall skillsets and perspectives.

• Instead, making a few simple agreements about a shared
(overlapping) part of the two perspectives can be sufficient to align
the work of two groups.

Systems
Modelers’
Perspective

Computational
Modelers’

PerspectiveSh
ar

e
d

P
e

rs
p

e
ct

iv
e

4

The three elements of the Shared Perspective

Practitioners can align by agreeing on the respectively modeled:

1. Phenomena / Interactions--
• Examples: Combustion; Melting; Corrosion.

2. Variables / Attributes / Parameters--
• Examples: Temperature; Efficiency; Material Type; Tensile Strength; Life.

3. Attribute Couplings / Dependencies / Equations / Laws--
• Examples: Elasticity Stress-Strain Curve; Purity-Strength Correlation; Equations

of Motion; Material Properties Table; Customers’ Product Selection Guide.

5

Actions to take

• Computational Modelers: Identify the following, as would already be expected in
computational modeling work--
• Phenomena, ranked by priority (PIRT)
• Attributes (variables, parameters) for the computational model
• Attribute couplings (dependencies, equations, laws) to be simulated (even if to be machine

learned)

• Systems Modelers:
• Map the Attributes to identified system Input-Outputs, Functional Roles (with their Functional

Interactions), Stakeholder Features, and Design Components.
• Preferably, choose those Input-Outputs, Roles, Interactions, Features and Design Component from

standard System Patterns (S*Patterns) for the enterprise or domain.
• Show the resulting system model to Computational Modelers, for their confirmation of the system

context of their work.

• For both groups:
• As needed, negotiate the above to consistency, including shared naming necessary for alignment
• Note that any view format (table, diagram, list, otherwise) can accomplish the above 6

Payoffs for acting: Who benefits, and how?

1. Benefits in a single project, single computational model:
• The systems context model, with the computational model

embedded in it by the above actions, makes explicit (to both
groups) the relative scope and context of the computational
model, within the larger system context.

• This often leads to insights or event surprises as to the scope or
context—at the very least, a common view of that context.

• Who gains / realizes the benefit? Both the computational
modelers and the larger system context / business may gain from
this discovery, earlier than might otherwise been the case. It may
lead to earlier adjustment of or recognition of value of the
computational model.

• Example: The teams realize that the scope of the computational
model does not include some scope that had been assumed by
its name or prose description, or includes more scope than had
been realized.

7
(more)

Project Product
System Context Model

Project
Computational

Model

Payoffs for acting: Who benefits, and how?

2. Benefits in a single project, multiple computational models:
• The systems context model, with multiple computational models

embedded in it by the above actions, makes explicit (to both groups)
the relative scope and context of the full set of computational models,
within the system context—including their relations to each other.

• This often leads to insights or event surprises as to the scope of the full
set and their relations—at the very least, a common view of that
context.

• Who gains / realizes the benefit? Both the computational modelers
and the larger system context / business may gain from this discovery,
earlier than might otherwise been the case. It may lead to earlier
adjustment of or recognition of value of the computational models.

• Example: The teams realize that the connection of two computational
models does not include some scope that had been assumed by its
name or prose description, or includes more scope than had been
realized.

8(more)

Project Product
System Context Model

Multiple
Computational

Models

Payoffs for acting: Who benefits, and how?
3. Benefits across multiple, projects, programs, the
enterprise:

• Across multiple projects, the use of a shared system
product pattern leads to system level convention
consistencies across multiple system projects and
products.

• This benefit extends to computational models when
they are aligned (by the method summarized earlier
above) with the system context models.

• When it comes to VVUQ of the computational models,
or trust in their model credibility, this can be leveraged
to assess or gain that credibility on a leveraged basis.

• Who gains / realizes the benefit? The enterprise as a
whole gains.

• Example: Two different product configurations are
passing through their product development cycles. A
shared computational model is used in both
products/projects, with attention to its range of
validation and verification. 9

Especially for Systems Specialists:
Additional Detail and Examples, Using S*Metamodel

1. Phenomena / Interactions

2. Variables / Attributes / Parameters

3. Attribute Couplings / Dependencies / Equations / Laws

10

11

1. Phenomena occur in Context of Interactions.

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

attribute

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

Design

Constraint

Statement

Stakeholder

Requirement

Statement

Detail Level

Requirements

High Level

Design Characterization

Coupling B

Fitness

Coupling A

Decomposition

Coupling C

Functional

Role

attribute

I-O Transfer

Coupling D

S*Metamodel informal summary pedagogical diagram

(formal S*Metamodel includes additional details.)

Class

Every S*Metaclass shown is

embedded in both a

containment hierarchy and an

abstraction (class) hierarchy.

Computational Model

Attribute

Coupling

System Model

PIRT

Phenomena Identification and
Ranking Table (PIRT): Key to

computational modeling

Interactions: Key to
systems models

Interactions occur between system
components through the exchange of

force, energy, material, or information,
leading to changes of state.

System

Component

Examples: Combustion, Melting, Corrosion

2. Attributes (variables, parameters) take on values (continuous or discrete) that quantify.

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

attribute

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

Design

Constraint

Statement

Stakeholder

Requirement

Statement

Detail Level

Requirements

High Level

Design Characterization

Coupling B

Fitness

Coupling A

Decomposition

Coupling C

Functional

Role

attribute

I-O Transfer

Coupling D

S*Metamodel informal summary pedagogical diagram

(formal S*Metamodel includes additional details.)

Class

Every S*Metaclass shown is

embedded in both a

containment hierarchy and an

abstraction (class) hierarchy.

1. Feature Attributes quantify Measures
of Effectiveness, and related
stakeholder value attributes. Examples:
Fuel Economy; Production Yield.

2. Input-Output Attributes quantify
(often dynamical) input-output
quantities. Examples: Thrust; Raw
Material.

3. Role Attributes: Quantify dynamic state
variables or parametric measures of
performance. Examples: Tensile
Strength; Melting Point; Temperature.

4. Design Component Attributes:
Quantify the identity of a component
to which has been allocated
performance of a Functional Role.
Examples: Part Number; Material Type

12

3. Attribute Couplings (dependencies, equations, laws) relate/constrain the values
(continuous or discrete) of coupled attributes.

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

attribute

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

Design

Constraint

Statement

Stakeholder

Requirement

Statement

Detail Level

Requirements

High Level

Design Characterization

Coupling B

Fitness

Coupling A

Decomposition

Coupling C

Functional

Role

attribute

I-O Transfer

Coupling D

S*Metamodel informal summary pedagogical diagram

(formal S*Metamodel includes additional details.)

Class

Every S*Metaclass shown is

embedded in both a

containment hierarchy and an

abstraction (class) hierarchy.

1. Fitness Couplings: Express how technical
performance and stakeholder value are
related—in effect, the utility or perceived
value of technical performance. Examples:
Market share as function of performance,
cost, reliability, cost.

2. I-O Transfer Couplings: Express how output,
is related to input, as function of state or
other parameters. Examples: Part quality as
function of raw material feedstock and
process parameters.

3. Decomposition Couplings: Express how
higher level system state depends on lower
level subsystem parameters. Examples:
Engine efficiency as function of compressor
stage parameters.

4. Characterization Couplings: Express how
behavior of a component is related to the
identity of the component. Examples: Tensile
Strength as a function of Chemical Identity.13

Questions?

Contact:
info@ictt.com

14

Enterprise
Product System

Pattern

Project
Configured Product

System Context Model

Multiple
Computational

Models

Project
Configured Product

System Context Model

Multiple
Computational

Models

mailto:info@ictt.com

