

BY S* PATTERNS COMMUNITY © 2024, SYSTEM SCIENCES, LLC

Systematica® Metamodel

Metamodel Version 8.0

2/15/2024

BY S* PATTERNS COMMUNITY 2 © 2024, SYSTEM SCIENCES, LLC

.

BY S* PATTERNS COMMUNITY 3 © 2024, SYSTEM SCIENCES, LLC

.

Licensed under a Creative Commons

Attribution Share Alike-License CC BY SA International 4.0

License Link: https://creativecommons.org/licenses/by-sa/4.0/legalcode

Uses are permitted under this license without further permission from the copyright owner, provided

each use (1) is clearly marked to attribute the underlying work to “S*Patterns Community”, (2)

provides a link to the CC BY SA license, (3) indicates if changes were made, (4) does not suggest the

licensor endorses the user or use, (5) does not apply legal terms or technological measures that legally

restrict others from doing anything the license permits, and (6) if you remix, transform, or build upon

the material, you must distribute your contributions under the same license as the original.

Permissions beyond the scope of this license are administered through contacting:

Corporate Officer

ICTT System Sciences

378 South Airport Street

Terre Haute, IN 47803

812-232-2208

Systematica is a registered trademark of System Sciences, LLC.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
tel:812-232-2208

BY S* PATTERNS COMMUNITY 4 © 2024, SYSTEM SCIENCES, LLC

TABLE OF CONTENTS

1.1 DOCUMENT PURPOSE .. 8

1.2 DOCUMENT SCOPE ... 8

1.3 DOCUMENT OVERVIEW .. 8

1.4 DOCUMENT REFERENCES ... 8

1.5 DOCUMENT HISTORY .. 9

2.1 SUMMARY METAMODEL .. 13

2.1.1 MODEL-BASED SYSTEMS ENGINEERING (MBSE) ... 15
2.1.2 PATTERN-BASED SYSTEMS ENGINEERING (PBSE) .. 15

2.2 CLASS HIERARCHY VIEW ... 16

2.3 GENERAL CLASS VIEW ... 17

2.4 FEATURE FRAMEWORK VIEW ... 18

2.5 DOMAIN ANALYSIS VIEW.. 19

2.6 LOGICAL ARCHITECTURE VIEW ... 20

2.7 STATE ANALYSIS VIEW .. 21

2.8 DETAIL REQUIREMENTS VIEW .. 22

2.9 HIGH LEVEL DESIGN VIEW ... 23

2.10 INTERFACE CONTEXT VIEW ... 24

2.11 REIFIED RELATIONSHIP VIEWS VIEW .. 25

2.12 REIFIED RELATIONSHIP VIEW .. 26

2.13 ARCHITECTURAL RELATIONSHIP VIEW ... 26

2.14 FUNCTIONAL INTERACTION VIEW .. 27

2.15 REQUIREMENT RELATIONSHIP VIEW ... 28

2.16 DESIGN CONSTRAINT VIEW .. 29

2.17 TRANSITION RELATIONSHIP VIEW .. 30

BY S* PATTERNS COMMUNITY 5 © 2024, SYSTEM SCIENCES, LLC

2.18 ATTRIBUTE COUPLING VIEW ... 31

2.19 FITNESS COUPLING VIEW .. 32

2.20 CHARACTERIZATION COUPLING VIEW ... 33

2.21 DECOMPOSITION COUPLING VIEW .. 34

2.22 INPUT/OUTPUT COUPLING VIEW ... 35

2.23 SUMMARY PATTERN CONFIGURATION VIEW ... 36

2.24 RISK ANALYSIS VIEW ... 40

3.1 METACLASSES ... 41

3.1.1 ALLOWED VALUE .. 41
3.1.2 ARCHITECTURAL RELATIONSHIP ... 41
3.1.3 ARCHITECTURAL RELATIONSHIP ROLE ... 42
3.1.4 ATTRIBUTE COUPLING .. 42
3.1.5 ATTRIBUTE COUPLING MAP .. 43
3.1.6 ATTRIBUTE ROLE ... 44
3.1.7 CHARACTERIZATION ATTRIBUTE COUPLING ... 44
3.1.8 CHARACTERIZATION ATTRIBUTE COUPLING MAP ... 45
3.1.9 CLASS .. 46
3.1.10 COUNTER REQUIREMENT STATEMENT .. 47
3.1.11 DECOMPOSITION ATTRIBUTE COUPLING ... 47
3.1.12 DECOMPOSITION ATTRIBUTE COUPLING MAP ... 48
3.1.13 DESIGN COMPONENT .. 48
3.1.14 DESIGN COMPONENT ATTRIBUTE .. 49
3.1.15 DESIGN COMPONENT ATTRIBUTE ROLE .. 49
3.1.16 DESIGN CONSTRAINT ... 50
3.1.17 DESIGN CONSTRAINT STATEMENT ... 50
3.1.18 DOMAIN .. 50
3.1.19 DOMAIN SYSTEM .. 51
3.1.20 EVENT ... 51
3.1.21 FAILURE IMPACT ... 52
3.1.22 FAILURE MODE ... 52
3.1.23 FEATURE ATTRIBUTE .. 52
3.1.24 FEATURE ATTRIBUTE ROLE .. 53
3.1.25 FEATURE PRIMARY KEY ATTRIBUTE .. 53
3.1.26 FITNESS ATTRIBUTE COUPLING .. 53
3.1.27 FITNESS ATTRIBUTE COUPLING MAP .. 54
3.1.28 FUNCTIONAL INTERACTION ... 55
3.1.29 FUNCTIONAL ROLE .. 56
3.1.30 INFORMATION INPUT/OUTPUT ... 57
3.1.31 INPUT/OUTPUT .. 57
3.1.32 I/O ATTRIBUTE ... 58
3.1.33 I/O ATTRIBUTE ROLE ... 58
3.1.34 I/O ATTRIBUTE COUPLING .. 58
3.1.35 I/O ATTRIBUTE COUPLING MAP .. 59
3.1.36 INPUT ROLE .. 59
3.1.37 INTERFACE ... 60
3.1.38 INTERFACE ELEMENT RELATIONSHIP ... 61
3.1.39 FAILURE MODE CONTEXT ELEMENT ... 61

BY S* PATTERNS COMMUNITY 6 © 2024, SYSTEM SCIENCES, LLC

3.1.40 LOGICAL SYSTEM ... 62
3.1.41 LOGICAL SYSTEM ATTRIBUTE ... 63
3.1.42 MODELED ATTRIBUTE .. 63
3.1.43 REIFIED RELATIONSHIP ... 64
3.1.44 REIFIED RELATIONSHIP ROLE ... 65
3.1.45 MODELED STATEMENT .. 65
3.1.46 OUTPUT ROLE .. 66
3.1.47 PHYSICAL INPUT/OUTPUT .. 66
3.1.48 PORT ... 67
3.1.49 REQUIREMENT STATEMENT .. 67
3.1.50 REQUIREMENT TRANSFER FUNCTION ... 68
3.1.51 ROLE ATTRIBUTE ROLE ... 69
3.1.52 STATE .. 69
3.1.53 STAKEHOLDER FEATURE ... 70
3.1.54 STAKEHOLDER REQUIREMENT ... 71
3.1.55 SYSTEM ... 72
3.1.56 SYSTEM OF ACCESS (SOA) ... 73
3.1.57 TRANSITION.. 74
3.1.58 VALUE ... 75

3.2 METACLASS RELATIONSHIPS .. 75

3.2.1 ABNORMAL STATE OF .. 75
3.2.2 ADDRESSES .. 76
3.2.3 ADVOCATES ... 76
3.2.4 ALLOCATED TO ... 76
3.2.5 APPEARS IN .. 77
3.2.6 BENEFITS ... 78
3.2.7 CAN HAVE VALUE ... 78
3.2.8 CAUSES BEHAVIOR .. 78
3.2.9 CAUSES FAILURE MODE ... 79
3.2.10 CAUSES IMPACT .. 79
3.2.11 CONTAINS .. 79
3.2.12 DERIVED FROM ... 80
3.2.13 DETECTS FAILURE MODE .. 80
3.2.14 GROUPS .. 81
3.2.15 HAS ADVOCATE .. 81
3.2.16 HAS ATTRIBUTE .. 82
3.2.17 HAS FEATURE ... 82
3.2.18 HAS ROLE .. 83
3.2.19 HAS STAKEHOLDER .. 84
3.2.20 HAS STATE ... 84
3.2.21 HAS SUBJECT .. 84
3.2.22 HAS VALUE .. 85
3.2.23 HAS VIEW .. 85
3.2.24 IMPACTS FEATURE ... 86
3.2.25 IMPACTS STAKEHOLDER.. 86
3.2.26 IS A TYPE OF ... 87
3.2.27 IS CONSTRAINED BY ... 87
3.2.28 IS FACILITATED BY EXTERNALLY .. 88
3.2.29 IS FACILITATED BY INTERNALLY .. 88
3.2.30 IS SPECIFIED BY ... 88
3.2.31 IS TRIGGERED BY ... 89
3.2.32 MITIGATES FAILURE MODE... 89
3.2.33 PERCEIVES .. 89
3.2.34 PERMITS ARCHITECTURAL RELATIONSHIP .. 90

BY S* PATTERNS COMMUNITY 7 © 2024, SYSTEM SCIENCES, LLC

3.2.35 PERMITS FUNCTIONAL INTERACTION .. 90
3.2.36 PERMITS INPUT/OUTPUT ... 90
3.2.37 PERMITS SOA .. 91
3.2.38 PREDICTS FAILURE MODE ... 91
3.2.39 PREVENTS FAILURE MODE .. 92
3.2.40 PROVIDES CONTEXT ... 92
3.2.41 PROVIDES EVENT CONTEXT ... 92
3.2.42 PROVIDES FAILURE CONTEXT .. 93
3.2.43 PROVIDES INTERFACE ... 93
3.2.44 RECEIVES ... 94
3.2.45 RELATES AR ... 94
3.2.46 RELATES FI ... 94
3.2.47 RELATES IO .. 95
3.2.48 RELATES LS .. 95
3.2.49 REPLACES ... 96
3.2.50 REQUIRES .. 96
3.2.51 SATISFIES ... 97
3.2.52 SENDS ... 97
3.2.53 TRANSITIONS FROM... 97
3.2.54 TRANSITIONS TO ... 98
3.2.55 USES FUNCTIONAL INTERACTION ... 98

3.3 METACLASS AND METARELATIONSHIP ATTRIBUTES ... 99

3.3.1 COMMON ATTRIBUTES .. 99
3.3.2 SPECIFIC ATTRIBUTES INCLUDING CONFIGURATION RULE SETS ... 100

BY S* PATTERNS COMMUNITY 8 © 2024, SYSTEM SCIENCES, LLC

1 Introduction

1.1 Document Purpose

This document describes the information model of the Systematica® systems engineering

methodology at a conceptual level. Its intent is to provide the summarized and detailed

views of Systematica information semantic structures and define the entities and

relationships shown in those or related views. The intended audience of this document is a

system engineering methodologist concerned with defining the underlying information

structure supporting a methodology for an organization, or for a reference model for

exchanges between organizations.

1.2 Document Scope

This document is at a conceptual level. No preferences to specific data model designs or

software tool paradigms are intended, as this document should be read as a guidance and

standard for any Systematica methodology implementations from pencil and paper to

advanced object-oriented systems. This document also does not describe the methodology

processes that develop, use, or maintain the information modeled herein; please refer to the

references below for Systematica process descriptions and guidance. Instead, this

document solely concentrates on explaining the information and concepts any Systematica

user will need, independent of the form that that information takes.

1.3 Document Overview

◼ Section 1 describes the document’s purpose, scope, structure, and history.

◼ Section 2 unveils the Metamodel by progressing from the summary view to the several

detailed views of Systematica.

◼ Section 3 describes the classes, relationships, and attributes of the metaclasses shown

in the Section 2 models.

1.4 Document References

1) “What Is the Smallest Model of a System?”, in Proc. of INCOSE 2011 International
Symposium, Denver, CO.

2) “Systematica Methodology: High Level Information & Process Models”.

3) ” MBSE Methodology Summary: Pattern‐Based Systems Engineering (PBSE), Based

On S*MBSE Models

4) “Introduction to Pattern-Based Systems Engineering (PBSE): Leveraging MBSE

Techniques” in Proc. of INCOSE 2013 Great Lakes Regional Conference on Systems

Engineering.

BY S* PATTERNS COMMUNITY 9 © 2024, SYSTEM SCIENCES, LLC

1.5 Document History

Date Version Changes

1/22/03 6.0.1 Initial Content

1/31/03 6.0.2 Edits to Views, Definitions, and Relationships

2/02/03 6.0.3 Metaclass Attributes added

2/12/03 6.0.4 Clarified text and collapsed Logical and Physical System synonyms.

7/14/05 7.0.1 Initial upgrade to Systematica 3.

12/01/07 7.0.1A Update legends

05/29/09 7.1 Added Configurability Content

08/29/18 7.1.2 Corrected Spelling, Order errors

10/26/18 7.1.3 Corrected logos, registration marks, and branding.

11/19/18 7.1.4 Updated summary diagram to show coupling clouds, corrected meta

relationship pasting errors.

03/04/19 7.1.5 Updated summary diagram to show new coupling clouds.

3/29/19 7.1.6 Corrected header formats and table of contents

1/13/22 8.0.1 Initial Upgrade to Systematica 6. Changed “Physical System” to

“Design Component”

1/17/22 8.0.2 Added Interface Element Relationship Class

1/19/22 8.0.3 Separated Attributes into Common and Specific

1/21/22 8.0.4 Deprecated Emerges, Exemplifies, Is Linked By, Interacts Through,

and Is Used During Relationships

1/24/22 8.0.5 Added Relates AR, Relates FI, Relates IO, and Relates LS

Relationships, Updated Class Hierarchy View

1/25/22 8.0.6 Details Requirements View, Domain Analysis View

1/26/22 8.0.7 Bookmark link updates

1/27/22 8.0.8 Bookmark/Reference Updates

1/28/22 8.0.9 Cross Reference Updates for Common Attributes, Added Interface

Context View, Updated High Level Design View, Design Coupling

Relationship View, Design Constraint Relationship View, Functional

BY S* PATTERNS COMMUNITY 10 © 2024, SYSTEM SCIENCES, LLC

Interaction View, Heading Format Consistency, Specific Attributes,

Domain Analysis View, Logical Architecture View, Risk Analysis View

1/31/22 8.0.10 View descriptions, Configuration Details

2/2/22 8.0.11 Specific Attributes for Population and Configuration Rules

2/7/22 8.0.12 Deprecated EI Related content

2/9/22 8.0.13 Configuration Rules Table

2/11/22 8.0.14 CCBY-SA License addition with associated language,

Metaclass/metarelationship definition updates

2/14/22 8.0.15 Attribute Coupling Metaclass additions, Risk Analysis Metaclasses

2/15/22 8.0.16 Modeled Relationship Views View

2/17/22 8.0.17 Configuration Table, Configuration Matrix

2/21/22 8.0.18 Document Formatting

2/22/22 8.0.19 Population Rules

2/23/22 8.0.20 Risk Analysis View Updates

2/24/22 8.0.21 Failure Impact, Counter Requirement Statement

2/25/22 8.0.22 Failure Mode, Is Root Cause Of Relationship

2/28/22 8.0.23 Risk Analysis View Updates

3/2/2022 8.0.24 Impacts Stakeholder, Impacts Feature, Causes Impact, Replaces

3/3/2022 8.0.25 Plays Causal Role, Causes Failure, Causes Mode, Causes Impact,

Causes Behavior, Abnormal State Of

3/4/2022 8.0.26 Failure Analysis Configuration Rules

3/7/2022 8.0.27 Additional Coupling Views

3/8/2022 8.0.28 Additional Metamodel View References, Attribute Coupling

Population Rules, I/O Attribute Role Metaclass

3/11/2022 8.0.29 Minor adjustments to terminology or explanations throughout.

3/12/2022 8.0.30 Adjustments to Views for improved readability

3/14/2022 8.0.31 Adjustments to diagram layout orientation

BY S* PATTERNS COMMUNITY 11 © 2024, SYSTEM SCIENCES, LLC

3/15/2022 8.0.32 Class Hierarchy View Update, Feature Attribute, Feature Primary

Key, Logical System Attribute, Design Component Attribute, I/O

Attribute Metaclass additions

3/15/2022 8.0.33 Removal of DRAFT Watermark for Beta Version Release

4/7/2022 8.0.34 State Analysis, Attribute Coupling, Fitness Coupling, Characterization

Coupling, Input/Output Coupling Views Updates

11/27/2023 8.0.35 Risk Analysis Diagram

11/29/2023 8.0.36 Feature Framework View, High Level Design View, Detail

Requirements View

12/1-

12/4/2023

8.0.37 Deprecated Allocation Decision, Alternative, Issue, Rationale, Has

Previous, Has Issue. Formalized use of “Stakeholder Requirement”

instead of “Need”, and “Requirement Transfer Function” instead of

“Requirement Relationship” Edited Allocated To details.

12/5-

12/8/2023

8.0.38 Replaced “Modeled Relationship” with “Reified Relationship”

12/11-

12/13/2023

8.0.39 Additional Columns for Table 2 Configuration Rules

12/14-

12/21/2023

8.0.40 View order reorganization, Transition Relationship View addition

12/26/2023 8.0.41 Table 2 column entries

12/27/2023 8.0.42 Diagram references

12/28/2023 8.0.43 “Addresses” metarelationship, “Allowed Value” metaclass

1/2/2024 8.0.44 “Can Have Value” metarelationship

1/3/2024 8.0.45 “Provides Event Context” metarelationship

1/16/2024 8.0.46 Configuration Rules

1/17/2024 8.0.47 Configuration Rules

1/18/2024 8.0.48 Metarelationship attribute references

1/19/2024 8.0.49 Common Attributes, Specific Attributes and Configuration Rule Sets

1/22/2024 8.0.50 Common Attributes, Specific Attributes and Configuration Rule Sets

1/23/2024 8.0.51 Common Attributes, Specific Attributes and Configuration Rule Sets

1/24-

2/15/2024

8.0.52-57 Table 2, Table 1, Feature Attribute Value Configuration Rule Set,

Formatting, FPK Attribute Configuration Details

BY S* PATTERNS COMMUNITY 12 © 2024, SYSTEM SCIENCES, LLC

2 Metamodel Views
This section uncovers the Systematica Metamodel (S* Metamodel) by first reviewing an

informal summary model and then by exploring a series of more detailed and formal views.

The summary model is intended for training and reference situations which require a less

formal description that still includes the main concepts of the Systematica Methodology.

The detailed views describe the Metamodel in a formal manner. Each detail view depicts

the metamodel in sometimes overlapping areas that roughly relate to Systematica process

steps or artifacts. Finally, this section provides detailed views and information on how

pattern classes and relationships are populated during a pattern configuration process. For

explicit mappings to Systematica process or artifact views, please consult the relevant

references listed in Section 1.4.

These Meta-Model views are explained in the following order:

◼ Summary Metamodel: The summary metamodel for informal reference and training.

◼ Class Hierarchy View: The formal view that depicts the class hierarchy of all

metaclasses.

◼ General Class View: The formal view that depicts the relationships allowed for every

metaclass.

◼ Feature Framework View: The formal view that depicts the relationships describing

information concerning Stakeholders, Stakeholder Requirements, Stakeholder

Features, and Feature Attributes.

◼ Domain Analysis View: The formal view that depicts the classes and relationships

relevant to model the systems in a domain, their interfaces, and the relationships and

Input/Outputs between them.

◼ Logical Architecture View: The formal view that depicts the classes and relationships

relevant to modeling a system’s logical architecture.

◼ State Analysis View: The formal view that depicts the classes and relationships relevant

to modeling a system’s dynamic state behavior.

