
Discipline-Specific Computational Modelers 
vs.

Systems Modelers:

Identifying A Shared Perspective and 
Organizational Interface
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The Challenge of Two Different Perspectives

• Discipline-specific computational modelers’ perspectives often emphasize:  
1. Dynamical behavior frequently represented by time-based simulation of that behavior
2. Optimization or analysis at the level of the simulated phenomena
3. Numerical methods, simulation platforms, simulation languages
4. Physical sciences (for physics-based models), or . . .
5. Machine learning (for data-driven models)
6. High performance computing

• System modelers’ perspectives often emphasize:  
1. Multi-level organizing frameworks of collective structure, behavior, interfaces
2. Architectures, partitioning (decomposition) and hierarchical viewpoints
3. Global, emergent system behavior represented, not necessarily by dynamical simulation
4. All dimensions represented, not just behavior, multiple views, product lines and families
5. Systems modeling languages, tools, platforms   
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Challenge of different human perspectives is not 
just a matter of integrating different models 

• Technical standards such as FMI can help greatly in integrating different 
technical models, but . . . 

• The challenge discussed here is the very different human perspectives of 
systems versus discipline-specific engineers
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Good news: There is a shared perspective

• It is not necessary to demand that these skilled specialists fully 
adopt each others’ overall skillsets and perspectives.

• Instead, making a few simple agreements about a shared
(overlapping) part of the two perspectives can be sufficient to align 
the work of two groups.
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The three elements of the Shared Perspective

Practitioners can align by agreeing on the respectively modeled: 

1. Phenomena / Interactions--
• Examples: Combustion; Melting; Corrosion.

2. Variables / Attributes / Parameters--
• Examples: Temperature; Efficiency; Material Type; Tensile Strength; Life.

3. Attribute Couplings / Dependencies / Equations / Laws--
• Examples: Elasticity Stress-Strain Curve; Purity-Strength Correlation; Equations 

of Motion; Material Properties Table; Customers’ Product Selection Guide. 
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Actions to take

• Computational Modelers: Identify the following, as would already be expected in 
computational modeling work--
• Phenomena, ranked by priority (PIRT)
• Attributes (variables, parameters) for the computational model
• Attribute couplings (dependencies, equations, laws) to be simulated (even if to be  machine 

learned)

• Systems Modelers:
• Map the Attributes to identified system Input-Outputs, Functional Roles (with their Functional 

Interactions), Stakeholder Features, and Design Components.
• Preferably, choose those Input-Outputs, Roles, Interactions, Features and Design Component from 

standard System Patterns (S*Patterns) for the enterprise or domain.
• Show the resulting system model to Computational Modelers, for their confirmation of the system 

context of their work.

• For both groups:
• As needed, negotiate the above to consistency, including shared naming necessary for alignment
• Note that any view format (table, diagram, list, otherwise) can accomplish the above 6



Payoffs for acting: Who benefits, and how?

1. Benefits in a single project, single computational model:  
• The systems context model, with the computational model 

embedded in it by the above actions, makes explicit (to both 
groups) the relative scope and context of the computational 
model, within the larger system context.

• This often leads to insights or event surprises as to the scope or 
context—at the very least, a common view of that context. 

• Who gains / realizes the benefit? Both the computational 
modelers and the larger system context / business may gain from 
this discovery, earlier than might otherwise been the case. It may 
lead to earlier adjustment of or recognition of value of the 
computational model. 

• Example: The teams realize that the scope of the computational 
model does not include some scope that had been assumed by 
its name or prose description, or includes more scope than had 
been realized. 
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Payoffs for acting: Who benefits, and how?

2. Benefits in a single project, multiple computational models:  
• The systems context model, with multiple computational models 

embedded in it by the above actions, makes explicit (to both groups) 
the relative scope and context of the full set of computational models, 
within the system context—including their relations to each other.

• This often leads to insights or event surprises as to the scope of the full 
set and their relations—at the very least, a common view of that 
context. 

• Who gains / realizes the benefit? Both the computational modelers 
and the larger system context / business may gain from this discovery, 
earlier than might otherwise been the case. It may lead to earlier 
adjustment of or recognition of value of the computational models. 

• Example: The teams realize that the connection of two computational 
models does not include some scope that had been assumed by its 
name or prose description, or includes more scope than had been 
realized.
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Payoffs for acting: Who benefits, and how?
3. Benefits across multiple, projects, programs, the 
enterprise:  

• Across multiple projects, the use of a shared system 
product pattern leads to system level convention 
consistencies across multiple system projects and 
products.

• This benefit extends to computational models when 
they are aligned (by the method summarized earlier 
above) with the system context models. 

• When it comes to VVUQ of the computational models, 
or trust in their model credibility, this can be leveraged 
to assess or gain that credibility on a leveraged basis. 

• Who gains / realizes the benefit? The enterprise as a 
whole gains. 

• Example: Two different product configurations are 
passing through their product development cycles. A 
shared computational model is used in both 
products/projects, with attention to its range of 
validation and verification. 9



Especially for Systems Specialists: 
Additional Detail and Examples, Using S*Metamodel

1. Phenomena / Interactions

2. Variables / Attributes / Parameters

3. Attribute Couplings / Dependencies / Equations / Laws
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1. Phenomena occur in Context of Interactions.
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Phenomena Identification and 
Ranking Table (PIRT): Key to 

computational modeling

Interactions: Key to 
systems models

Interactions occur between system 
components through the exchange of 

force, energy, material, or information, 
leading to changes of state.

 

 

 

 

 

System

Component

Examples: Combustion, Melting, Corrosion 



2. Attributes (variables, parameters) take on values (continuous or discrete) that quantify.
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1. Feature Attributes quantify Measures 
of Effectiveness, and related 
stakeholder value attributes. Examples: 
Fuel Economy; Production Yield.

2. Input-Output Attributes quantify 
(often dynamical) input-output 
quantities. Examples: Thrust; Raw 
Material.  

3. Role Attributes: Quantify dynamic state 
variables or parametric measures of 
performance. Examples: Tensile 
Strength; Melting Point; Temperature.

4. Design Component Attributes: 
Quantify the identity of a component 
to which has been allocated 
performance of a Functional Role. 
Examples: Part Number; Material Type
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3. Attribute Couplings (dependencies, equations, laws) relate/constrain the values 
(continuous or discrete) of coupled attributes.
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1. Fitness Couplings:  Express how technical 
performance and stakeholder value are 
related—in effect, the utility or perceived 
value of technical performance. Examples: 
Market share as function of performance, 
cost, reliability, cost. 

2. I-O Transfer Couplings: Express how output, 
is related to input, as function of state or 
other parameters.  Examples: Part quality as 
function of raw material feedstock and 
process parameters.   

3. Decomposition Couplings: Express how 
higher level system state depends on lower 
level subsystem parameters.  Examples: 
Engine efficiency as function of compressor 
stage parameters.

4. Characterization Couplings: Express how 
behavior of a component is related to the 
identity of the component. Examples: Tensile 
Strength as a function of Chemical Identity.13



Questions? 

Contact:  
info@ictt.com

14

Enterprise 
Product System 

Pattern

Project 
Configured Product 

System Context Model

Multiple 
Computational 

Models

Project 
Configured Product 

System Context Model

Multiple 
Computational 

Models

mailto:info@ictt.com