◼ Detail Requirements View: The formal view that depicts the classes and relationships

relevant to modeling a system’s detail level requirements (DLR) on a Functional

Interaction basis.

◼ High Level Design View: The formal view that depicts the classes and relationships

relevant to modeling a system’s high-level design (HLD), including its physical

architecture, Functional Role allocations, and design rationale.

◼ Interface Context View: The formal view that depicts the classes and relationships

relevant to modeling a system’s interfaces and related classes and relationships.

◼ Reified Relationship Views View: An informal view relating the following relationship

views to each other. This view does not have an impact on the Metamodel and only

explains how the next nine views relate.

BY S* PATTERNS COMMUNITY 13 © 2024, SYSTEM SCIENCES, LLC

◼ Reified Relationship View: The formal view that depicts the abstract classes and

relationships with respect to reified relationships and statements.

◼ Architectural Relationship View: The formal view that depicts the classes and

relationships relevant to Architectural Relationship modeling.

◼ Functional Interaction View: The formal view that defines the classes and relationships

relevant to Functional Interactions to be specialization of those for Reified

Relationships.

◼ Requirement Relationship View: The formal view that defines the classes and

relationships relevant to Requirement Statements.

◼ Design Constraint View: The formal view that defines the classes and relationships

relevant to Design Constraints.

◼ Transition Relationship View: The formal view that defines Transitions as relationships,

used in state machine models.

◼ Attribute Coupling View: The formal view that defines the abstract classes and

relationships relevant to coupling attributes.

◼ Fitness Coupling View: The formal view that depicts the classes and relationships used

to couple Feature Attributes to Functional Role Attributes.

◼ Characterization Coupling View: The formal view that depicts the classes and

relationships used to couple Functional Role Attributes to Design Component

Attributes.

◼ Decomposition Coupling View: The formal view that depicts the classes and

relationships used to couple Functional Role Attributes.

◼ Input/Output Coupling View: The formal view that depicts the classes and relationships

used to couple Functional Role Attributes to Input/Output Attributes.

◼ Summary Pattern Configuration View: The summary view that depicts how the classes

and relationships of a pattern are populated during the pattern configuration process.

◼ Risk Analysis View: The summary view that depicts the classes of risk analysis and

how they are related to other classes.

Definitions and view references for the classes and relationships in the following views can

be found in Section 3.

2.1 Summary Metamodel

The Summary Metamodel is an informal view of the S* Metamodel that covers the classes

and relationships most relevant to the concepts of the Systematica Methodology. The

Summary Metamodel is shown in Figure 1.

BY S* PATTERNS COMMUNITY 14 © 2024, SYSTEM SCIENCES, LLC

 Figure 1: Summary Metamodel

State

Input/

Output

Interface

Functional

Interaction

(Interaction)

System

System of

Access

Technical

Requirement

Statement

Stakeholder
Stakeholder

Feature
attribute

Design

Component

attribute

(physical system)

(logical system)

attribute

Stakeholder
World

Language

High Level
Requirements

Technical
World

Language

Design

Constraint

Statement

Stakeholder

Requirement

Statement

Detail Level
Requirements

High Level
Design Characterization

Coupling

Fitness
Coupling

Decomposition
Coupling

Functional

Role

attribute

I-O Transfer
Coupling

Class

Every S*Metaclass shown is
embedded in both a
containment hierarchy and an
abstraction (class) hierarchy.

System Containment Hierarchy

S*Metamodel for

Model-Based Systems

Engineering (MBSE)

Pattern-Based Systems

Engineering (PBSE)

S*(Systematica) Metamodel–

Summary View, for MBSE, PBSE

12-8-23 V1.8.3 Systematica Release 8.0

Pattern Class Hierarchy

Individual Product
or System Configurations

Product Lines or
System Families

Configure,
Specialize

Pattern

Improve
Pattern

General
System
Pattern

(Informal summary pedagogical diagram;

formal S*Metamodel includes additional aspects.)

BY S* PATTERNS COMMUNITY 15 © 2024, SYSTEM SCIENCES, LLC

The following subsections uncover the Systematica Summary Metamodel by considering a

series of views of models and their related descriptions. These views get more complex as

the Systematica scope of coverage increases:

◼ S*MBSE: Model Based Systems Engineering (MBSE), a systems engineering

methodology for a single complex system.

◼ S*PBSE: Pattern-Based Systems Engineering (PBSE), a systems engineering

methodology for a family or product line of systems.

2.1.1 Model-Based Systems Engineering (MBSE)

The Summary Metamodel view in Figure 1 shows a class web in the upper right enclosed.

This web shows the classes most relevant to the methodology. The Systematica

Methodology revolves around the modeling of a system. Each System has a set of

Features, States, and Interfaces. Functional Interactions support the defined Features and

States of a System. During these Functional Interactions, Functional Roles, which are

Logical Systems, interact by transferring Input/Outputs through a System’s Interface. A

System’s Interface model expresses the relationships between Input/Outputs, Functional

Roles, and which System of Access facilitates the interactions, for interface control

documentation. Requirement Statements are written with respect to a Functional Role in a

context of a specific Functional Interaction. These Functional Roles are then allocated to a

Design Component.

Systematica MBSE Methodology incorporates containment relationships for every class, so

that each level of the System Containment Hierarchy, which is often symbolized by the

Systems Engineering “Vee”, can be modeled using the same metamodel.

2.1.2 Pattern-Based Systems Engineering (PBSE)

The Pattern-Based Systems Engineering (PBSE) model adds a whole model generalization

and specialization capability, allowing models to be configured and specialized into separate

yet related MBSE models for specific applications. An MBSE model can use the PBSE

extension to define the common requirements and designs of an entire product line, system

family, or even sets of product lines or system families. The pyramid in Figure 1 describes

how the Systematica Metamodel can be applied at each abstraction level in the Pattern

Class Hierarchy.

 Domain Specific Systems Engineering

Knowledge about specific domains can be used to create generalized patterns that can be

further specialized for particular systems. This can include domains such as Aerospace,

Defense, Transportation, Medical Devices, Manufacturing, and Intelligence-Based

Systems. Additionally, these patterns can be inherited into other patterns. For example,

inheriting the Embedded Intelligence Pattern into a Manufacturing Pattern creates a

configurable reusable core intelligence model for manufacturing that is also the basis for

representing intelligence in other domains.

BY S* PATTERNS COMMUNITY 16 © 2024, SYSTEM SCIENCES, LLC

2.2 Class Hierarchy View

The first detailed, formal view of the S* Metamodel is the Class Hierarchy View in Figure 2.

This view relates each of the classes in the metamodel in a class hierarchy, or generalization

manner. The UML generalization line ending represents the “Is_A_Type_Of” Systematica

relationship.

Figure 2: Class Hierarchy View

System of
Access (SOA)

Domain System

System

Logical System

Design
Component

Class

Interface

State

Functional
Interaction

Stakeholder
Feature

Input/Ouput

Physical Input/
Output

Information
Input/Output

Event

Domain

Modeled
Attribute

Stakeholder
Requirement

Architectural
Relationship

Port
Transition

Modeled Statement

Design
Constraint
Statement

Counter
Requirement

Statement

Attribute Coupling
Map

Requirement
Statement

Reified
Relationship

Architectural
Relationship Role

Functional Role

Requirement
Transfer
Function

Attribute Coupling

Fitness
Attribute
Coupling

Decomposition
Attribute
Coupling

Attribute Role

Input Role

Design
Constraint

Value

Reified
 Relationship Role

Output Role

Feature
Attribute Role

Role Attribute
Role

Design
Component

Attribute Role

Fitness
Attribute

Coupling Map

Decomposition
Attribute

Coupling Map

Feature
Attribute

Logical System
Attribute

Design Component
Attribute

Feature Primary
Key

Characterization
Attribute
Coupling

Input/Output
Attribute
Coupling

Failure Impact

Failure Mode

Characterization
Attribute

Coupling Map

Input/Output
Attribute

Coupling Map

Failure Mode
Context
Element

Interface
Element

Relationship

Allowed Value

I/O Attribute

Input/Output
Attribute Role

BY S* PATTERNS COMMUNITY 17 © 2024, SYSTEM SCIENCES, LLC

2.3 General Class View

The General Class View depicts the metamodel relationships that are relevant to all classes. As in all other views, the UML generalization line

ending represents Systematica’s “Is_A_Type_Of” and the UML aggregation line ending represents Systematica’s “Contains” relationship.

However, Systematica’s “Contains” relationship is closer to UML’s “Composition” concept in that a class can only have one container.

Figure 3: General Class View

Class

Modeled
Attribute

Has_Attribute >

Derived_From >

Has_ Previous >

DomainAppears In>
*

* * *

1

*

* *

ValueHas_Value >1 *

Source

Derivation

Next Version Previous Version

C
la

ss

Attribute Attribute Value

Class Domain

BY S* PATTERNS COMMUNITY 18 © 2024, SYSTEM SCIENCES, LLC

2.4 Feature Framework View

Figure 4 depicts the Feature Framework View of the metamodel. This view details the classes and relationships that model the Stakeholder

Requirements Analyses and a System’s Features. This view defines the framework that guides and support value-based requirements and

design approaches.

Figure 4: Feature Framework View

System

Functional
Interaction

Stakeholder
Feature

Stakeholder
Requirement

Logical System
Has_Advocate>

Perceives >

Has_ Feature >

< Uses_ Functional_ Interaction

Satisfies >< Benefits

Has_ Stakeholder
>

Modeled
Attribute

Has_ Attribute >

Advocates >
* *

*

*
* *

*

*

*

* *

*

*1 1 *

*

* Value

H
as_

V
alue

 >

1

*

Feature Feature

Class

Fe
a

tu
re

Feature

Interaction

Attribute

Attribute

Value

Subject System

Subject System
St

ak
eh

ol
de

r

Stakeholder

Stakeholder

Advocate

Advocate Need

Need

N
e

e
d

Stakeholder

Functional Role

Requirement
Transfer
Function

Has_Role >

< Is_ Specified_ By

<
Pr

o
vi

de
s_

C

on
te

xt

* 2..*

1

*

1

0..1

F
I

Ro
le

Re
qu

ir
em

en
t

Requirement

Relationship Role

*

Need

Addresses >
Requirement

0..1

Allowed Value

C
an

H

av
e

V
al

ue
 >

1

*

Attribute

Allowed Va lue

BY S* PATTERNS COMMUNITY 19 © 2024, SYSTEM SCIENCES, LLC

2.5 Domain Analysis View

The Domain Analysis View defines the classes and relationships required to model the environment of a system in a particular domain. This

view corresponds to the Domain Diagram artifact but also includes other relationships and classes that would follow such a diagram to complete

the system environment analysis.

Figure 5: Domain Analysis View

System Interface
Functional
Interaction

Input/Output

Architectural
Relationship

Architectural
Relationship Role

System of
Access (SOA)

A
llo

ca
te

d

_
To

 >
H

a
s_

R

o
le

 >

Provides_
Interface >

< Permits_ Architectural_
Relationship

Permits_Input-Output >

P
e

rm
it

s_
SO

A
 >

Permits_
Functional

_Interaction >
Domain Has_ Subject >* 1..* *1

*

*

* *

0..2

*

*

*

2..*

1..*

*

1

InterfaceSystemSubjectDomain

In
te

rf
ac

e

Interface

Interface
Interface

SO
A

FI

I/O

AR

Re
la

tio
n

sh
ip

Ro
le

Ro
le

C
la

ss

Port

Is_ Facilitated_
By_ Externally>

< Groups

Receives >

1

*

1

*

*

1

*

0..1

1

0..1

Sends>

1

0..1

System

Po
rt

Po
rt

Port

Po
rt

Po
rt

Po
rt

SOA

Interface

FI

I/O

I/O

Is_ Facilitated_
By_ Internally>

*

1

Port

SOA

1SOA

BY S* PATTERNS COMMUNITY 20 © 2024, SYSTEM SCIENCES, LLC

2.6 Logical Architecture View

The Logical Architecture View details the part of the metamodel that decomposes a subject system in the Domain Analysis View into Logical

Subsystems and their interactions that describe its externally viewable behavior.

Figure 6: Logical Architecture View

Functional Role

Input/Output

Architectural
Relationship

Architectural
Relationship

Role

A
llo

ca
te

d
 _

To
 >

H
a

s_
 R

o
le

 >

Design
Component

Logical System

A
llo

ca
te

d
 _

To
 >

Interface

Permits_ Architectural_ Relationship >

Permits_Input-Output >

< Provides_ Interface

< Provides_ Interface

1

*

*

< Allocated _To

Port

Sends >

Receives >

G
ro

u
p

s >

System

0..1

Class1

Interface*

Role*

Role

Class

*

1

Relationship1..
*

Role
2..*

Role *

Class

AR

I/O
0..1

I/O
0..1

I/O

InterfaceInterface
*0..2

PortPort 11

Port

*

Interface

0..1 Interface*
System

0..1

BY S* PATTERNS COMMUNITY 21 © 2024, SYSTEM SCIENCES, LLC

2.7 State Analysis View

This figure depicts the classes and relationships modeled to define a system’s dynamic behavior using classes such as States, Events, and

Functional Interactions.

Figure 7: State Analysis View

System State

Functional
Interaction

Event

TransitionHas_State >

<
 R

e
q

u
ir

es

Transitions_ From >

< Transitions_
To

<
 Is

_

Tr
ig

g
er

e
d

_

B
y

*1

*

*

*

* *

*

1

*

System State

From

To

Transition

Tr
an

si
tio

nTransition

T
ri

g
g

e
r

St
at

e
FI

Provides Event Context >

*Event1 FI

BY S* PATTERNS COMMUNITY 22 © 2024, SYSTEM SCIENCES, LLC

2.8 Detail Requirements View

The Detail Requirements View defines the classes and relationships that model the detailed interactions and requirements that are summarized

in the previous high-level views. Instead of being comprehensive across an entire system’s scope, there should be a set of models using this

view that each center on a single Functional Interaction and dive into the technical depth necessary for requirements analysis and allocation.

The system’s overall scope should be the union of all the scopes of the individual detail models.

Figure 8: Detail Requirements View

Functional Role Interface
Functional
Interaction

Input/Output
Architectural
Relationship

Port

Requirement
Transfer
Function

Attribute Role

System of
Access (SOA)

Modeled
Attribute

Has_Role >
< Groups

<
Se

n
ds

<
H

as
_

A
tt

ri
b

u
te

A
llo

ca
te

d
_

To
 >

Allocated_ To >

Has_ Role >

< Is_ Specified_ By

<
Pr

o
vi

de
s_

C

on
te

xt

Input RoleHas_ Role >

Requirement
Statement

< Has_ View* 1

P
erm

its_

A
rch

itectu
ral_

R

elation
sh

ip
 >

P
er

m
it

s_
 S

O
A

>

< Permits_ Functional _Interaction

*

* 2..*
*

1

*
1

1

0..1

*

*

*

*

*

*

11

0..1

1

0..1

1..*1..*

*

1..
*

*

*

1 1

Allocated_ To >Output RoleHas_ Role >

1..*

1..
*

*

1

<
R

ec
e

iv
es

0..1

1

Is_ Facilitated_ By_ Internally>

*

1

1 1

Po
rt

Po
rt

Port

P
o

rt

P
o

rt

SOA

SOA

Interface

Interface

Interface

Interface

< Permits_ Input-Output

*

*

Interface

I/O

AR AR

AR

I/
O

I/
O

FI

FI

SOA

Ro
le

R
e

q
u

ir
e

m
e

n
t

Requirement

Relationship Role

Relationship

Role

Relationship

R
e

la
tio

n
sh

ip

Role

Role

Statement Relationship

Role

Role

Role

Cl
as

s

Cl
as

s

Class

Attribute

Class

Modeled
Attribute < Has_

Attribute

1
Class*

Attribute

BY S* PATTERNS COMMUNITY 23 © 2024, SYSTEM SCIENCES, LLC

2.9 High Level Design View

The High-Level Design View details the part of the metamodel that models a system’s physical architecture, its Functional Role allocations, and

Design Constraints. This view also shows that Requirement Statements relate to a Design Component through an allocated Functional Role.

This provides for the capability to alter the design without changing the requirements or most of the models using the previous metamodel views.

Functional Role

Design
Component

Modeled
Attribute

Design
Constraint

Attribute Role

Allocated_ To >

Has_ Attribute > < Allocated_ To

Has_ Role >Is_ Constrained_ By >

Architectural
Relationship

Role

Allocated_ To >
Architectural
Relationship

Has_Role >

Design
Constraint
Statement

<
H

as
_

V
ie

w

Interface
System of

Access (SOA)
< Permits_SOA

Provides_
Interface >

Allocated_ To >

*

* *

*

1

1 1 *

1

2..
1..
*

*

1

*

1

1..*

1

2..*

*

1

InterfaceSOA

In
te

rf
a

ce

S
ys

te
m

AttributeClassClass

Role

C
la

ss

RoleClass

Role

Role Role

Class

Relationship

Relationship

Relationship

Statement

Constraint

Component

Requirement
Transfer
Function

Requirement
Statement

H
as_ V

iew
 >

*

1

Statement

Relationship

Is_ Specified_ By
>

1
0..1

Role Requirement

*Role

Figure 9: High Level Design View

BY S* PATTERNS COMMUNITY 24 © 2024, SYSTEM SCIENCES, LLC

2.10 Interface Context View

The Interface Context View depicts the classes and relationships relevant to modeling a system’s interfaces and related classes and

relationships.

Figure 10: Interface Context View

Modeled Relationship Reification

Interface ImplementationSystem Topologies
Functional
Interaction

Architectural
Relationship

System

Input/Output

Architectural
Relationship Role

Interface

Port

System of
Access (SOA)Modeled

Attribute

Interface Element
Relationship

Relates_IO >

< Relates_AR

Simple
Architectural
Relationship

Reified
Architectural
Relationship

R
e

la
te

s_
FI

 >

<
 R

e
la

te
s_

LS

< Permits_Functional_Interaction

< Permits_Input-Output

< Permits_ Architectural_Relationship

Provides_Interface >

Has_ Role >

< Allocated _To

Has_ Role >

A
llo

ca
te

d

_
To

 >

Allocated _To >

Has_Attribute >

Has_Attribute >

Design
Component

Logical
System

<
 G

ro
u

p
s

<
 Is

_
 F

a
ci

lit
at

ed
_

B

y_
 E

xt
er

n
al

ly

<
 Is

_
 F

a
ci

lit
at

ed
_

B

y_
 In

te
rn

a
lly

< Allocated _To

<
 P

e
rm

it
s_

SO
A

Receives >

Sends>

Has_ Subject >

*FI

*Interface *Interface

*AR

*Interface

1System

*I/O

0..2
Interface

0..1Interface

*
Port

*
Interface

*
SOA

*Port

1SOA
1SOA

*Port

0..1

0..1

I/O

I/O

1Port

1Port

*

1

Role

Class

*
1..*

Domain Subject

*Role

* Role1Class

1 Class

*

Role
2..*Relationship

Role
2..*
RoleRelationship

1..*

1..*

Class

Attribute

1

0..*

Attribute 0..*

Class1

IE

IE

IE
IE0..*0..1 AR

0..* 0..1IO

0..*

0..*

0..1 FI

Class1

A
llo

ca
te

d

_
To

 >

Role

Class

*

1

BY S* PATTERNS COMMUNITY 25 © 2024, SYSTEM SCIENCES, LLC

2.11 Reified Relationship Views View

The metamodel defines abstract concepts such as a Reified Relationship, its Reified

Relationship Roles, and Modeled Statements. These concepts are specialized to define

Architectural Relationships, Functional Interactions, Requirements, Design Constraints, and

Attribute Couplings. The following sections provide views defining each of these and are

related in a class hierarchy manner in this figure. This view and the views shown do not

impact the metamodel, but they do help relate each of the specialized relationship views to

the Reified Relationship View.

Figure 11: Reified Relationship Views View

Reified Relationship
View

Architectural
Relationship View

Requirement
Relationship View

Design Constraint
Relationship View

Attribute Coupling
Relationship View

Fitness Coupling
Relationship View

Characterization Coupling
Relationship View

Functional Interaction
Relationship View

Input/Output Coupling
Relationship View

Decomposition Coupling
Relationship View

Transition
Relationship View

BY S* PATTERNS COMMUNITY 26 © 2024, SYSTEM SCIENCES, LLC

2.12 Reified Relationship View

The Reified Relationship View defines the abstract concepts of Reified Relationships and Modeled Statements. This abstract portion of the

model is specialized into other classes to create the views in the following sections.

Figure 12: Reified Relationship View

2.13 Architectural Relationship View

This figure specializes the Reified Relationship View into classes that are used to model Architectural Relationships between modeled Systems.

This view enables the High-Level Requirements (HLR) to be comprehensive yet much less detailed by summarizing specific Input/Outputs into

Architectural Relationships.

Figure 13: Architectural Relationship View

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1
2..* 1*Statement Relationship Relationship Role Role Class

1..*

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1
2..* 1*Statement Relationship Relationship Role Role Class

System
Architectural
Relationship

Role

Architectural
Relationship

Has_Role > Allocated_ To >
2..* 1*Relationship Role Role Class

1..*

1..*

BY S* PATTERNS COMMUNITY 27 © 2024, SYSTEM SCIENCES, LLC

2.14 Functional Interaction View

The Functional Interaction View defines the Functional Interaction and its related classes as subclasses of the Reified Relationship View classes.

Figure 14: Functional Interaction View

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1 * 2..* 1*Statement Relationship Relationship Role Role Class

Design
Component

Functional Role
Functional
Interaction

Has_Role >
* 2..* *Relationship Role Role

Logical System

Allocated_ To >
1Class

BY S* PATTERNS COMMUNITY 28 © 2024, SYSTEM SCIENCES, LLC

2.15 Requirement Relationship View

This figure displays the Requirement Relationship View of the metamodel. A requirement is considered a relationship between a system’s

inputs and outputs and is modified by that system’s attributes. A Requirement Statement, often a “shall” prose statement, describes the

requirement relationship. Modeling requirements using a transfer function pattern directly links prose statements to the models and ensures

testability of such statements.

Figure 15: Requirement Relationship View

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1 2..
*

1*Statement Relationship Relationship Role Role Class

Input/OutputInput Role
Requirement

Transfer
Function

Has_Role > Allocated_ To >
1..
*

1*Relationship RoleRequirement
Statement

< Has_ View*
1

Statement Relationship

Output RoleHas_Role >

In
te

ra
ct

s
Th

ro
u

gh
 >1..

*

1

*

Relationship

Role

Role

Role

Modeled
Attribute

Attribute RoleHas_Role > Allocated_ To >
1..
*

1*

Relationship

RoleRole

Class

Class

Class System< Has_Attribute
1*Attribute Class

Port

Allocated_ To >

* Port

1System

< Sends
1Port0..1 I/O

< Receives 1Port0..1 I/O

1..
*

1..
*

1..
*

1..
*

BY S* PATTERNS COMMUNITY 29 © 2024, SYSTEM SCIENCES, LLC

2.16 Design Constraint View

The Design Constraint View in this figure defines the Design Constraint and Design Constraint Statements as a specialization of the Reified

Relationship pattern that modifies a System’s Design Component Subsystem.

Figure 16: Design Constraint View

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1 2..
*

1*Statement Relationship Relationship Role Role Class

Input/OutputInput Role
Design

Constraint
Has_Role > Allocated_ To >

1..
*

1*Relationship Role

Design
Constraint
Statement

< Has_ View*
1

Statement Relationship

Output RoleHas_Role >

In
te

ra
ct

s
Th

ro
u

gh
 >1..

*

1

*

Relationship

Role

Role

Role

Modeled
Attribute

Attribute RoleHas_Role > Allocated_ To >
1..
*

1*

Relationship

RoleRole

Class

Class

Class

Design
Component:
Subsystem

< Has_Attribute
1*Attribute Class

Port

Allocated_ To >

* Port

1 System

< Sends
1Port0..1 I/O

< Receives 1Port0..1 I/O

1..
*

1..
*

1..
*

1..
*

Design
Component:

Container

BY S* PATTERNS COMMUNITY 30 © 2024, SYSTEM SCIENCES, LLC

2.17 Transition Relationship View

The Transition Relationship View defines transitions as specializations of the reified relationship.

Figure 17: Transition Relationship View

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1 2..
*

1*Statement Relationship Relationship Role Role Class

State

Next RoleTransition Has_Role >
Allocated_ To >1..*

1*

Relationship

Role

Transition Rule < Has_ View*
1

Statement Relationship

Previous RoleHas_Role >
1..* 1*

Relationship

Role

Role

Role

Event RoleHas_Role >
1..*

*

Relationship

RoleRole

Class

Class
Allocated_ To >

1..*

1..*

1..*1..*

BY S* PATTERNS COMMUNITY 31 © 2024, SYSTEM SCIENCES, LLC

2.18 Attribute Coupling View

The Reified Relationship View is specialized into a pattern that relates attributes in this figure. Attributes are coupled together with Attribute

Coupling Maps as prose, mathematical equations, etc. to describe those relationships.

Figure 18: Attribute Coupling View

Class
Reified

Relationship
Role

Reified
Relationship

Has_Role > Allocated_ To >
Modeled

Statement
< Has_ View*

1 2..
*

1*Statement Relationship Relationship Role Role Class

Modeled
Attribute

Attribute Role
Attribute
Coupling

Has_Role > Allocated_ To >
2..
*

1*Relationship RoleAttribute
Coupling Map

< Has_ View*
1

Statement Relationship Role Class

1..
*

1..
*

Derived_
From >

* *S
o

u
rce

D
erivation

BY S* PATTERNS COMMUNITY 32 © 2024, SYSTEM SCIENCES, LLC

2.19 Fitness Coupling View

The Fitness Coupling View defines the Metamodel classes and relationships that link Feature Attributes (requirements in the Stakeholders’

language) to Functional Role Attributes (requirements in the engineer’s language). This view of the model is also often used to couple between

Feature Attributes themselves.

Figure 19: Fitness Coupling View

Modeled
Attribute

Attribute Role
Attribute
Coupling

Has_Role > Allocated_ To >
Attribute

Coupling Map
< Has_ View

*
1 2..

*
1*Statement Relationship Relationship Role Role Class

Modeled
Attribute: Feature

Attribute

Feature
Attribute Role

Fitness
Attribute
Coupling

Has_Role >

Allocated_ To >

*

1*

Relationship

Role

Fitness
Attribute

Coupling Map
< Has_ View

*
1

Statement Relationship

Modeled
Attribute:Role

Attribute

Role Attribute
Role

Has_Role >

Allocated_ To >

*

1*

Relationship

Role

Coupling Output
Role

Coupling Input Role

Class

Class

Stakeholder
Feature

Functional Role

< Has_Attribute
1* ClassAttribute

< Has_Attribute
1*Attribute Class

1..
*

1..
*

1..
*

< Derived_ From

*

* Source

D
e

riva
tio

n

Functional
Interaction

Uses_ Functional_ Interaction
>

* *Feature Interaction

< Has_Role

*

2..
*

Relationship

RoleAttribute
Coupling

BY S* PATTERNS COMMUNITY 33 © 2024, SYSTEM SCIENCES, LLC

2.20 Characterization Coupling View

The Characterization Coupling View defines the Metamodel classes and relationships that link Functional Role Attributes to Design Component

Attributes. This view of the model is also often used to couple between Design Component Attributes themselves.

Figure 20: Characterization Coupling View

Modeled
Attribute

Attribute Role
Attribute
Coupling

Has_Role > Allocated_ To >
Attribute

Coupling Map
< Has_ View

*
1 2..

*
1*Statement Relationship Relationship Role Role Class

Modeled
Attribute: Role

Attribute

Role Attribute
Role

Characterization
Attribute
Coupling

Has_Role > Allocated_ To >* 1*Relationship Role

Characterization
Attribute

Coupling Map
< Has_ View

*
1

Statement Relationship

Modeled
Attribute:Design

Component
Attribute

Design
Component

Attribute Role
Has_Role >

Allocated_ To >
* 1*

Relationship

Role

Coupling Output
Role

Coupling Input Role

Class

Class

Functional Role

Design
Component

< Has_Attribute
1* ClassAttribute

< Has_Attribute
1*Attribute Class

1..
*

1..
*

1..
*

< Derived_ From

*

* Source

D
e

riva
tio

n

Attribute
Coupling

BY S* PATTERNS COMMUNITY 34 © 2024, SYSTEM SCIENCES, LLC

2.21 Decomposition Coupling View

The Decomposition Coupling View defines the Metamodel classes and relationships that link Black Box Functional Role Attributes to White Box

Functional Role Attributes.

Figure 21: Decomposition Coupling View

Modeled
Attribute

Attribute Role
Attribute
Coupling

Has_Role > Allocated_ To >
Attribute

Coupling Map
< Has_ View

*
1 2..

*
1*Statement Relationship Relationship Role Role Class

Modeled
Attribute: Role

Attribute

Role Attribute
Role

Decomposition
Attribute
Coupling

Has_Role > Allocated_ To >* 1*Relationship Role

Decomposition
Attribute

Coupling Map
< Has_ View

*
1

Statement Relationship

Has_Role > Allocated_ To >

* 1*Relationship Role

Output Role

Input Role

Class

Subclass

Functional Role< Has_Attribute
1* ClassAttribute

< Has_Attribute
1

*Attribute Subclass

1..
*

1..
*

1..
*

< Derived_ From

*

* Source

D
erivation

Attribute
Coupling

BY S* PATTERNS COMMUNITY 35 © 2024, SYSTEM SCIENCES, LLC

2.22 Input/Output Coupling View

The Input/Output Coupling View defines the Metamodel classes and relationships that link Functional Role Attributes to Input/Output Attributes.

This view of the model is also often used to couple between Input/Output Attributes themselves.

Figure 22: Input/Output Coupling View

Modeled
Attribute

Attribute Role
Attribute
Coupling

Has_Role > Allocated_ To >
Attribute

Coupling Map
< Has_ View

*
1 2..

*
1*Statement Relationship Relationship Role Role Class

Modeled
Attribute: Role

Attribute

Role Attribute
Role

Input/Output
Attribute
Coupling

Has_Role > Allocated_ To >* 1*Relationship Role

Input/Output
Attribute

Coupling Map
< Has_ View

*
1

Statement Relationship

Modeled
Attribute: Input/
Output Attribute

Input/Output
Attribute Role

Has_Role >

Allocated_ To >

*

1*

Relationship

Role

Coupling Input Role

Coupling Input Role

Class

Class

Functional Role

Input/Output

< Has_Attribute
1* ClassAttribute

< Has_Attribute
1*Attribute Class

1..
*

1..
*

1..
*

< Derived_ From

*

* Source

D
e

riva
tio

n

Attribute
Coupling Has_Role >

*

Relationship

Coupling Output Role

1..
*

BY S* PATTERNS COMMUNITY 36 © 2024, SYSTEM SCIENCES, LLC

2.23 Summary Pattern Configuration View

The S*Metamodel includes information supporting not only expression of a model of a single

system, but also a model of a more general class of systems that are similar but not identical

to each other. This includes the ability to re-use that model to represent different configured

instances based on a common but configurable representation. Such a common,

configurable model is called an S*Pattern, and can be used to rapidly create differently

configured but similar S*Models. This Pattern-Based Systems Engineering (PBSE) situation

is briefly summarized in Figure 1, further detailed by Figure 23, Table 1, and Table 2, and

described by the PBSE references of Section 1.4.

The specialization of a general S*Pattern to represent a specific S*Model may be further

constrained to an efficient form of specialization referred to as “configuration” in PBSE. In

this case, the specialization process is limited to (1) the populating of classes and

relationships (including their attributes) found in the general S*Pattern into a specialized

S*Model, and (2) the setting of values in the S*Model for attributes populated from the

S*Pattern. This configuration process means that the names and definitions of classes,

relationships, and attributes from the S*Pattern survive into the S*Model, and the web of

model relationships is determined by the S*Pattern, as are the model attributes.

This model population process can include creation of multiple instances of single entities

found in the S*Pattern, thereby unfolding and specializing a compressed S*Pattern. When

that occurs, more than one entity could have the same name, and such entities are

differentiated from each other by an entity attribute called a “primary key” (PK) attribute. This

in effect extends the name of the specialized entity to maintain uniqueness. These concepts

of configuration population and PK values includes both classes and relationships, and

allows a complex web of related model classes to unfold in a configured model. The pattern

of those connective relationships is further governed by the configuration rules that establish

the values of PK attributes, effectively identifying different entity instances and the

connectivity between them.

The configuration rules which govern this unfolding of a compressed S*Pattern into a

configured S*Model are inherent to and part of the S*Pattern--they are a part of the basic

S*Metarelationships that connect the S*Metaclasses. Table 2 indicates which of the

Metarelationships contains those configuration rules. The details of those configuration rules

appear in Section 3.2, Metaclass Relationships, and Section 3.3.2, Specific Attributes and

Configuration Rule Sets. (For a few reified relationships, configuration rules appear in

Section 3.1, Metaclasses.) Configuration rules built into an S*Pattern allows the use of

automated tooling to support (1) semi-automatic generation of S*Models that conform to the

S*Pattern configuration rules, and (2) automated checking of other S*Models not sourced

in that way, checking for their conformance to an S*Pattern.

BY S* PATTERNS COMMUNITY 37 © 2024, SYSTEM SCIENCES, LLC

User Visible—
other items
typically not
user visible

User Visible

User Visible

User Visible

Feature

FPK
Attribute
Attribute
Attribute

 Functional

Interaction

IPK

 Functional

Role

RPK
Attribute
Attribute

 Requirement

Statement

RSPK
Attribute
Attribute

Pa
tt

e
rn

C
on

fi
gu

re
d
 P

a
tt

e
rn

 (
M

od
e
l)

 Configured

Feature

FPK
Attribute
Attribute
Attribute

 Configured

Functional

Interaction
IPK

 Configured

Functional

Role
RPK

Attribute
Attribute

Configured

Requirement

Statement
RSPK

Attribute
Attribute

Feature-Interaction Table

Feature FPK Interaction IPK Rule

Interaction – Role Table

Interaction Role RPK Rule

Interaction Role Requirement RSPK Rule

Interaction-Role-Requirement Table

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

PK Value Set by
Pattern (Auto)

PK Value Set
by Pattern

(Auto)

Systematica®
Pattern Configuration

V1.5.2 09-26-18

Populated by
Pattern
(Auto)

 Design

Component

IPPK
Attribute
Attribute

Role Phys Comp IPPK Rule

Role-Phys Compon Table

 Configured

Design

Component
PCPK

Attribute
Attribute

Populated by
User or
Pattern (Auto)

Attribute
Attribute

Req’d Vals Capability Vals

Values

Values

Values

Attribute

Coupling

Attribute

Coupling

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

Populated by
Pattern (Auto)

ACPK

ACPK

Populated by
User, from
Stakeholder
Needs

Figure 23: Summary Pattern Configuration View

BY S* PATTERNS COMMUNITY 38 © 2024, SYSTEM SCIENCES, LLC

Table 1: How Pattern Configuration Propagates—Driving Classes

POPULATED METACLASSES ("THEN")

TRIGGERING METACLASSES ("IF") Fe
at

u
re

In
te

ra
ct

io
n

R
o

le

D
es

ig
n

 C
o

m
p

o
n

en
t

R
eq

u
ir

em
en

t
St

at
em

en
t

St
at

e

Ev
en

t

Tr
an

si
ti

o
n

In
te

rf
ac

e

A
rc

h
it

ec
tu

ra
l R

el
at

io
n

sh
ip

In
p

u
t/

O
u

tp
u

t

P
o

rt

Sy
st

em
 o

f
A

cc
es

s

Fa
ilu

re
 Im

p
ac

t

C
o

u
n

te
r

R
eq

u
ir

em
en

t
St

at
em

en
t

Fa
ilu

re
 M

o
d

e

Fe
at

u
re

 A
tt

ri
b

u
te

R
o

le
 A

tt
ri

b
u

te

D
es

ig
n

 C
o

m
p

o
n

en
t

A
tt

ri
b

u
te

In
p

u
t/

O
u

tp
u

t
A

tt
ri

b
u

te

Fi
tn

es
s

A
tt

ri
b

u
te

 C
o

u
p

lin
g

D
ec

o
m

p
o

si
ti

o
n

 A
tt

ri
b

u
te

 C
o

u
p

lin
g

C
h

ar
ac

te
ri

za
ti

o
n

 A
tt

ri
b

u
te

 C
o

u
p

lin
g

IO
 A

tt
ri

b
u

te
 C

o
u

p
lin

g

Stakeholder Input

Feature

Interaction

Role

Design Component

Requirement Statement

State

Event

Transition

Interface

Architectural Relationship

Input/Output

Port

System of Access

Failure Impact

Counter Requirement Statement

Failure Mode

Feature Attribute

Role Attribute

Design Component Attribute

Input/Output Attribute

Fitness Attribute Coupling

Decomposition Attribute Coupling

Characterization Attribute Coupling

IO Attribute Coupling

BY S* PATTERNS COMMUNITY 39 © 2024, SYSTEM SCIENCES, LLC

Populated Metaclass
Metaclass(es) Driving

Population

Metarelationship or
Metaclass Carrying
Configuration Rules

Figure Number
Reference
(Section 2)

Related Configuration Rules Set (See
Section 3.3.3)

Interaction Feature Uses Functional Interaction 2 Features-Interactions

Role Interaction Has Role 2 Interactions-Roles

Design Component Role Allocated To 9 Roles-Design Components

Requirement Statement Interaction + Role Requirement Transfer

Function

8 Interactions-Roles-Requirements

State Interaction Requires 7 Interactions-States

Interface Interaction + Role Interface Element

Relationship

10 Interface Context

Architectural Relationship Interaction + Role Interface Element

Relationship

10 Interface Context

Input/Output Interaction + Role Interface Element

Relationship

10 Interface Context

Port Interaction + Role Interface Element

Relationship

10 Interface Context

System of Access Interaction + Role Interface Element

Relationship

10 Interface Context

Fitness Attribute Coupling Feature Attribute Feature Attribute Role 19 Attribute Coupling

Decomposition Attribute

Coupling

Role Attribute Role Attribute Role 21 Attribute Coupling

Characterization Attribute

Coupling

Role Attribute Role Attribute Role 20 Attribute Coupling

IO Attribute Coupling IO Attribute IO Attribute Role 22 Attribute Coupling

Counter Requirement

Statement

Requirement Statement Replaces 24 Risk Analysis

Failure Mode Design Component Abnormal State Of 24 Risk Analysis

Feature Impact Feature Impacts Feature 24 Risk Analysis

Feature Attribute Feature Can Have Value 4 Pattern Feature Attribute Values

Role Attribute Role N/A 8 N/A

Input/Output Attribute Input/Output N/A 8 N/A

Design Component Attribute Design Component N/A 9 N/A

Event Event Context Interaction Provides Event Context 7 States-Transitions-Events

Transition From State + To State +

Event

Transition 7 States-Transitions-Events

Table 2: How Pattern Configuration Propagates—Location of Pattern Configuration Rules

BY S* PATTERNS COMMUNITY 40 © 2024, SYSTEM SCIENCES, LLC

2.24 Risk Analysis View

The Risk Analysis View depicts the classes of risk analysis and how they are related to other classes.

Figure 24: Risk Analysis View

Functional
Interaction

Functional
Role

Failure Mode
Context
Element

Failure
ImpactFailure Mode

Design
Component

Counter
Requirement

Statement

<
Pr

o
vi

d
es

_F
ai

lu
re

_C
o

n
te

xt

Causes_Impact >

Causes_Behavior >

H
as

_R
o

le
 >

 Abnormal_State_Of >

< Causes_FM

< Predicts_FM

< Detects_FM

< Prevents_FM

H
as

_V
ie

w
 >

Requirement
Statement

< Provides_Context

< Is_Specified_By

R
ep

la
ce

s
>

Stakeholder
Feature

Im
pa

ct
s_

Fe
at

u
re

 >

< Uses_Functional_Interaction

<
H

as
_

R
o

le

Requirement
Transfer
Function

* *

* *

0,1
0,1

0,1 0,1

0,1

0,1

0,1

0,1

0,*

1

*

1

**

1

*

System

Logical
System

(Stakeholder)

<
H

as
_

Fe
at

u
re

Benefits >

Im
pa

ct
s_

St
ak

e
ho

ld
e

r
>

<
H

as
_

St
ak

eh
o

ld
er

State

1

*

1 0..1

2, *

*
1

*

0..1

1

*

*

*

*

1 *

**

*

*

< Mitigates_FM 0,1

0,1

BY S* PATTERNS COMMUNITY 41 © 2024, SYSTEM SCIENCES, LLC

3 Metamodel Definitions
This section defines the metaclasses, relationships, and attributes of the metaclasses

shown in the views of the previous section.

3.1 Metaclasses

A metaclass models a particular system engineering concept. Classes (typically with noun

names) are related to each other to form complete models of requirements or design using

metaclass relationships (see next Section 3.2 Metaclass Relationships). They also have

Class Attributes (parameters) to further tune the modeled concept of a class on an individual

basis in a specific model. Certain relationships appear as “reified” relationships in this

Section 3.1 Classes, instead of as Metaclasses in Section 3.2. This is typically to

accommodate needs for extra or variable numbers of relationship roles. Such a reified

relationship appears as a class connecting other classes that it relates, thereby serving as

a relationship. See Section 3.3.1 for Common Attributes. See Section 3.3.2 for Specific

Attributes including Configuration Rule Sets.

3.1.1 Allowed Value

An Allowed Value is an allowed (valid) value of a Feature’s Attribute.

 Relationships

◼ Can Have Value

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

3.1.2 Architectural Relationship

An Architectural Relationship is a reified relationship that summarizes the architectural

significance of a set of interactions between systems.

 Relationships

◼ Has Role

◼ Is a Type of

◼ Permits Architectural Relationship

 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S* PATTERNS COMMUNITY 42 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 13: Architectural Relationship View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

◼ Figure 10: Interface Context View

3.1.3 Architectural Relationship Role

An Architectural Relationship Role is a role defined within an Architectural Relationship that

is played by a System.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 13: Architectural Relationship View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 9: High Level Design View

◼ Figure 10: Interface Context View

3.1.4 Attribute Coupling

An Attribute Coupling is a reified relationship between two or more Attributes and one or

more Attribute Coupling Maps that defines or constrains the value relationship between the

Attributes.

 Aliases

◼ Parametric Coupling

 Relationships

◼ Derived From

BY S* PATTERNS COMMUNITY 43 © 2024, SYSTEM SCIENCES, LLC

◼ Has Role

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 14: Functional Interaction View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

3.1.5 Attribute Coupling Map

An Attribute Coupling Map is a statement in prose, mathematical equation, or other form

that describes the value relationship between two or more Attributes.

 Aliases

◼ Parametric Coupling

 Relationships

◼ Has View

◼ Is a Type of

 Specific Attributes

◼ Reference

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

BY S* PATTERNS COMMUNITY 44 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 22: Input/Output Coupling View

3.1.6 Attribute Role

An Attribute Role is a Reified Relationship Role in a Reified Relationship that specifically

references an Attribute.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.1.7 Characterization Attribute Coupling

A Characterization Attribute Coupling is a reified relationship between Attributes of a

Functional Role and Attributes of a Design Component allocated that role. One or more

Characterization Attribute Coupling Maps can define or constrain the value relationships

between the Attributes.

 Aliases

◼ B Matrix Coupling

◼ Role-Design Component Coupling

◼ Design Coupling

BY S* PATTERNS COMMUNITY 45 © 2024, SYSTEM SCIENCES, LLC

◼ Parametric Coupling

 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 20: Characterization Coupling View

◼ Figure 9: High Level Design View

3.1.8 Characterization Attribute Coupling Map

A Characterization Attribute Coupling Map is a statement in prose, mathematical equation,

or other form that describes the value relationship between Attributes of Functional Roles

and Design Components.

 Aliases

◼ B Matrix Coupling Map

◼ Role-Design Component Coupling Map

◼ Design Coupling Map

◼ Parametric Coupling

 Relationships

◼ Has View

◼ Is a Type of

 Specific Attributes

◼ Reference

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 20: Characterization Coupling View

BY S* PATTERNS COMMUNITY 46 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 9: High Level Design View

3.1.9 Class

Class is the most abstract metaclass; it is the root of the class hierarchy tree of all the

metaclasses as seen in Figure 2. A class is a set of things that are considered “similar” to

each other by virtue of their membership in that class.

 Aliases

◼ Entity

 Relationships

◼ Appears In

◼ Allocated To

◼ Contains

◼ Derived From

◼ Has Attribute

◼ Has Previous

◼ Has Issue

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 12: Reified Relationship View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

3.1.10 Counter Requirement Statement

A Counter Requirement Statement is the counter to a requirement statement. In effect, it

replaces the “Shall” of the requirement statement with “Shall not” which describes the

BY S* PATTERNS COMMUNITY 47 © 2024, SYSTEM SCIENCES, LLC

negative or anomalous behavior occurring during failure to meet Requirements. Note that a

given Requirement may have more than one Counter Requirement, as it may be violated

in more than one way.

 Relationships

◼ Causes Behavior

◼ Causes Impact

◼ Replaces

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.1.11 Decomposition Attribute Coupling

A Decomposition Attribute Coupling is a reified relationship between Attributes of Functional

Roles at different levels of decomposition. One or more Decomposition Attribute Coupling

Maps can define or constrain the value relationships between the Attributes.

 Aliases

◼ Role-Role Coupling

◼ Parametric Coupling

 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

 Specific Attributes

◼ Reference

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 21: Decomposition Coupling View

3.1.12 Decomposition Attribute Coupling Map

A Decomposition Attribute Coupling Map is a statement in prose, mathematical equation, or

other form that describes the value relationship between Attributes of Functional Roles.

BY S* PATTERNS COMMUNITY 48 © 2024, SYSTEM SCIENCES, LLC

 Aliases

◼ Role-Role Coupling Map

 Relationships

◼ Has View

◼ Is a Type of

 Specific Attributes

◼ Reference

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 21: Decomposition Coupling View

3.1.13 Design Component

A Design Component is a System defined based upon its identity or composition, but not its

behavior. Design Components may be given proper names, such as names of commercial

products, materials, chemical elements or compounds, part numbers, corporate systems,

people, organizations, buildings, etc. Design Components fulfill the Functional Roles

(Logical Systems) allocated to them through an Allocation Decision.

 Aliases

◼ Physical System

 Relationships

◼ Allocated To

◼ Contains

◼ Has Attribute

◼ Has Subject

◼ Is a Type of

◼ Is Constrained By

◼ Provides Interface

 Metamodel View References

◼ Figure 1: Summary Metamodel

BY S* PATTERNS COMMUNITY 49 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 2: Class Hierarchy View

◼ Figure 14: Functional Interaction View

◼ Figure 16: Design Constraint View

◼ Figure 20: Characterization Coupling View

◼ Figure 6: Logical Architecture View

◼ Figure 9: High Level Design View

3.1.14 Design Component Attribute

A Design Component Attribute is a Modeled Attribute of a Design Component.

 Aliases

◼ Physical System Attribute

 Relationships

◼ Has Value

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

3.1.15 Design Component Attribute Role

A Design Component Attribute Role is a Reified Relationship Role in a Reified Relationship

that specifically references an Attribute of a Design Component.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 20: Characterization Coupling View

BY S* PATTERNS COMMUNITY 50 © 2024, SYSTEM SCIENCES, LLC

3.1.16 Design Constraint

Design Constraint is a relationship that limits a subsystem’s or components’ attribute values

or behavior with respect to its inputs and outputs and states. A Design Constraint is

described by a Design Constraint Statement.

 Relationships

◼ Has Role

◼ Has View

◼ Is a Type of

◼ Is Constrained By

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 16: Design Constraint View

◼ Figure 9: High Level Design View

3.1.17 Design Constraint Statement

A Design Constraint Statement is a description in prose, mathematical, or other form that

expresses a Design Constraint.

 Relationships

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 16: Design Constraint View

◼ Figure 9: High Level Design View

3.1.18 Domain

A Domain is an environmental system. The components and relationships of this system

establish an overall environment (domain) for a subject system. A domain establishes the

domain knowledge relevant to a subject system. A system domain may be as large as the

subject system’s entire life cycle environment, or a smaller domain, such as the operational,

production, sustainment, distribution, or other specialized domain of a subject system.

BY S* PATTERNS COMMUNITY 51 © 2024, SYSTEM SCIENCES, LLC

 Aliases

◼ System Context

◼ Context of Use

◼ System Environment

 Relationships

◼ Appears In

◼ Has Subject

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

3.1.19 Domain System

A Domain System is a subsystem in a Domain whose interactions impact the characteristics

of that Domain.

 Relationships

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

3.1.20 Event

An Event is a subclass of an Information Input/Output or Value that describes an occurrence

that triggers a transition from one modeled state to another. Such information is not always

an engineered signal, and in some cases may be a condition or state, including an attribute

value condition. Nevertheless, as such it is still information, whether instrumented or not.

 Relationships

◼ Is a Type of

◼ Is Triggered By

BY S* PATTERNS COMMUNITY 52 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 7: State Analysis View

3.1.21 Failure Impact

A Failure Impact is the result of a failure that has impact on a Stakeholder through the

inability of the system to perform to fully deliver the associated Feature capability. If a

candidate failure cannot be traced to an impact on a Feature/Stakeholder, then it is

apparently not a failure worth modeling a Failure Impact.

 Relationships

◼ Causes Impact

◼ Impacts Feature

◼ Impacts Stakeholder

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.1.22 Failure Mode

A Failure Mode is an abnormal state of a design component that can be triggered by one or

more causes and will result in abnormal behavior in the performance of some allocated role,

such that a requirement is violated.

 Relationships

◼ Abnormal State Of

◼ Causes Behavior

◼ Causes Mode

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.1.23 Feature Attribute

A Feature Attribute is a Modeled Attribute of a Stakeholder Feature.

 Relationships

◼ Has Value

BY S* PATTERNS COMMUNITY 53 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

3.1.24 Feature Attribute Role

A Feature Attribute Role is a Reified Relationship Role in a Requirements Relationship that

specifically references an Attribute of a Stakeholder Feature.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Configuration Attributes

◼ Attribute Coupling Population Rule

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 19: Fitness Coupling View

3.1.25 Feature Primary Key Attribute

A Feature Primary Key Attribute is a Modeled Attribute of a Stakeholder Feature that is a

type of Feature Attribute.

 Relationships

◼ Has Value

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

3.1.26 Fitness Attribute Coupling

A Fitness Attribute Coupling is a reified relationship between Attributes of Stakeholder

Features and Attributes of Functional Roles. One or more Fitness Attribute Coupling Maps

can define or constrain the value relationships between the Attributes.

BY S* PATTERNS COMMUNITY 54 © 2024, SYSTEM SCIENCES, LLC

 Aliases

◼ A Matrix Coupling

◼ Feature-Role Coupling

◼ Requirements Coupling

◼ Parametric Coupling

 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 19: Fitness Coupling View

3.1.27 Fitness Attribute Coupling Map

A Fitness Attribute Coupling Map is a statement in prose, mathematical equation, or other

form that describes the value relationship between Attributes of Features and Functional

Roles.

 Aliases

◼ A Matrix Coupling Map

◼ Feature-Role Coupling Map

◼ Requirements Coupling Map

◼ Parametric Coupling

 Relationships

◼ Has View

◼ Is a Type of

 Specific Attributes

◼ Reference

BY S* PATTERNS COMMUNITY 55 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 19: Fitness Coupling View

3.1.28 Functional Interaction

A Functional Interaction is an interaction of two or more Systems, Subsystems, or System

Components. Interaction means the exchange of Input-Outputs (typically force, energy,

material flow or information) whereby one system affects the State (see State) of another

system. Interactions are the phenomena-grounded basis of the theoretical foundations of

the physical sciences and engineering disciplines. All behavior occurs in the context of

interactions. The behavior of each interacting component is determined by its state, and that

state can in turn be changed by the interactions.

 Aliases

◼ Function (Deprecated)

◼ Interaction

 Relationships

◼ Has Role

◼ Is a Type of

◼ Permits Functional Interaction

◼ Provides Context

◼ Requires

◼ Uses Functional Interaction

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 14: Functional Interaction View

◼ Figure 19: Fitness Coupling View

◼ Figure 5: Domain Analysis View

◼ Figure 7: State Analysis View

◼ Figure 8: Detail Requirements View

BY S* PATTERNS COMMUNITY 56 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 24: Risk Analysis View

3.1.29 Functional Role

A Functional Role is the behavior displayed by one of the interacting entities during a

Functional Interaction. Because it is entirely described as behavior, a Functional Role is a

Logical System. A Functional Role may eventually be allocated to a Design Component to

perform that behavior, but the Functional Role is viewed as meaningful whether or not so

allocated.

 Aliases

◼ Function

◼ Logical System

◼ Role

 Relationships

◼ Allocated To

◼ Contains

◼ Has Attribute

◼ Has Role

◼ Is a Type of

◼ Is Specified By

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 14: Functional Interaction View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

◼ Figure 24: Risk Analysis View

BY S* PATTERNS COMMUNITY 57 © 2024, SYSTEM SCIENCES, LLC

3.1.30 Information Input/Output

An Information Input/Output is a subclass of Input/Output that represents symbolic or other

information exchanged between interacting systems. Such information is always “about”

something.

 Aliases

◼ Information View (Deprecated)

 Relationships

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

3.1.31 Input/Output

An Input/Output is that which is exchanged between interacting systems. Most Input-

Outputs of interest are forces, energy, materials, or information.

 Aliases

◼ I/O

◼ Input

◼ Output

◼ View (Deprecated)

 Relationships

◼ Allocated To

◼ Is a Type of

◼ Permits Input/Output

◼ Receives

◼ Sends

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Requirement Relationship View

BY S* PATTERNS COMMUNITY 58 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 16: Design Constraint View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

3.1.32 I/O Attribute

An I/O Attribute is a Modeled Attribute of an Input/Output.

 Relationships

◼ Has Value

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

3.1.33 I/O Attribute Role

An I/O Attribute Role is a Reified Relationship Role in an I/O Coupling that specifically

references an Attribute of an Input/Output.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Configuration Attributes

◼ Attribute Coupling Population Rule

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 22: Input/Output Coupling View

3.1.34 I/O Attribute Coupling

An I/O Attribute Coupling is a reified relationship between values of Functional Role

Attributes and Input/Output Attributes.

BY S* PATTERNS COMMUNITY 59 © 2024, SYSTEM SCIENCES, LLC

 Aliases

◼ Parametric Coupling

 Relationships

◼ Derived From

◼ Has Role

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 22: Input/Output Coupling View

3.1.35 I/O Attribute Coupling Map

An I/O Coupling Map is a statement in prose, mathematical equation, or other form that

describes the value relationship between Attributes of Input/Outputs and Functional Roles.

 Aliases

◼ Parametric Coupling

 Relationships

◼ Has View

◼ Is a Type of

 Specific Attributes

◼ Reference

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 22: Input/Output Coupling View

3.1.36 Input Role

An Input Role is a Reified Relationship Role in a Reified Relationship that specifically

references an Input/Output that is being transformed into another Input/Output or state

change.

BY S* PATTERNS COMMUNITY 60 © 2024, SYSTEM SCIENCES, LLC

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 8: Detail Requirements View

3.1.37 Interface

An Interface is an association of a System (which owns, provides, displays, or exposes the

Interface), one or more Input/Outputs (which flow through the Interface), one or more

Functional Interactions (which describe behavior at the Interface), and a System of Access

(SOA), which is the medium enabling or mediating the interaction between systems or

transporting their exchanged Input-Outputs.

 Relationships

◼ Groups

◼ Is a Type of

◼ Permits Architectural Relationship

◼ Permits Functional Interaction

◼ Permits Input/Output

◼ Permits SOA

◼ Provides Interface

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

BY S* PATTERNS COMMUNITY 61 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 9: High Level Design View

3.1.38 Interface Element Relationship

The Interface Element Relationship is a reified 4-way relationship among Architectural

Relationships, Functional Interactions, Input/Outputs, and Logical Systems. The “elemental

atoms” from which an Interface is built up are formed by a collection of Interface Element

Relationships and their connections to Ports and Systems of Access.

 Relationships

◼ Relates AR

◼ Relates FI

◼ Relates IO

◼ Relates LS

 Configuration Attributes

◼ Interface Primary Key Value Rule

◼ IO Primary Key Value Rule

◼ Port Primary Key Value Rule

◼ SOA Primary Key Value Rule

◼ AR Primary Key Value Rule

◼ AR Role Primary Key Value Rule

◼ IO Direction

◼ SOA Internal/External

◼ Port Type

◼ AR Internal/External

◼ AR Complexity

 Metamodel View References

◼ Figure 10: Interface Context View

3.1.39 Failure Mode Context Element

A Failure Mode Context Element is a reified relationship linking Functional Roles,

Interactions, and Failure Modes in a Risk Analysis model.

BY S* PATTERNS COMMUNITY 62 © 2024, SYSTEM SCIENCES, LLC

 Relationships

◼ Causes Failure

◼ Causes Mode

◼ Plays Causal Role

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.1.40 Logical System

A Logical System is a system defined solely by its (required or actual) functionality or

behavior as “seen” by external systems interacting with it, and not based upon how it

achieves that functionality internally or its identity or composition. Logical systems are

typically named and defined in a behavioral sense without reference to their physical

composition, unless (in some cases) this is a part of the external behavior description.

Accordingly, all Functional Roles are Logical Systems.

 Aliases

◼ Function

◼ Functional Role

◼ Logical Architecture Component (LAC)

 Relationships

◼ Advocates

◼ Allocated To

◼ Benefits

◼ Contains

◼ Has Advocate

◼ Has Stakeholder

◼ Has Subject

◼ Is a Type of

◼ Perceives

◼ Provides Interface

BY S* PATTERNS COMMUNITY 63 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 14: Functional Interaction View

◼ Figure 6: Logical Architecture View

3.1.41 Logical System Attribute

A Logical System Attribute is a Modeled Attribute of a Logical System.

 Relationships

◼ Has Value

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

3.1.42 Modeled Attribute

A Modeled Attribute is a modeled property or characteristic of any of the metaclasses, which

might take on different attribute values to further describe (parameterize) the various

instances of that class and how they may vary. An attribute may belong to any metaclass,

including another Attribute.

 Aliases

◼ Attribute

◼ Property

◼ Parameter

◼ Variable

 Relationships

◼ Allocated To

◼ Has Attribute

◼ Has Value

◼ Is a Type of

BY S* PATTERNS COMMUNITY 64 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.1.43 Reified Relationship

A Reified Relationship is a statement about several classes that may be true or false. If

true, the classes are said to be in that relationship with each other. This class has been

reified from actual relationships to allow for clearer modeling.

 Relationships

◼ Has Role

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 12: Reified Relationship View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

BY S* PATTERNS COMMUNITY 65 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 18: Attribute Coupling View

3.1.44 Reified Relationship Role

A Reified Relationship Role is the part a class plays when being referred to in a Reified

Relationship.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 12: Reified Relationship View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

3.1.45 Modeled Statement

A Modeled Statement is a prose statement, mathematical equation, or other description of

another class, typically a Reified Relationship.

 Aliases

◼ Statement

 Relationships

◼ Has View

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 12: Reified Relationship View

BY S* PATTERNS COMMUNITY 66 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

3.1.46 Output Role

An Output Role is a Reified Relationship Role in a Reified Relationship that specifically

references an Input/Output that is being transformed from another Input/Output.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 8: Detail Requirements View

3.1.47 Physical Input/Output

A Physical Input/Output is a subclass of Input/Output that represents a physical quantity like

energy or mass exchanged between interacting Systems.

 Aliases

◼ Physical View (Deprecated)

 Relationships

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S* PATTERNS COMMUNITY 67 © 2024, SYSTEM SCIENCES, LLC

3.1.48 Port

A Port is the coincidence of an Input/Output and System border. A Port is associated with

a received or sent Input/Output, an internal or external System of Access (SOA), internal or

external Architectural Relationships, and one or more Functional Interactions.

 Relationships

◼ Groups

◼ Is a Type of

◼ Is Facilitated By Externally

◼ Is Facilitated By Internally

◼ Receives

◼ Sends

 Specific Attributes

◼ Port Type

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

3.1.49 Requirement Statement

A behavioral description, in prose, mathematical, or other form, relating a System’s Inputs,

Outputs, and Attributes, against which a System will be verified.

 Aliases

◼ “Shall” Statement

 Relationships

◼ Has View

◼ Is a Type of

BY S* PATTERNS COMMUNITY 68 © 2024, SYSTEM SCIENCES, LLC

 Specific Attributes

◼ Reference

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 15: Requirement Relationship View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

◼ Figure 24: Risk Analysis View

3.1.50 Requirement Transfer Function

A Requirement Transfer Function is a reified relationship that limits a System’s attribute

values or behavior with respect to its inputs and outputs. A Requirement Transfer Function

is described by a Requirement Statement.

 Aliases

◼ Requirement Relationship

 Relationships

◼ Has Role

◼ Has View

◼ Is a Type of

◼ Is Specified By

◼ Provides Context

 Configuration Attributes

◼ Requirement Population Rule-Interaction

◼ Requirement Population Rule-Role

◼ Requirement Primary Key Value Rule

 Metamodel View References

◼ Figure 2: Class Hierarchy View

BY S* PATTERNS COMMUNITY 69 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 15: Requirement Relationship View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

◼ Figure 24: Risk Analysis View

3.1.51 Role Attribute Role

A Role Attribute Role is a Reified Relationship Role in a Fitness, Decomposition,

Characterization, or I/O Coupling that specifically references an Attribute of a Functional

Role.

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

 Configuration Attributes

◼ Attribute Coupling Population Rule

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

3.1.52 State

A State is the value of a state variable describing some changing or changeable condition,

characteristic, or parameter of a system. Some state variables can take on a continuum of

values, and others are constrained to a finite list of possible values. In the latter case, a finite

state model enumerates those States. In the finite state case, each State persists for a

period of time. In all cases, the state of a System determines future behavior in which

Functional Interactions are to be performed, entered, and exited based upon events. The

finite States of an environmental System of a subject system are use cases for the subject

system. During a use case, the subject system is required or expected to perform certain

functions, interacting with the environmental system.

BY S* PATTERNS COMMUNITY 70 © 2024, SYSTEM SCIENCES, LLC

 Aliases

◼ Mode

◼ Situation

◼ State Variable Value

◼ Use Case (often includes required Functional Interactions)

 Relationships

◼ Has State

◼ Is a Type of

◼ Requires

◼ Transitions From

◼ Transitions To

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 7: State Analysis View

3.1.53 Stakeholder Feature

A Stakeholder Feature is a collection of Functional Interactions having stakeholder value

implications. Features are used to summarize product functionality in value sets or service

sets to a customer or other stakeholder. Economics, quality, performance, risk, or other

measures of effectiveness are often associated with Features. The total Feature set of a

system of interest establishes the “trade space” in which various issues are traded off

against or compared to each other, as to the relative stakeholder appeal, score, or likelihood

of selection. In addition to the value-laden concepts, the same Features also represent

risk—all risk is risk to Features (see Feature Impact). For system families, product line

engineering (PLE), and configurable platforms or patterns, Features are the primary point

at which stakeholder configuration choices are expressed, thereafter driving all other points

of variation within a system model.

 Aliases

◼ Service

◼ Feature

◼ Capability

BY S* PATTERNS COMMUNITY 71 © 2024, SYSTEM SCIENCES, LLC

 Relationships

◼ Benefits

◼ Has Attribute

◼ Has Feature

◼ Is a Type of

◼ Satisfies

◼ Uses Functional Interaction

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 19: Fitness Coupling View

◼ Figure 24: Risk Analysis View

3.1.54 Stakeholder Requirement

A Stakeholder Requirement is a statement (either in formal or informal language) that

implies formal requirements or design constraints upon a system. Once analyzed, a

validated Stakeholder Requirement becomes an originating source for other, more formal

metaclasses (e.g., Stakeholder Features) describing that system.

 Aliases

◼ Need

◼ Informal Need

◼ Stakeholder Need

 Relationships

◼ Advocates

◼ Is a Type of

◼ Perceives

◼ Satisfies

BY S* PATTERNS COMMUNITY 72 © 2024, SYSTEM SCIENCES, LLC

 Specific Attributes

◼ Date Submitted

◼ Due Date

◼ Originator

◼ Priority

◼ Reference

◼ Request Type

◼ Source

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

3.1.55 System

A System is a collection of interacting components. By “interact” we mean the components

exchange input-outputs (typically energy, force, material, or information) that change the

state of the components. The components transform inputs into outputs, depending upon

the state of the components. A component can itself be a System, called a sub-system.

 Aliases

◼ Actor

◼ Component

◼ Subject System

◼ Subsystem

◼ System of Interest

 Relationships

◼ Allocated To

◼ Has Attribute

◼ Has Feature

◼ Has Stakeholder

◼ Has State

BY S* PATTERNS COMMUNITY 73 © 2024, SYSTEM SCIENCES, LLC

◼ Has Subject

◼ Is a Type of

◼ Provides Interface

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 4: Feature Framework View

◼ Figure 13: Architectural Relationship View

◼ Figure 15: Requirement Relationship View

◼ Figure 5: Domain Analysis View

◼ Figure 7: State Analysis View

3.1.56 System of Access (SOA)

A System of Access (SOA) is the intermediary system through which two or more other

systems are able to interact (exchange input-outputs to impact each other’s states).

 Aliases

◼ Medium

◼ Network

◼ Transport Mechanism

◼ SOA

◼ SOAC

◼ System of Access Component

 Relationships

◼ Allocated To

◼ Has Role

◼ Is a Type of

◼ Is Facilitated By Externally

◼ Is Facilitated By Internally

BY S* PATTERNS COMMUNITY 74 © 2024, SYSTEM SCIENCES, LLC

◼ Permits SOA

 Metamodel View References

◼ Figure 1: Summary Metamodel

◼ Figure 2: Class Hierarchy View

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.1.57 Transition

A Transition is the instantaneous switch (change of state) from one State to another State

that has been caused, or triggered, by some Event. A transition that is not deemed to be

instantaneous can be modeled using a transitional state having persistent life for some

period, which is entered instantaneously and exited instantaneously.

 Relationships

◼ Is a Type of

◼ Is Triggered By

◼ Transitions From

◼ Transitions To

 Configuration Attributes

◼ From State PK Matching Rule

◼ To State PK Matching Rule

◼ Transition PK Value Rule

◼ Transition Type

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 7: State Analysis View

◼ Figure 17: Transition Relationship View

3.1.58 Value

A Value is the value of a Class’s Attribute.

BY S* PATTERNS COMMUNITY 75 © 2024, SYSTEM SCIENCES, LLC

 Relationships

◼ Has Value

◼ Is a Type of

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

3.2 Metaclass Relationships

Metaclass relationships (typically with verb form names) semantically link metaclasses

together to create statements about system required behavior, design, or other holistic or

linking aspects of interest to system engineering or modeling. Each such relationship has

roles that describe a certain concept which the related classes must fill in order to complete

the semantic statement. A few such relationships in the S*Metamodel have been reified and

therefore appear as classes in Section 3.1 instead of this section. See Section 3.3.1 for

Common Attributes. See Section 3.3.2 for Specific Attributes including Configuration Rule

Sets.

3.2.1 Abnormal State Of

The Abnormal State Of relationship links Design Components with Failure Modes.

 Roles

◼ Component: The role played by a Design Component when it enters an abnormal

state. This role’s cardinality is Many.

◼ Caused Mode: The role played by a Failure Mode. This role’s cardinality is Many.

 Configuration Attributes

◼ Failure Mode Population Rule

◼ Failure Mode Primary Key Value Rule

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.2 Addresses

The Addresses relationship links a Stakeholder Requirement to the Requirement Transfer

Function supporting it.

BY S* PATTERNS COMMUNITY 76 © 2024, SYSTEM SCIENCES, LLC

 Roles

◼ Requirement: The Requirement represents the set of technical requirement statements

supporting and used in the Validation of the Stakeholder Requirement(s). This role is

played by Requirement Transfer Function. This role’s cardinality is Many.

◼ Need: The statement elicited from and validated against by an Advocate. This role is

played by a Stakeholder Requirement. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 4: Feature Framework View

3.2.3 Advocates

The Advocates relationship links a Stakeholder Requirement to the Advocate it would be

elicited from or validating it against delivered System performance.

 Roles

◼ Advocate: The Logical System represents a Stakeholder during the elicitation of

Stakeholder Requirements and in the Validation of the Requirements and the System.

This role is played by Logical System. This role’s cardinality is Many.

◼ Need: The statement elicited from and validated against by an Advocate. This role is

played by a Stakeholder Requirement. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 4: Feature Framework View

3.2.4 Allocated To

The Allocated To relationship assigns a Class to a Reified Relationship Role in a Reified

Relationship.

 Roles

◼ Class: The class that plays the role in the relationship. This role is played by Class,

System, Allocation Decision, Design Component, Input/Output, Modeled Attribute,

Functional Role, and Logical System. Its cardinality is 1.

◼ Role: The role is the part in a relationship that is played by a Class it is allocated to.

This role is played by Reified Relationship Role, Architectural Relationship Role,

System of Access (SOA), Functional Role, Input Role, Output Role, Attribute Role,

Feature Attribute Role, Role Attribute Role, and Design Component Attribute Role. This

role’s cardinality is Many.

 Configuration Attributes

◼ Design Component Population Rule

BY S* PATTERNS COMMUNITY 77 © 2024, SYSTEM SCIENCES, LLC

◼ Design Component Primary Key Value Rule

 Metamodel View References

◼ Figure 12: Reified Relationship View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 7: Detail Requirements View

◼ Figure 8: High Level Design View

3.2.5 Appears In

The Appears In relationship groups any type of Class into a Domain. These groupings are

often organized by enterprise organizations, technologies, or products.

 Roles

◼ Class: The Class that is organized into a domain category. This role is played by all

Classes. Its cardinality is Many.

◼ Domain: The category that organizes classes into a group. This role is played by

Domain. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 3: General Class View

3.2.6 Benefits

The Benefits relationship relates a Feature to the stakeholders it benefits.

BY S* PATTERNS COMMUNITY 78 © 2024, SYSTEM SCIENCES, LLC

 Roles

◼ Feature: The marketable value or valuable service that attempts to benefit a

Stakeholder. This role is played by a Feature (Service). This role’s cardinality is Many.

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit. This role is played by Logical System. This

role’s cardinality is Many.

 Metamodel View Reference

◼ Figure 4: Feature Framework View

3.2.7 Can Have Value

The Can Have Value relationship relates a Modeled Attribute of a Feature to an allowed

(valid) value that the Modeled Attribute is permitted to take on.

 Roles

◼ Allowed Value: The value that a Feature Attribute may (is allowed to) take on. This role

is played by Allowed Value This role’s cardinality is Many.

◼ Attribute: The Feature Attribute that can take on a value. This role’s cardinality is One.

 Specific Attributes

◼ None

 Metamodel View Reference

◼ Figure 4: Feature Framework View

3.2.8 Causes Behavior

The Causes Behavior relationship links Counter Requirement Statements with Failure

Modes.

 Roles

◼ Counter Statement: This is the role played by the Counter Requirement Statement.

This role’s cardinality is Many.

◼ Caused Mode: This is the role played by the Failure Mode. This role’s cardinality is

One.

 Metamodel View References

◼ Figure 24: Risk Analysis View

BY S* PATTERNS COMMUNITY 79 © 2024, SYSTEM SCIENCES, LLC

3.2.9 Causes Failure Mode

The Causes Failure Mode relationship links Failure Modes to the Failure Mode Context

Element.

 Roles

◼ Direct Cause: This is the role played by the Failure Mode Context Element, on behalf

of a Functional Interaction. This role’s cardinality is 0 to 1.

◼ Caused Mode: This is the role played by the Failure Mode. This role’s cardinality is 0

to 1.

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.10 Causes Impact

The Causes Impact relationship links Failure Impacts to the Counter Requirement

Statements.

 Roles

◼ Counter Statement: This is the role played by the Counter Requirement Statement. This

role’s cardinality is Many.

◼ Impact: This is the role played by the Failure Impact. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.11 Contains

The Contains relationship is a generic compilation or whole-part relationships between

classes of the same metaclass. This relationship is represented by a diamond head towards

the larger or containing class. This relationship is most similar to a UML™ composition

relationship.

 Roles

◼ Container Class: The larger class that includes the contained class. This role is played

by all Classes. This role’s cardinality is 1.

◼ Contained Class: The smaller class that aggregates with other small classes to form

the larger Container Class. This role is played by all Classes. This role’s cardinality is

Many.

 Metamodel View References

◼ Figure 3: General Class View

BY S* PATTERNS COMMUNITY 80 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 14: Functional Interaction View

◼ Figure 16: Design Constraint View

◼ Figure 6: Logical Architecture View

◼ Figure 7: State Analysis View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.2.12 Derived From

The Derived From relationship links a class’s purpose or origin to one or more classes. This

relationship is often used for validation purposes, to trace the origin or disposition of

information.

 Roles

◼ Source: The statement or class impacting upon the destination. This role is played by

all Classes. This role’s cardinality is Many.

◼ Destination: The derived class that is impacted by or validated from the Source Class.

This role is played by all Classes. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 3: General Class View

◼ Figure 14: Functional Interaction View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 9: High Level Design View

3.2.13 Detects Failure Mode

The Detects Failure Mode relationship links Failure Modes with the Failure Mode Context

Element.

BY S* PATTERNS COMMUNITY 81 © 2024, SYSTEM SCIENCES, LLC

 Roles

◼ Detected Mode: This is the role played by the Failure Mode. This role’s cardinality is 0

to 1.

◼ Detector: This is the role played by the Failure Mode Context Element. This role’s

cardinality is 0 to 1.

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.14 Groups

The Groups relationship links an Interface to the set of Ports it is used to group or manage.

 Roles

◼ Interface: The Interface that groups the Port. This role is played by an Interface. This

role’s cardinality is 0 to 1.

◼ Port: The Port that is grouped by an Interface. This role is played by a Port. This role’s

cardinality is Many.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

3.2.15 Has Advocate

The Has Advocate relationship links a Logical System playing the Stakeholder role in a Has

Stakeholder relationship to another Logical System that would represent that Stakeholder

in evaluating a System’s deliverable with respect to a Stakeholder Requirement.

 Roles

◼ Advocate: The Logical System represents a Stakeholder during the elicitation of

Stakeholder Requirements and in the Validation of the Requirements and the System.

This role is played by Logical System. This role’s cardinality is Many.

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit. This role is played by Logical System. This

role’s cardinality is Many.

 Metamodel View Reference

◼ Figure 4: Feature Framework View

BY S* PATTERNS COMMUNITY 82 © 2024, SYSTEM SCIENCES, LLC

3.2.16 Has Attribute

The Has Attribute relationship links a Modeled Attribute to any Class that has that Attribute.

 Roles

◼ Attribute: The attribute that models a property of a Class. This role is played by Modeled

Attribute. This role’s cardinality is Many.

◼ Class: The class that has a property modeled by the Attribute. This role is played by all

Classes. This role’s cardinality is 1.

 Metamodel View References

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.2.17 Has Feature

The Has Feature relationship links a subject’s system to a Stakeholder Feature.

 Roles

◼ Feature: The feature that provides value for the stakeholders of a system. This role is

played by a Feature (Service). This role’s cardinality is Many.

◼ Subject System: The system that offers certain Features. This role is played by a

System. Its cardinality is 1.

 Metamodel View Reference

◼ Figure 4: Feature Framework View

BY S* PATTERNS COMMUNITY 83 © 2024, SYSTEM SCIENCES, LLC

3.2.18 Has Role

The Has Role relationship connects a relationship to the roles described for that relationship.

 Roles

◼ Relationship: The relationship between two or more classes. This role is played by

Reified Relationship, Architectural Relationship, Manages, Functional Interaction,

Allocation Decision, Requirement Relationship, Design Constraint, Attribute Coupling,

Requirements Coupling, and Design Coupling. This role’s cardinality is 1 to Many.

◼ Role: A role is a part within a relationship that is played by a Class. This role is played

by Reified Relationship Role, Architectural Relationship Role, Functional Role, Input

Role, Output Role, Attribute Role, Feature Attribute Role, Role Attribute Role, and

Design Component Attribute Role. Its cardinality is 1 or 2 to Many.

 Configuration Attributes

◼ Role Population Rule

◼ Role Primary Key Value Rule

 Metamodel View References

◼ Figure 12: Reified Relationship View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

BY S* PATTERNS COMMUNITY 84 © 2024, SYSTEM SCIENCES, LLC

3.2.19 Has Stakeholder

The Has Stakeholder relationship links a stakeholder to a Domain’s subject system.

 Roles

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit. This role is played by Logical System. This

role’s cardinality is Many.

◼ Subject System: The System that is being specified or is the focus of attention in a

Domain. This role is played by System. This role’s cardinality is Many.

 Metamodel View Reference

◼ Figure 4: Feature Framework View

3.2.20 Has State

The Has State relationship requires that a situation in which a System participates (through

external interaction) is modeled as a State for that System.

 Roles

◼ System: A System that participates during the State. This role is played by a System.

This role’s cardinality is 1.

◼ State: The situation in which a System participates. This role is played by a State. This

role’s cardinality is Many.

 Metamodel View References

◼ Figure 7: State Analysis View

3.2.21 Has Subject

The Has Subject relationship links a Domain to a System that is the focus of attention and

is being specified.

 Roles

◼ Domain: The Domain with the Subject as its focus point. This role is played by a

Domain. This role’s cardinality is Many.

◼ Subject: The System that is the focus point and subject of a Domain. This role is played

by a System, Logical System, and Design Component. This role’s cardinality is 1 to

Many.

 Metamodel View References

◼ Figure 5: Domain Analysis View

BY S* PATTERNS COMMUNITY 85 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 6: Logical Architecture View

3.2.22 Has Value

The Has Value relationship links a Modeled Attribute to a Value it has.

 Roles

◼ Attribute: The Modeled Attribute that has one or more Values. This role is played by

Modeled Attribute. This role’s cardinality is 1.

◼ Value: The Value of a Modeled Attribute. This role is played by Value. This role’s

cardinality is Many.

 Specific Attributes

◼ None

 Metamodel View References

◼ Figure 3: General Class View

◼ Figure 4: Feature Framework View

3.2.23 Has View

The Has View relationship links a Reified Relationship to the various Modeled Statements

that describe it and how its role relates to each other.

 Roles

◼ Relationship: The relationship between two or more classes. This role is played by

Reified Relationship, Allocation Decision, Requirement Relationship, Design

Constraint, Attribute Coupling, Requirements Coupling, and Design Coupling. This

role’s cardinality is 1.

◼ Statement: The statement describing how the relationship’s roles relate. This role is

played by Modeled Statement, Rationale, Requirement Statement, Design Constraint

Statement, Attribute Coupling Map, Requirements Coupling Map, and Design Coupling

Map. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 12: Reified Relationship View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

BY S* PATTERNS COMMUNITY 86 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

◼ Figure 9: High Level Design View

3.2.24 Impacts Feature

The Impacts Feature relationship links Stakeholder Features and Failure Impacts.

 Roles

◼ Feature: This is the role played by the Stakeholder Feature. This role’s cardinality is

One.

◼ Impact: This is the role played by the Failure Impact. This role’s cardinality is Many.

 Configuration Attributes

◼ Failure Impact Population Rule

◼ Failure Impact Primary Key Value Rule

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.25 Impacts Stakeholder

The Impacts Stakeholder relationship links Stakeholders with Failure Impacts.

 Roles

◼ Impact: This is the role played by the Failure Impact. This role’s cardinality is Many.

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the Failure. This role is played by Logical System. This role’s

cardinality is Many.

 Metamodel View References

◼ Figure 24: Risk Analysis View

BY S* PATTERNS COMMUNITY 87 © 2024, SYSTEM SCIENCES, LLC

3.2.26 Is a Type of

The Is a Type of relationship is a generic taxonomy, generalization, or abstraction

relationship between two classes. This relationship is represented in UMLTM by an arrow

from the more special class (subclass) towards the more general class (superclass).

 Roles

◼ Superclass: The class that generalizes the Subclass. This role is played by all Classes.

This role’s cardinality is Many.

◼ Subclass: The class that is generalized by the Superclass. This role is played by all

Classes. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 2: Class Hierarchy View

◼ Figure 3: General Class View

◼ Figure 11: Reified Relationship Views View

◼ Figure 13: Architectural Relationship View

◼ Figure 14: Functional Interaction View

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 18: Attribute Coupling View

◼ Figure 19: Fitness Coupling View

◼ Figure 20: Characterization Coupling View

◼ Figure 21: Decomposition Coupling View

◼ Figure 22: Input/Output Coupling View

3.2.27 Is Constrained By

The Is Constrained By relationship describes which Design Component is the subject of a

Design Constraint.

 Roles

◼ Component: The Design Component that is the subject of the Design Constraint. This

role is played by a Design Component. This role’s cardinality is 1.

◼ Constraint: The Design Constraint that restricts aspects of a Design Component. This

role is played by a Design Constraint. This role’s cardinality is Many.

BY S* PATTERNS COMMUNITY 88 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 9: High Level Design View

3.2.28 Is Facilitated By Externally

The Is Facilitated By Externally relationship links a Port to the System of Access that it uses

outside of the System boundary.

 Roles

◼ Port: The Port that uses the System of Access outside of the System boundary. This

role is played by a Port. This role’s cardinality is Many.

◼ SOA: The System of Access that links to a Port outside of the System boundary. This

role is played by a System of Access (SOA). This role’s cardinality is 1.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

3.2.29 Is Facilitated By Internally

The Is Facilitated By Internally relationship links a Port to the System of Access that it uses

inside of the System boundary.

 Roles

◼ Port: The Port that uses the System of Access inside of the System boundary. This role

is played by a Port. This role’s cardinality is Many.

◼ SOA: The System of Access that links to a Port inside of the System boundary. This

role is played by a System of Access (SOA). This role’s cardinality is 1.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

3.2.30 Is Specified By

The Is Specified By relationship describes which Functional Role is the subject of a

Requirement Relationship.

 Roles

◼ Requirement: A Requirement Relationship specifying a Functional Role. This role is

played by a Requirement Relationship. This role’s cardinality is Many.

BY S* PATTERNS COMMUNITY 89 © 2024, SYSTEM SCIENCES, LLC

◼ Role: The Functional Role being specified by the Requirement Relationship. This role

is played by a Functional Role. This role’s cardinality is 1.

 Metamodel View References

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.2.31 Is Triggered By

The Is Triggered By relationship describes which Event causes one State to end and

another to begin.

 Roles

◼ Transition: A path triggered by the Event. This role is played by a Transition. This

role’s cardinality is Many.

◼ Trigger: The Event that triggers the Transition from State to another. This role is played

by an Event. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 7: State Analysis View

3.2.32 Mitigates Failure Mode

The Mitigates Failure Mode relationship links Failure Modes with the Failure Mode Context

Element.

 Roles

◼ Mitigated Mode: This is the role played by the Failure Mode. This role’s cardinality is 0

to 1.

◼ Mitigator: This is the role played by the Failure Mode Context Element, on behalf of an

Interaction. This role’s cardinality is 0 to 1.

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.33 Perceives

The Perceives relationship is between a Stakeholder and the Stakeholder Requirement they

perceive for the subject system.

 Roles

◼ Need: The statement elicited from and validated against by an Advocate. This role is

played by a Stakeholder Requirement. This role’s cardinality is Many.

BY S* PATTERNS COMMUNITY 90 © 2024, SYSTEM SCIENCES, LLC

◼ Stakeholder: The Logical System that a Person or Organization plays that is most

directly impacted by the change or benefit. This role is played by Logical System. This

role’s cardinality is Many.

 Metamodel View Reference

◼ Figure 4: Feature Framework View

3.2.34 Permits Architectural Relationship

The Permits Architectural Relationship relationship links an Interface to the allowed

Architectural Relationships with which its Ports can be linked.

 Roles

◼ AR: The Architectural Relationship allowed by the Interface. This role is played by an

Architectural Relationship. This role’s cardinality is Many.

◼ Interface: The Interface that allows the Functional Interaction. This role is played by an

Interface. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

3.2.35 Permits Functional Interaction

The Permits Functional Interact relationship links an Interface to the allowed Functional

Interactions for which its Ports can be used.

 Roles

◼ FI: The Functional Interaction allowed by the Interface. This role is played by a

Functional Interaction. This role’s cardinality is Many.

◼ Interface: The Interface that allows the Functional Interaction. This role is played by an

Interface. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

3.2.36 Permits Input/Output

The Permits Input/Output relationship links an Interface to the allowed Input/Outputs to

which its Ports can link.

BY S* PATTERNS COMMUNITY 91 © 2024, SYSTEM SCIENCES, LLC

 Roles

◼ Interface: The Interface that allows the Input/Output. This role is played by an Interface.

This role’s cardinality is 0 to 2.

◼ I/O: The Input/Output that is allowed through an Interface. This role is played by an

Input/Output. Its cardinality is Many.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 8: Detail Requirements View

3.2.37 Permits SOA

The Permits SOA relationship links an Interface to the allowed Systems of Access (SOAs)

to which its Ports can link.

 Roles

◼ Interface: The Interface that allows the System of Access. This role is played by an

Interface. This role’s cardinality is Many.

◼ SOA: The System of Access that is permitted. This role is played by a System of Access

(SOA). This role’s cardinality is Many.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

◼ Figure 9: High Level Design View

3.2.38 Predicts Failure Mode

The Predicts Failure Mode relationship links Failure Modes with the Failure Mode Context

Element.

 Roles

◼ Predicted Mode: This is the role played by the Failure Mode. This role’s cardinality is 0

to 1.

◼ Predictor: This is the role played by the Failure Mode Context Element on behalf of an

Interaction. This role’s cardinality is 0 to 1.

BY S* PATTERNS COMMUNITY 92 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.39 Prevents Failure Mode

The Prevents Failure Mode relationship links Failure Modes with the Failure Mode Context

Element.

 Roles

◼ Prevented Mode: This is the role played by the Failure Mode. This role’s cardinality is 0

to 1.

◼ Preventor: This is the role played by the Failure Mode Context Element, on behalf of an

Interaction. This role’s cardinality is 0 to 1.

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.40 Provides Context

The Provides Context relationship defines for which Functional Interaction a Requirement

Relationship is valid.

 Roles

◼ FI: The Functional Interaction for which the Requirement Relationship is valid. This

role is played by a Functional Interaction. This role’s cardinality is 1.

◼ Requirement: A Requirement Relationship specified during a Functional Interaction.

This role is played by a Requirement Relationship. This role’s cardinality is Many.

 Metamodel View References

◼ Figure 8: Detail Requirements View

◼ Figure 24: Risk Analysis View

3.2.41 Provides Event Context

The Provides Event Context relationship defines the Functional Interaction context for an

Event.

 Roles

◼ FI: The Functional Interaction for which the Event is valid. This role is played by a

Functional Interaction. This role’s cardinality is 1.

◼ Event: An event during a Functional Interaction. This role is played by an Event. This

role’s cardinality is Many.

BY S* PATTERNS COMMUNITY 93 © 2024, SYSTEM SCIENCES, LLC

 Specific Attributes

◼ From State PK Matching Rule

◼ To State PK Matching Rule

◼ Event PK Value Rule

 Metamodel View References

◼ Figure 7: State Analysis View

3.2.42 Provides Failure Context

The Provides Failure Context relationship links Functional Interactions with the Failure Mode

Context Element.

 Roles

◼ Contextual Interaction: This is the role played by the Functional Interaction. This role’s

cardinality is One.

◼ Context: This is the role played by the Failure Mode Context Element on behalf of a

Failure Mode. This role’s cardinality is One.

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.43 Provides Interface

The Provides relationship links an Interface to a System.

 Roles

◼ Interface: The Interface that is provided by the System. This role is played by an

Interface. This role’s cardinality is Many.

◼ System: The System that has the Interface. This role is played by a System, Logical

System, and Design Component. Its cardinality is 1.

 Metamodel View References

◼ Figure 5: Domain Analysis View

◼ Figure 6: Logical Architecture View

◼ Figure 9: High Level Design View

BY S* PATTERNS COMMUNITY 94 © 2024, SYSTEM SCIENCES, LLC

3.2.44 Receives

The Receives relationship links an internal Input/Output to an output Port or an external

Input/Output to an input Port.

 Roles

◼ I/O: The Input/Output that is being received at the Port. This role is played by an

Input/Output. This role’s cardinality is 0 to 1.

◼ Port: The Port that is receiving the Input/Output. This role is played by a Port. This

role’s cardinality is 1.

 Metamodel View Reference

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

3.2.45 Relates AR

The Relates AR relationship links an Architectural Relationship to an Interface Element

Relationship as part of a model of an interface context.

 Roles

◼ Architectural Relationship: The Architectural Relationship that is related to the Interface

Element Relationship. This role is played by an Architectural Relationship. This role’s

cardinality is 0 to 1.

◼ Interface Element Relationship: The Interface Element Relationship that is related to

the Architectural Relationship. This role is played by an Interface Element Relationship.

This role’s cardinality is 0 to Many.

 Metamodel View Reference

◼ Figure 5: Domain Analysis View

◼ Figure 10: Interface Context View

3.2.46 Relates FI

The Relates FI relationship links a Functional Interaction to the Interface Element

Relationship of an interface context in which that interaction participates.

BY S* PATTERNS COMMUNITY 95 © 2024, SYSTEM SCIENCES, LLC

 Roles

◼ Functional Interaction: The Functional Interaction that is related to the Interface Element

Relationship. This role is played by a Functional Interaction. This role’s cardinality is 0

to 1.

◼ Interface Element Relationship: The Interface Element Relationship that is related to

the Functional Interaction. This role is played by an Interface Element Relationship.

This role’s cardinality is 0 to Many.

 Metamodel View Reference

◼ Figure 5: Domain Analysis View

◼ Figure 10: Interface Context View

3.2.47 Relates IO

The Relates IO relationship links an Input/Output to the Interface Element Relationship of

an interface context in which that Input/Output participates.

 Roles

◼ I/O: The Input/Output that is related to the Interface Element Relationship. This role is

played by an Input/Output. This role’s cardinality is 0 to 1.

◼ Interface Element Relationship: The Interface Element Relationship that is related to

the Input/Output. This role is played by an Interface Element Relationship. This role’s

cardinality is 0 to Many.

 Metamodel View Reference

◼ Figure 5: Domain Analysis View

◼ Figure 10: Interface Context View

3.2.48 Relates LS

The Relates LS relationship links a Logical System to the Interface Element Relationship of

an interface context in which that system participates.

 Roles

◼ Logical System: The Logical System that is related to the Interface Element

Relationship. This role is played by a Logical System. This role’s cardinality is 0 to 1.

◼ Interface Element Relationship: The Interface Element Relationship that is related to

the Logical System. This role is played by an Interface Element Relationship. This role’s

cardinality is 0 to Many.

BY S* PATTERNS COMMUNITY 96 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View Reference

◼ Figure 5: Domain Analysis View

◼ Figure 10: Interface Context View

3.2.49 Replaces

The Replaces relationship links Requirement Statements and Counter Requirement

Statements.

 Roles

◼ Statement: This is the role played by the Requirement Statement. This role’s cardinality

is One.

◼ Counter Statement: This is the role played by the Counter Requirement Statement.

This role’s cardinality is One to Many.

 Specific Attributes

◼ Counter Requirement Population Rule

◼ Counter Requirement Primary Key Value Rule

 Metamodel View References

◼ Figure 24: Risk Analysis View

3.2.50 Requires

The Requires relationship asserts that a Functional Interaction is required or expected

during a certain State.

 Roles

◼ FI: A required Functional Interaction between Systems. This role is played by a

Functional Interaction. Its cardinality is Many.

◼ State: The situation that requires a Functional Interaction. This role is played by a State.

This role’s cardinality is 1.

 Specific Attributes

◼ State Population Rule-Interaction

◼ State Population Rule-Role

◼ State Primary Key Value Rule

BY S* PATTERNS COMMUNITY 97 © 2024, SYSTEM SCIENCES, LLC

 Metamodel View References

◼ Figure 7: State Analysis View

3.2.51 Satisfies

The Satisfies relationship links a Stakeholder Requirement to the Features of a System that

attempt to satisfy it.

 Roles

◼ Feature: The marketable value or valuable service that attempts to satisfy a set of

Stakeholder Requirements. This role is played by a Feature (Service). This role’s

cardinality is Many.

◼ Need: The statement describing what a Stakeholder desires of a System’s Features.

This role is played by a Stakeholder Requirement. This role’s cardinality is Many.

 Metamodel View Reference

◼ Figure 4: Feature Framework View

3.2.52 Sends

The Sends relationship links an external Input/Output to an output Port or an internal

Input/Output to an input Port.

 Roles

◼ I/O: The Input/Output that is being sent from the Port. This role is played by an

Input/Output. This role’s cardinality is 0 to 1.

◼ Port: The Port that is sending the Input/Output. This role is played by a Port. This role’s

cardinality is 1.

 Metamodel View Reference

◼ Figure 15: Requirement Relationship View

◼ Figure 16: Design Constraint View

◼ Figure 5: Domain Analysis View

◼ Figure 8: Detail Requirements View

3.2.53 Transitions From

The Transitions From relationship links a Transition to the State it is leaving.

BY S* PATTERNS COMMUNITY 98 © 2024, SYSTEM SCIENCES, LLC

 Roles

◼ From: The State that ends during the transition. This role is played by a State. This

role’s cardinality is 1.

◼ Transition: A path leaving the From State. This role is played by a Transition. This

role’s cardinality is Many.

 Metamodel View References

◼ Figure 7: State Analysis View

3.2.54 Transitions To

The Transitions To relationship links a Transition to the State it is entering.

 Roles

◼ To: The State that begins during the transition. This role is played by a State. This

role’s cardinality is 1.

◼ Transition: A path entering the To State. This role is played by a Transition. This role’s

cardinality is Many.

 Metamodel View References

◼ Figure 7: State Analysis View

3.2.55 Uses Functional Interaction

The Uses Functional Interaction relationship asserts that a certain Functional Interaction is

required to deliver at least part of a Stakeholder Feature’s value.

 Roles

◼ Feature: The Stakeholder Feature whose value is supported by the Functional

Interaction. This role is played by a Stakeholder Feature. This role’s cardinality is Many.

◼ Interaction: The Functional Interaction that supports the Stakeholder Feature’s value.

This role is played by a Functional Interaction. Its cardinality is Many.

 Configuration Attributes

◼ Interaction Population Rule

◼ Interaction Primary Key Value Rule

 Metamodel View Reference

◼ Figure 4: Feature Framework View

◼ Figure 14: Functional Interaction View

BY S* PATTERNS COMMUNITY 99 © 2024, SYSTEM SCIENCES, LLC

◼ Figure 19: Fitness Coupling View

◼ Figure 24: Risk Analysis View

3.3 Metaclass and Metarelationship Attributes

Metaclass attributes are properties of a metaclass. These properties (along with the

metaclass relationships above) allow a metaclass to parameterize its concepts.

3.3.1 Common Attributes

Common Attributes are the subset of metaclass and metarelationship properties that apply

to all Metaclasses and Metarelationships (In what follows below, read “class” as meaning

“class or relationship”.)

 Author

An Author of a class is the person who last made changes to that class.

 Change Date

The Change Date of a class the time and date in which the latest changes were made to

that class.

 Change Description

The Change Description of a class is an explanation of the changes made to the previous

version of that class.

 Class Level

The Class Level of a class is the depth of the class hierarchy in which that class is defined.

This attribute indicates how abstract or specific a class with reference to the other classes

defined. The smaller the level number, the more abstract a class is. The definitions and

meanings of the class levels vary and are specific to an enterprise.

 Definition

The Definition of a class is a short summary of the concept that class models.

 ID

The ID of a class is a unique identifier of that class.

 Major Version

The Major Version of a class signifies the number of substantial changes of that class. A

class with version X.Y.Z has a Major Version of X.

BY S* PATTERNS COMMUNITY 100 © 2024, SYSTEM SCIENCES, LLC

 Minor Version

The Minor Version of a class signifies the number of significant yet less than substantial

changes of that class. A class with version X.Y.Z has a Minor Version of Y.

 Name

The Name of a class is a short label or title by which that class is identified and summarizes

that class’s concepts.

 Organization Owner

An Organization Owner of a class is the organization that is responsible for maintaining and

managing a class’s attribute values and relationships.

 Owner

An Owner of a class is the person responsible for managing a class’s attribute values and

relationships.

 Status

The Status of a class is the systems engineering procedural state in which the class is at.

The status values, definitions, and meanings vary and are specific to an enterprise and even

class.

 Update Version

The Update Version of a class signifies the number of insignificant changes or bug fixes of

that class. A class with version X.Y.Z has an Update Version of Z

3.3.2 Specific Attributes including Configuration Rule Sets

Specific Attributes occur only for certain classes or relationships, and are listed individually

when then apply in Sections 3.1 and 3.2. Some of these Specific Attributes are used as

S*Pattern Configuration Rules for creation or checking of S*Models against an S*Pattern.

In particular, they may be used to describe configuration rules about Primary Key (PK)

attributes. That subject is further discussed in Section 2.22.

 Date Submitted

The Date Submitted of a class is the date in which a Stakeholder Requirement was first

recognized and recorded.

 Due Date

The Due Date of a Stakeholder Requirement is the date by which that Stakeholder

Requirement must be fulfilled.

BY S* PATTERNS COMMUNITY 101 © 2024, SYSTEM SCIENCES, LLC

 Originator

An Originator of a Stakeholder Requirement is the person or organization that first raised

the Stakeholder Requirement upon a System.

 Priority

A Priority of a Stakeholder Requirement describes the relative importance of fulfilling a

Stakeholder Requirement of a System.

 Reference

A Reference is a listing to find more information concerning a Modeled Statement.

 Request Type

A Request Type of a Stakeholder Requirement is an enterprise specific categorization of a

Need.

 Source

A Source is the document in which a Stakeholder Requirement was originally stated or

documented.

 Configuration Rules Set: Pattern Feature Attribute Values

During population of a configured model from a pattern, the pattern user selects Features

from the pattern, for population in the configured model. Advisory Configuration Rules from

the pattern provide additional user guidance in that selection, such as indication of

mandatory versus optional Features. For populating pattern Features that have Feature

Primary Key (FPK) Attributes, the user also selects the values of those FPK Attributes to be

populated. Those values are selected from a pattern set of valid or allowed FPK Attribute

values.

This occurs under the control of Configuration Rules indicating:

1. The names of pattern-based Features which the pattern user can select Features to

populate.

2. User advisory Configuration Rules for those Features, which indicate mandatory,

optional, or other kinds of constraints on the user’s selection of Features.

3. For each such Feature that has an FPK Attribute, the name of that attribute and an

enumerated list of possible (valid, allowed) values from which the user can select values

to be populated for those attributes.

Examples appear in the lower rows:

F
e
a

tu
r

e
s

T
a
b

le

Feature Name Advisory Configuration Rule

<Feature Name> <Feature Advisory Configuration Rule>

BY S* PATTERNS COMMUNITY 102 © 2024, SYSTEM SCIENCES, LLC

<Feature Name> <Feature Advisory Configuration Rule>

<Feature Name> <Feature Advisory Configuration Rule>

Safety Feature Mandatory

Passenger Comfort Feature Optional

F
P

K
 A

tt
ri

b
u

te
 V

a
lu

e
s
 T

a
b

le
 Feature Name FPK Attribute Name Allowed Value

<Feature Name> <Feature Primary Key Attribute Name> <value1>

<Feature Name> <Feature Primary Key Attribute Name> <value 2>

<Feature Name> <Feature Primary Key Attribute Name> <value 3>

Passenger Comfort Feature Comfort Aspect Leg Room

Passenger Comfort Feature Comfort Aspect Head Room

Passenger Comfort Feature Comfort Aspect Seat Back Fit

Safety Feature Safety Risk Type Ejection

Safety Feature Safety Risk Type Dash Injury

Safety Feature Safety Risk Type Traction Loss

Configuration Rule Attributes

Entry in Advisory
Configuration
Rule Column

Interpretation

Optional Means the pattern user selection of the Feature for population is at the option of the user.

Mandatory Means the pattern user is advised to always populate this Feature.

<any other text> Any other advice to the pattern user as to population of non-population of the Feature.

(empty) Means no advice to pattern user as to configuration of the Feature.

Entry in Allowed
Value Column

Interpretation

<any value> Means a possible value of the FPK Attribute, which the pattern configuring user can select.

BY S* PATTERNS COMMUNITY 103 © 2024, SYSTEM SCIENCES, LLC

 Configuration Rules Set: Pattern Features-Interactions

During auto-population of a configured model from a pattern, the user-selected set of

Features populated leads to auto-population of the supporting Interactions. This occurs

conditionally based on Configuration Rules indicating:

1. The name of the required Feature type that must already have been populated.

2. Responses to what Feature Primary Key (FPK) values have been chosen by the pattern

configuring user.

When the above conditions are satisfied, then for the Interaction to be populated, the

configuration rule also indicates:

3. The name of the Interaction to be populated.

4. The Interaction Primary Key (IPK) Rule as to what value the Interaction primary key

should have.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IF FEATURE ALREADY POPULATED

(FPK must also be satisfied)

THEN POPULATE INTERACTION

(with an IPK Value)

Feature Interaction Population

Rule

Interaction Interaction PK Value Rule

<Feature Name> <Interaction Name> *ANY*

<Feature Name> <value> <Interaction Name> FPK + /<literal string>/

Reliability & Availability

Feature

 Travel Over Terrain /Reliability & Availability/

Passenger Comfort

Feature

ANY Ride In Vehicle FPK

Configuration Rule Attributes

Entry in
Interaction

Population Rule
Column

Interpretation

BY S* PATTERNS COMMUNITY 104 © 2024, SYSTEM SCIENCES, LLC

ANY *ANY* means that any FPK value for a populated instance of the Feature type listed in the
rule may cause population of an instance of the specified Interaction.

<value> Any other value means a populated instance of the Feature type in the rule must have FPK
value equal to that listed, for it to be able to populate an instance of the specified
Interaction type.

(empty) Populated instance of Feature type must have (empty) FPK value, for it to be able to
populate an instance of the specified Interaction type.

Entry in
Interaction PK

Value Rule
Column

Interpretation

FPK Means set the IPK of the populated Interaction to equal the value of the FPK of the already
populated Feature associated with the Interaction by this rule.

/<literal string>/ Means set the IPK of the populated Interaction to be <literal string>

FPK + /<literal
string>/

Means set the IPK of the populated Interaction to equal the value of the FPK of the Feature
associated with the Interaction by this rule plus the <literal string>

ANY Used to populate additional Feature-Interaction relationships for already (using the other
PK value rules) populated Interactions, without populating new Interactions.

(empty) Means set the IPK of the populated Interaction to blank.

 Configuration Rules Set: Pattern Interactions-Roles

During auto-population of a configured model from a pattern, the already populated

Interaction leads to auto-population of the Roles which participate in that Interaction. This

occurs conditionally based on Configuration Rules indicating:

1. The name of the required Interaction type that must already have been populated.

2. What Interaction Primary Key (IPK) value has been chosen.

When the above conditions are satisfied, then for the Role to be populated, the configuration

rule also indicates:

3. The name of the Role to be populated.

4. The Role Primary Key (RPK) Rule as to what value the Role primary key should have.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IF INTERACTION ALREADY POPULATED
(IPK must also be satisfied)

THEN POPULATE ROLE
(with an RPK Value)

BY S* PATTERNS COMMUNITY 105 © 2024, SYSTEM SCIENCES, LLC

Interaction Role Population Rule Role Role PK Value Rule

<Interaction Name> <IPK Value> <Role Name> <RPK Rule>

Configure Vehicle *ANY* Vehicle IPK

Configuration Rule Attributes

Entry in Role
Population Rule

Column

Interpretation

ANY *ANY* means that any IPK value for a populated instance of the Interaction type listed in
the rule may cause population of an instance of the specified Role.

<value> Any other value means a populated instance of the Interaction type in the rule must have
IPK value equal to that listed, for it to be able to populate an instance of the specified Role
type.

(empty) Populated instance of Interaction type must have (empty) IPK value, for it to be able to
populate an instance of the specified Role type.

Entry in Role PK
Value Rule

Column

Interpretation

IPK Means set the RPK of the populated Role to equal the value of the IPK of the Interaction
associated with the Role by this rule.

/<literal string>/ Means set the RPK of the populated Role to be <literal string>

IPK + /<literal
string>/

Means set the RPK of the populated Role to equal the value of the IPK of the Interaction
associated with the Role by this rule plus the <literal string>

 Configuration Rules Set: Roles-Design Components

During auto-population of a configured model from a pattern, the already populated Role

leads to auto-population of the Design Component to which the Role is allocated. This

occurs conditionally based on Configuration Rules indicating:

1. The name of the required Role type that must already have been populated.

2. What Role Primary Key (RPK) value has been chosen.

When the above conditions are satisfied, then for the Design Component to be populated,

the configuration rule also indicates:

3. The name of the Design Component to be populated.

4. The Design Component Primary Key (DCPK) Rule as to what value the Design

Component primary key should have.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

BY S* PATTERNS COMMUNITY 106 © 2024, SYSTEM SCIENCES, LLC

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IF ROLE ALREADY POPULATED
(RPK must also be satisfied)

THEN POPULATE DESIGN COMPONENT
(with an DCPK Value)

Role Design Component
Population Rule

Design Component Design Component PK
Value Rule

<Role Name> <RPK Value> <Design Component Name> <DCPK Rule>

Vehicle *ANY* Vehicle RPK

Configuration Rule Attributes

Entry in Design
Component

Population Rule
Column

Interpretation

ANY *ANY* means that any RPK value for a populated instance of the Role type listed in the
rule may cause population of an instance of the specified Design Component.

<value> Any other value means a populated instance of the Role type in the rule must have RPK
value equal to that listed, for it to be able to populate an instance of the specified Design
Component type.

(empty) Populated instance of Role type must have (empty) RPK value, for it to be able to populate
an instance of the specified Design Component type.

Entry in Design
Component PK

Value Rule
Column

Interpretation

RPK Means set the DCPK of the populated Design Component to equal the value of the RPK of
the Role associated with the Design Component by this rule.

R1PK Means set the DCPK of the populated Design Component to equal the first part of the
value of the compound RPK of the Role associated with the Design Component by this
rule.

R2PK Means set the DCPK of the populated Design Component to equal the latter part of the
value of the compound RPK of the Role associated with the Design Component by this
rule.

/<literal string>/ Means set the DCPK of the populated Design Component to be <literal string>

RPK + /<literal
string>/

Means set the DCPK of the populated Design Component to equal the value of the RPK of
the Role associated with the Design Component by this rule plus the <literal string>

BY S* PATTERNS COMMUNITY 107 © 2024, SYSTEM SCIENCES, LLC

 Configuration Rules Set: Interactions-Roles-Requirements

During auto-population of a configured model from a pattern, the combination of an already

populated Interaction-Role instance pair, consisting of a certain Interaction and Role leads

to auto-population of that Requirement. This occurs conditionally based on Configuration

Rules indicating:

1. The name of the required Interaction type that must already have been populated.

2. What Interaction Primary Key (IPK) value the existing Interaction instance must have.

3. The name of the required Role type that must already have been populated.

4. What Role Primary Key (RPK) value the existing Role instance must have.

When the above conditions are satisfied, then for the Requirement to be populated, the

configuration rule also indicates:

5. The Requirement to be populated.

6. The Requirement Statement Primary Key (RSPK) Rule as to what value the

Requirement primary key should have.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IF ROLE-INTERACTION PAIR ALREADY POPULATED
(both IPK and RPK must also be satisfied)

THEN POPULATE REQUIREMENT
(with a Requirement Type and an RSPK Value)

Interaction Requirement
Population

Rule-
Interaction

Role Requirement
Population
Rule-Role

Requirement Requirement
Statement PK

Value Rule

<Interaction
Name>

<IPK Rule> <Role
Name>

<RPK Rule> <Req Name> <RSPK Rule>

Convert Electrical
Power

ANY Electrically
Powered
Device

ANY REQ 003 IPK

Consumer
Electrical Power

 Local Power
Distribution

System

 REQ 004

Configuration Rule Attributes

Entry in
Requirement

Population Rule-
Interaction

Column

Interpretation

BY S* PATTERNS COMMUNITY 108 © 2024, SYSTEM SCIENCES, LLC

ANY *ANY* means that any IPK value for a populated instance of the Interaction type listed in
the rule may cause population of an instance of the specified Requirement.

<value> Any other value means a populated instance of the Interaction type in the rule must have
IPK value equal to that listed, for it to be able to populate an instance of the specified
Requirement type.

(empty) Populated instance of Interaction type must have (empty) IPK value, for it to be able to
populate an instance of the specified Requirement type.

Entry in
Requirement

Population Rule-
Role Column

Interpretation

ANY *ANY* means that any RPK value for a populated instance of the Role type listed in the
rule may cause population of an instance of the specified Requirement.

<value> Any other value means a populated instance of the Role type in the rule must have RPK
value equal to that listed, for it to be able to populate an instance of the specified
Requirement type.

(empty) Populated instance of Role type must have (empty) RPK value, for it to be able to populate
an instance of the specified Requirement type.

Requirement
Statement PK

Value Rule

Interpretation

IPK Means set the RSPK of the populated Requirement to equal the value of the IPK of the
Interaction associated with the Requirement by this rule.

RPK Means set the RSPK of the populated Requirement to equal the value of the RPK of the
Role associated with the Requirement by this rule.

/<literal string>/ Means set the RSPK of the populated Requirement to be <literal string>

IPK + /<literal
string>/

Means set the RSPK of the populated Requirement to equal the value of the IPK of the
Interaction associated with the Requirement by this rule plus the <literal string>

RPK + /<literal
string>/

Means set the RSPK of the populated Requirement to equal the value of the RPK of the
Role associated with the Requirement by this rule plus the <literal string>

(empty) If no RSPK rule, then populate the Requirement with no RSPK value.

 Configuration Rules Set: Pattern Interactions-States

During auto-population of a configured model from a pattern, the combination of an already

populated Interaction-Role instance pair, consisting of a certain Interaction (which can occur

during a certain State) and Role (which can have a certain State) leads to auto-population

of that State. This occurs conditionally based on Configuration Rules indicating:

1. The name of the required Interaction type that must already have been populated.

2. What Interaction Primary Key (IPK) value the existing Interaction instance must have.

3. The name of the required Role type that must already have been populated.

BY S* PATTERNS COMMUNITY 109 © 2024, SYSTEM SCIENCES, LLC

4. What Role Primary Key (RPK) value the existing Role instance must have.

When the above conditions are satisfied, then for the State to be populated, the

configuration rule also indicates:

5. The name of the State to be populated.

6. The State Type of the State to be populated.

7. The State Primary Key (SPK) Rule as to what value the State primary key should have.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IF ROLE-INTERACTION PAIR ALREADY POPULATED
(both IPK and RPK must also be satisfied)

THEN POPULATE STATE
(with a State Type and an SPK Value)

Interaction State
Population

Rule-
Interaction

Role State
Population
Rule-Role

State State Type State PK
Value Rule

<Interaction Name> <IPK Rule> <Role
Name>

<RPK
Rule>

<State Name> <State Type
Rule>

<SPK
Rule>

<Interaction Name> <IPK Rule> <Role
Name>

<RPK
Rule>

<State Name> <State Type
Rule>

<SPK
Rule>

Operate Starter *ANY* Vehicle *ANY* Starting Simple

Configuration Rule Attributes

Entry in State
Population Rule-

Interaction
Column

Interpretation

ANY *ANY* means that any IPK value for a populated instance of the Interaction type listed in
the rule may cause population of an instance of the specified State. (This includes no IPK
value.)

<value> Any other value means a populated instance of the Interaction type in the rule must have
IPK value equal to that listed, for it to be able to populate an instance of the specified State
type. (This includes the case of no IPK value.)

Entry in State
Population Rule-

Role Column

Interpretation

ANY *ANY* means that any RPK value for a populated instance of the Role type listed in the
rule may populate an instance of the specified State. (This includes no RPK value.)

<value> Any other value means that a populated instance of the Role type listed in the rule must
have RPK value equal to that listed, in order for it to be able to populate an instance of the
specified State type. (This includes no IPK value.)

BY S* PATTERNS COMMUNITY 110 © 2024, SYSTEM SCIENCES, LLC

Entry in State PK
Value Rule

Column

Interpretation

IPK Means set the SPK of the populated State to equal the value of the IPK of the Interaction
associated with the State by this rule.

I2PK Means set the SPK of the populated State to equal the second half of the IPK of the
Interaction associated with the State by this rule. (Assumes a divided two-part IPK of the
form XXXX-YYYY, delimited by (-)).

/<literal string>/ Means set the SPK of the populated State to be <literal string>

(blank) If no SPK Rule, then populate the State with no SPK value.

Entry in State
Type Column

Interpretation

Simple This is a “normal” state, for which the associated Interaction will be related to the state to
indicate it occurs during that state.

Empty This state is populated by an instance of the associated interaction, but no Interactions are
associated with this state as occurring during that state.

Initial This state is the first of a sequence of states, so may have associated state transitions
“from” it, but not “to” it.

Final This state is the last of a sequence of states, so may have associated state transitions “to”
it, but not “from” it.

 Configuration Rules Set: Pattern States-Transitions-Events

During auto-population of a configured model from a pattern, the combination of an already

populated pair of States may cause auto-population of a certain State Transition between

those states. This occurs conditionally based on Configuration Rules indicating:

1. The name of the required “from State” that must already have been populated.

2. The value of the State Primary Key (SPK) of the “from State” that must have already

been populated.

3. The name of the required “to State” that must already have been populated.

4. The value of the State Primary Key (SPK) of the “to State” that must have already been

populated.

5. Event Context Interaction: Whether the State Transition is auto-populated depends on

not just the existence of the above “from” and “to” states, but also depends on the population

of an Event that would trigger such a transition. Whether such an Event will be auto-

populated depends on whether a particular Interaction has already been populated that

provides the Event Context for that Event to occur.

When the above conditions are satisfied, then for the State Transition to be populated, the

configuration rule also indicates:

6. The name of the Event to be populated.

BY S* PATTERNS COMMUNITY 111 © 2024, SYSTEM SCIENCES, LLC

7. The Event Primary Key (EPK) to be set for the Event that is to be populated

8. The State Transition Type of the transition to be populated.

9. The Transition PK Value that the populated Transition is to have.

10. For Join Transition types, a disambiguating name for the each of the multiple incoming

transitions flows.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IF STATES AND EVENT CONTEXT ALREADY POPULATED
(both State PKs & Event Context Interaction must be satisfied)

THEN POPULATE EVENT AND TRANSITION
(with PK values and Transition Type)

From State

From
State PK
Matching

Rule

To State

To State
PK

Matching
Rule

Event Context
Interaction

Event
Event PK

Value Rule

Transition
Type

Transition
PK Value

Rule

Transition
Name for

Joins

<State
Name>

<FSPK
Rule>

<State Name> <TSPK
Rule>

<Interaction
Name>

<Event
Name>

<EPK
Rule>

<Transition
Type>

<TPK Rule> <Transition
Name>

<State
Name>

<FSPK
Rule>

<State Name> <TSPK
Rule>

<Interaction
Name>

<Event
Name>

<EPK
Rule>

<Transition
Type>

<TPK Rule> <Transition
Name>

Starting *ANY* Idling *ANY* Perform Engine
Operation

Engine
Started

IPK Simple IPK

Configuration Rule Attributes

Entry in From/To
State PK Matching

Rule Columns

Interpretation

IPK Means the PK of the configured state must equal the PK of the Interaction providing Event context in
order for a transition to be populated between the From State and the To State.

EPK Means the PK of the configured state must equal the PK of the Event in order for a transition to be
populated between the From State and the To State.

= Means the PKs of the configured From State and To State must equal each other in order for a transition
to be populated between the From State and the To State.

ANY Means the PK of the configured state may be any value for a transition to be populated between the
From State and the To State.

(no value/blank) Means the PK of the configured state must be no value/blank in order for a transition to be populated
between the From State and the To State.

Entry in Event PK
Value Rule

Column

Interpretation

BY S* PATTERNS COMMUNITY 112 © 2024, SYSTEM SCIENCES, LLC

IPK Means the value set for the Event PK will be the value of the PK of the Interaction providing the Event
Context.

<any other value> The Event PK will be set to blank.

Entry in Transition
Type Column

Interpretation

Simple Means populate a simple State Transition from a single State to a single State.

Fork Means populate a Fork Transition between states, from a single State to multiple States. Multiple rows of
the Configuration Rules Table are used to indicate what “to States” are connected, all for the same
Event.

Join Means populate a Join Transition between states, from multiple States to a single State. Multiple rows of
the Configuration Rules Table are used to indicate what “from States” are connected, potentially
involving different Events.

Entry in Transition
PK Value Rule

Column

Interpretation

No entry needed—
inferred as shown.

If the transition is not a Join, the transition unique instance is identified as the concatenation of the populated
From State (including its PK value) and Event (including its PK value). In the case of a Join transition, the
transition unique instance is identified by the configuration attribute Transition Name for Join.

Entry In Transition
Name for Joins

Column

Interpretation

<Join Transition
Name>

For a transition that is a Join, there will be multiple configuration rule rows, with different “from States”
and potentially different Events, so this Transition Name indicates which rows participate in the same
Join. (Transitions that are Simple use only one row. Transitions that are Forks are multi-row but are
linked by the fact they have a common Event.) Transitions that are Simple or Forks are auto-named.

 Configuration Rules Set: Interface Context

During auto-population of a configured model from a pattern, the combination of an already

populated Interaction-Role pair may cause auto-population of a certain related “Interface

Context” classes. This occurs conditionally, based on Configuration Rules spread across

four Interface Context Tables (ICT1, ICT2, ICT4, ICT5), as follows:

Configuration Rules that are rows of ICT1 and ICT2 act together for populating Input-

Outputs, Interfaces, Ports, and/or Systems of Access, as follows:

1. The name of a System (Role) that must already have been populated appears in both

ICT1 and ICT2.

2. The name of an Input-Output to be populated must appear in both ICT1 and ICT2 for

that same System.

When the above conditions are satisfied, the same row of ICT1 specifies the Input-Output,

Interface, Port, and/or System of Access to be populated, as follows:

3. The name of an Interface that the System (Role) can have.

4. The Primary Key (PK) of that Interface.

BY S* PATTERNS COMMUNITY 113 © 2024, SYSTEM SCIENCES, LLC

5. The name of an Input-Output (IO) for the System (Role).

6. The Primary Key (PK) of that IO.

7. When the IO flows In (as an Input) or Out (as an Output) or InOut (as an Input-Output).

8. The name of a Port marking the intersection of the System boundary with an IO.

9. The Primary Key (PK) of that Port.

10. The name of a System of Access (SOA) providing interaction access to the System.

11. The Primary Key (PK) of that SoA.

12. Whether the SoA is External to or Internal to (built into) the System.

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IC
T

1

IF SYSTEM
PRESENT

THEN POPULATE INTERFACE, IO, PORT, and SOA
(with PK values and parameters shown)

System Name Interface
Name

Interface
PK Value

Rule

Input-
Output
Name

IO
PK Value

Rule

IO
Direction

Port
Name

Port PK
Value
Rule

SOA
Name

SOA PK
Value
Rule

SOA
Internal or
External

<System
Name>

<Interface
Name>

<Interface
PK Rule>

<IO
Name>

<IO
PK Rule>

<IO
Direction>

<Port
Name>

<Port
PK

Rule>

<SoA
Name>

<SoA
PK

Rule>

<Int or
Ext>

<System
Name>

<Interface
Name>

<Interface
PK Rule>

<IO
Name>

<IO
PK Rule>

<IO
Direction>

<Port
Name>

<Port
PK

Rule>

<SoA
Name>

<SoA
PK

Rule>

<Int or
Ext>

Vehicle Starter
Interface

IPK Start
Request

IPK In Start
Port

IPK Button
5

 External

IC
T

2

IF INTERACTION-SYSTEM PRESENT THEN POPULATE INPUT-OUTPUT,
ARCHITECTURAL RELATIONSHIP

Interaction Name System Name IO Name Architectural
Relationship

<Interaction Name> <Role Name> <IO Name> <AR Name>

<Interaction Name> <Role Name> <IO Name> <AR Name>

Operate Starter Vehicle Start Request Operates

BY S* PATTERNS COMMUNITY 114 © 2024, SYSTEM SCIENCES, LLC

Configuration Rule Attributes

Entry in Interface
PK Rule Column

Interpretation

IPK Means the PK of the configured Interface will be set equal to the PK of the Interaction in ICT2.

Blank, other values Means the PK of the configured Interface will be set to blank.

Entry in IO PK
Rule Column

Interpretation

IPK Means the PK of the configured IO will be set equal to the PK of the Interaction in ICT2.

Blank, other values Means the PK of the configured IO will be set to blank.

Entry in IO
Direction Column

Interpretation

In Means the direction of the System Port will be set to In.

Out Means the direction of the System Port will be set to Out.

InOut Means the direction of the System Port will be set to InOut.

Entry in Port PK
Rule Column

Interpretation

IPK Means the PK of the configured Port will be set equal to the PK of the Interaction in ICT2.

Blank, other values Means the PK of the configured Port will be set to blank.

Entry In SoA PK
Rule Column

Interpretation

IPK Means the PK of the configured SoA will be set equal to the PK of the Interaction in ICT2.

Blank, other values Means the PK of the configured Soa will be set to blank.

Entry in SoA
Internal or

External Column

Interpretation

Internal Means the SOA is understood to be part of (internal to) the system.

External Means the SoA is understood to be outside (external to) the system.

Configuration Rules that are rows of ICT2, ICT4, and ICT5 act together for populating

Architectural Relationships, and their Architectural Relationship Roles, as follows:

1. The name of an (already populated) System that is a candidate to be connected by an

Architectural Relationship (also named), by virtue of its (already populated) participation in

an Interaction (also named), all appear together in a configuration rule row of ICT 2.

BY S* PATTERNS COMMUNITY 115 © 2024, SYSTEM SCIENCES, LLC

2. The same named System and Architectural Relationship also appear together in a

configuration rule row of either ICT 5 (for simple 2-way / binary relationships) or ICT 4 (for

reified or n-way relationships, n>2).

When the above conditions are satisfied, details of filling the relationship roles are specified

by ICT4 (for reified or n-way relationships, n>2), or ICT5 (for simple 2-way/binary

relationships), as follows:

3. The name of Architectural Relationship (AR) to be populated.

4. The Primary Key (PK) of that AR.

5. For Reified ARs (ICT4), the name of the AR’s Roles.

6. For Reified ARs (ICT4), the value of the PKs of the AR’s Roles.

7. For Simple ARs (ICT5), the names of the Systems filling the two AR Roles.

8. For Reified ARs (ICT4), the name of the System filling each AR Role.

9. Whether the AR is (EXT?INT?)

A single configuration rule of this Configuration Rules Set is viewed as an individual row of

the following Configuration Rules Table, whose vertical row order is insignificant. The upper

portion of table shows the general form of the rules and the lower portion shows some

examples. The Configuration Rule Attributes provide additional description of the allowable

entries for the applicable columns.

Configuration Rules Table

IC
T

4

System Name Architectural
Relationship Name

AR PK
Value
Rule

AR Role Name AR Role
PK Value

Rule

AR
Internal or
External

AR Complexity

<System Name> <AR Name> <AR PK> <AR Role
Name>

<AR PK> <Int or
Ext>

<AR Complexity>

<System Name> <AR Name> <AR PK> <AR Role
Name>

<AR PK> <Int or
Ext>

<AR Complexity>

Vehicle Operates IPK Driver RPK

Reified

IC
T

5

THEN POPULATE ARCH
REL

 IF BOTH SYSTEMS POPULATED → POPULATED AR DETAILS

Architectural

Relationship
Name

AR PK
Value
Rule

Connected System,
Subject End of AR

Connected
System, Object

End of AR

Internal or
External

AR

AR Complexity

<AR Name> <AR PK> <Subject System> <Object System> <Int or Ext> <AR Complexity>

<AR Name> <AR PK> <Subject System> <Object System> <Int or Ext> <AR Complexity>

Isolates Atmosphere Passenger Simple

BY S* PATTERNS COMMUNITY 116 © 2024, SYSTEM SCIENCES, LLC

Configuration Rule Attributes

Entry in AR PK
Rule Column

Interpretation

IPK Means the PK of the configured AR will be set equal to the PK of the Interaction in ICT2.

Blank, other values Means the PK of the configured AR will be set to blank.

Entry in AR Role
PK Rule Column

Interpretation

IPK Means the PK of the configured AR Role will be set equal to the PK of the Interaction in ICT2.

Blank, other values Means the PK of the configured AR Role will be set to blank.

Entry AR Internal
or External

Column

Interpretation

Internal Means the AR is understood to be part of (internal to) the system.

External Means the AR is understood to be outside (external to) the system.

Entry in AR
Complexity

Column

Interpretation

Simple Means the Architectural Relationship should be treated as a simple binary (2-Way) relationship.

Reified Means the Architectural Relationship should be reified, with roles instantiated. Particularly suitable for n-
Way relationships, n>2.

 Configuration Rules Set: Pattern Attribute Couplings

During auto-population of a configured model from a pattern, the existence of an already

populated attribute of certain classes (Features, Roles, Design Components, Input-Outputs,

which “own” the attribute) may cause auto-population of a related Attribute Coupling. This

occurs conditionally, based on the pattern’s Configuration Rules:

1. The name of an Attribute shown in the rule must already have been populated.

2. And it must be an Attribute of the Owner shown in the rule, and must already have been

populated.

3. And that Owner must be of the S*Metaclass type shown as Stereotype in the rule.

4. And the PK of that Owner (which is also effectively the Attribute PK) must satisfy the

population rule shown.

When the above conditions are satisfied, the same configuration rule row specifies:

5. The name of the Coupling that will be populated, and linked to the Attribute listed.

6. The Direction of the Coupling, differentiating inputs to the coupling versus outputs.

BY S* PATTERNS COMMUNITY 117 © 2024, SYSTEM SCIENCES, LLC

Each configuration rule of this Configuration Rules Set is viewed as one row of the following

Configuration Rules table, whose vertical row order is insignificant.

Note that a single Attribute Coupling will always couple two or more Attributes, but each

row/rule of the table shown covers only one Attribute. Therefore, a single Attribute Coupling

can be expected to appear in two or more rows of the Attribute Coupling rules. Only one

of them should be for an Out direction, because one Attribute Coupling drives a single

(output) Attribute, from one or more (input) Attributes.

Note that the configuration rule does not explicitly specify the PK value to be set for the

Coupling to be populated, because an Attribute Coupling’s PK value is always implicitly the

same as the PK value of the Attribute it drives, which is implicitly the same as the PK value

of the class owning the driven Attribute.

The last rows in the table below provides an example:

Configuration Rules Table

IF ATTRIBUTE AND ITS OWNER ALREADY POPULATED
(and meeting PK rule shown)

THEN POPULATE COUPLING

Attribute Name Owner Stereotype Attribute Coupling
Population Rule

Coupling Name Coupling Direction

<Attribute Name> <Class Name> <Metaclass> <Coupling Name> <Coupling Direction>

Part Number Power Converter
Assembly

Physical System Product
Characterization

Coupling

in

Max Power Drain International Power
Converter

Logical System Max Power Coupling in

Max Drain on
Mains

Power Mains
Compatibility

Feature Max Power
Coupling

out

Configuration Rule Attributes

Entry in
Stereotype

Column

Interpretation

 Feature Means the listed Attribute is an Attribute of a Feature.

 Role Means the listed Attribute is an Attribute of a Role.

Physical System Means the listed Attribute is an Attribute of a Design Component.

Input-Output Means the listed Attribute is an Attribute of an Input-Output.

Entry in Attribute
Coupling

Population Rule
Column

Interpretation

CPK=APK Means that the listed Attribute will not be coupled to the listed Coupling unless the PK of that Attribute
(which is always the same as the PK of that Attribute’s Owner) is equal to the PK of Attribute Coupling
(which is always the same as the PK of the coupling driven Attribute’s Owner).

BY S* PATTERNS COMMUNITY 118 © 2024, SYSTEM SCIENCES, LLC

CPK<APK Means that the listed Attribute will not be coupled to the listed Coupling unless the PK of that Attribute
(which is always the same as the PK of that Attribute’s Owner) contains (as a substring) the PK of
Attribute Coupling (which is always the same as the PK of the coupling driven Attribute’s Owner).

APK<CPK Means that the listed Attribute will not be coupled to the listed Coupling unless the PK of that Attribute
(which is always the same as the PK of that Attribute’s Owner) is a substring of the PK of Attribute
Coupling (which is always the same as the PK of the coupling driven Attribute’s Owner).

ANY or blank Means that the listed Attribute will be coupled to the listed Coupling, without consideration of their PK
values.

Entry Coupling
Direction Column

Interpretation

in Means the Attribute listed in this rule is an input to the Coupling listed in this rule. That is, the Coupling is
driven, partly or completely, by that Attribute. A Coupling may be driven by more than one Attribute.

out Means the Attribute listed in this rule is the output of the Coupling listed in this rule. That is, the Coupling
drives that Attribute. Only one Attribute can be driven by a Coupling.

 Configuration Rules Set: Pattern Risk Analysis

During auto-population of a configured model from a pattern, the combination of an already

populated Features, Interactions, Requirements, and Design Components may cause auto-

population of a certain related “Risk Analysis” classes and relationships. This occurs

conditionally, based on Configuration Rules spread over six inter-linked Risk Analysis rule

sets, listed below in tabular form:

Rows of tables act together, populating Failure Modes, Counter Requirements, Failure

Impacts, related parameters as to Severity, Probability, Causality, Prevention, Detection,

Mitigation, and Prognostics:

1. The name of a Stakeholder Feature that must already have been populated

2. The name of an Interaction that must already have been populated

3. The identity of a Requirement Statement that must already have been populated

4. The name of a Design Component that must already have been populated

When the above conditions are satisfied, the same configuration rules specify the Failure

Modes, Counter Requirements, and Failure Impacts, to be populated, as follows:

5. The name of a Failure Mode to populate.

6. The Primary Key (PK) of that Failure Mode.

7. The name of a Counter Requirement to populate.

8. The Primary Key (PK) of that Counter Requirement.

9. The name of a Failure Impact to populate.

10. The Primary Key (PK) of that Failure Impact.

BY S* PATTERNS COMMUNITY 119 © 2024, SYSTEM SCIENCES, LLC

11. Failure Mode Context to populate, potentially linkages to other already populated

Interactions involved in the failure mode’s cause, detection, prevention, mitigation, and/or

prognostics.

Each configuration rule of this Configuration Rules Set is viewed as one row of the following

Configuration Rules tables, whose vertical row order is insignificant. Note that the

combination of the following tables is what ultimately determines population. For example,

a particular populated design component may cause population of a particular related failure

mode, but if there is no populated feature whose failure impacts would be invoked by that

failure mode, then that failure mode is not populated. The last row in each table below

provides an example:

Configuration Rules Table

FM
 1

IF PRESENT THEN POTENTIALLY POPULATE

Design
Component

Failure Mode
Population Rule

Failure Mode Failure Mode PK
Value Rule

Probability

<DC Name> <DCPK Rule> <Failure Mode> <FMPK Rule>

<DC Name> <DCPK Rule> <Failure Mode> <FMPK Rule>

Power Converter
Assembly

ANY Regulator Failure CRPK 0.0002

Power Converter
Assembly

ANY Internal Electrical Short
to Case

DCPK 0.0003

FM
 3

IF PRESENT THEN POPULATE

Requirement
Name

Counter
Requirement
Population

Rule

Counter
Requirement

Name

Counter
Requirement

PK Value Rule

Counter Requirement Statement

<Req Name> <RSPK Value
Rule>

<CR Name> <CR PK Value
Rule>

<CR Statement>

<Req Name> <RSPK Value
Rule>

<CR Name> <CR PK Value
Rule>

<CR Statement>

REQ 005 *ANY* CREQ 001 RSPK The system presents a shock hazard to users
when operated according to its instructions.

REQ 006 *ANY* CREQ 002 RSPK The system generates Output Power to
attached Electrically Powered Devices which
exceeds the [Output Voltage-Power Profile].

F M

4

IF PRESENT THEN POPULATE

FM
 2

FM-CR RULES

Failure Mode Counter Requirement Name

<Failure Mode> <CR Name>

<Failure Mode> <CR Name>

Regulator Failure CREQ 002

Internal Electrical Short to Case CREQ 001

BY S* PATTERNS COMMUNITY 120 © 2024, SYSTEM SCIENCES, LLC

Feature Failure Impact
Population Rule

Failure Impact Failure Impact PK
Value Rule

Severity

<Feature> <Feature PK Val
Rule>

<Failure Impact> <Fail Imp PKV Rule>

<Feature> <Feature PK Val
Rule>

<Failure Impact> <Fail Imp PKV Rule>

Powered Devices
Compatibility

ANY Damage to Powered
Device

FPK Serious

Safety *ANY* Electrical Shock Severe

Reliability and
Durability

ANY Loss of Converted
Power Output

FPK Serious

FM
 6

IF POPULATED IF STATES AND EVENT CONTEXT ALREADY POPULATED
(both State PKs & Event Context Interaction must be satisfied)

Failure Mode Interaction

Failure Mode
Context
Element

Population
Rule

FM Context
Element Name

Causes Mitigates Prevents Detects Predicts

<Failure
Mode>

<Interaction> <IPK Rule> <FM Context
Element Name>

<0/1> <0/1> <0/1> <0/1> <0/1>

<Failure
Mode>

<Interaction> <IPK Rule> <FM Context
Element Name>

<0/1> <0/1> <0/1> <0/1> <0/1>

Regulator
Failure

Convert
Electrical Power

FMPK IC Overheat 1

Internal
Electrical Short

to Case

Assemble
Product

ANY Insulation Damage 1

Configuration Rule Attributes

Entry in FM 1
 Failure Mode Population

Rule Column

Interpretation

<PK value> Means the PK of the already populated design component must equal <PK value> in order for
failure model to be populated.

ANY Means the failure mode will be populated irrespective of the PK value of the design component.

Entry in FM 1
Failure Mode PK Value

Rule Column

Interpretation

FM
 5

FI-CR RULES

Failure Impact Counter Requirement Name

<Failure Impact> <CR Name>

<Failure Impact> <CR Name>

Electrical Shock CREQ 001

Damage to Powered Device CREQ 002

BY S* PATTERNS COMMUNITY 121 © 2024, SYSTEM SCIENCES, LLC

 DCPK Means the PK of the failure mode will be set equal to the PK of the Design Component.

CRPK Means the PK of the failure mode will be set equal to the PK of the Counter Requirement.

Blank Means the PK of the configured IO will be set to blank.

Entry in FM 1
Probability Column

Interpretation

Numeric value from 0-1 Means the populated failure mode probability will be set to the value shown.

Entry in FM 3
Counter Requirement

Population Rule Column

Interpretation

<PK value> Means the PK of the already populated requirement statement must equal <PK value> in order
for the counter requirement statement to be populated.

ANY Means the counter requirement statement will be populated irrespective of the PK value of the
requirement statement.

Entry in FM 3
Counter Requirement

Primary Key Value Rule
Column

Interpretation

RSPK Means the PK of the configured counter requirement will be set equal to the PK of the
requirement statement.

Blank Means the PK of the configured counter requirement will be set to blank.

Entry in FM 4 Failure
Impact Population Rule

Column

Interpretation

<PK value> Means the PK of the already populated feature must equal <PK value> in order for the failure
impact to be populated.

ANY Means the failure impact will be populated irrespective of the PK value of the feature.

Entry in FM 4 Failure
Impact Primary Key Value

Rule Column

Interpretation

FPK Means the PK of the configured failure impact will be set equal to the PK of the feature.

Blank Means the PK of the configured failure impact will be set to blank.

Entry in FM 6
Failure Mode Context

Element Population Rule
Column

Interpretation

<PK value> Means the PK of the already populated interaction (providing an aspect of FM context) must
equal <PK value> in order for the failure mode context link from the failure mode to the
interaction to be populated.

ANY Means the failure mode context link from the failure mode to the interaction will be populated
irrespective of the PK value of the interaction.

Entry in FM 6
 Causes Column

Interpretation

BY S* PATTERNS COMMUNITY 122 © 2024, SYSTEM SCIENCES, LLC

1 Means populate linkage from failure mode to interaction shown, indicating the interaction helps
to cause the failure mode.

Blank, 0, or otherwise Means no such linkage is populated by this rule.

Entry in FM 6
 Mitigates Column

Interpretation

1 Means populate linkage from failure mode to interaction shown, indicating the interaction helps
to mitigate occurrence of the failure mode.

Blank, 0, or otherwise Means no such linkage is populated by this rule.

Entry in FM 6
 Prevents Column

Interpretation

1 Means populate linkage from failure mode to interaction shown, indicating the interaction helps
to prevent occurrence of the failure mode.

Blank, 0, or otherwise Means no such linkage is populated by this rule.

Entry in FM 6
 Detects Column

Interpretation

1 Means populate linkage from failure mode to interaction shown, indicating the interaction helps
to detect occurrence of the failure mode.

Blank, 0, or otherwise Means no such linkage is populated by this rule.

Entry in FM 6
 Predicts Column

Interpretation

1 Means populate linkage from failure mode to interaction shown, indicating the interaction helps
to predict occurrence of the failure mode (as in prognostics).

Blank, 0, or otherwise Means no such linkage is populated by this rule.

