
Air Vehicle Model-Based Design and Simulation Pilot

Henson Graves

Stephen Guest

Jeff Vermette

Yvonne Bijan

Harold Banks

Greg Whitehead

Bill Ison

Lockheed Martin Aeronautics

P.O. Box 748

Fort Worth, TX 76101

817-935-5911

henson.graves@lmco.com

© 2009 Lockheed Martin Corporation

Keywords:

SysML, Simulation-Based Design, Model-Based System Engineering, dynamic modeling, capability analysis,

statistical methods

ABSTRACT: Integrating design models with operational simulations allow engineers to obtain quantitative results

about design performance and incorporate the results in the design process far in advance of implementation. To

demonstrate the technological maturity of modeling and simulation-based product design, this pilot effort developed

executable SysML design models for a 1553 avionics architecture. These models were integrated with

behavioral/performance models of a production model aircraft operating in a digital environment. The 1553 model

provides a link between a model of new avionics functionality (e.g., terrain following, obstacle avoidance) with a

model of an existing avionics system. The 1553 design model represents the behavior of message flow between

devices such as sensors and displays and specifies actual or desired performance such as message transmission times.

The 1553 design model hosted actual terrain following software and the integrated simulations were used to

determine how well the system would perform given various designs for collecting and fusing sensor data. One

benefit of this design modeling approach is full documentation of simulation experiments including documentation of

operational and design models as well as the operational scenarios. This development effort successfully met the

technical challenge of cost effectively building design models with sufficient fidelity to provide valid results.

1. Introduction

The Design Space Mapping Pilot objective is to

demonstrate that the integration of operational

simulation with development of executable design

models is sufficiently mature to form the core of

product design processes. The design task executed by

the Pilot added a new capability to an existing air

vehicle production model. To demonstrate

technological maturity of integrating design with

simulation, the data results must have sufficient fidelity

and must be cost effectively obtainable. The challenge

is in choosing the appropriate level of fidelity for the

models. If the models have insufficient fidelity then

the results have limited utility. However, high fidelity

models may be very expensive to obtain or build. For

the Pilot, we built high fidelity behavioral models of

existing hardware and software. The ability to build

these models cost effectively validates the feasibility of

the approach. We used a layered software architecture

for the design models which allows increasingly higher

fidelity of performance models to be substituted, as

they are needed or become cost effective to generate.

The layers also allow for an established baseline that

can be reused for multiple trade studies. The results of

executing these models provided a depth of analysis

that other wise would have been unavailable until the

product was built. The Pilot paralleled an ongoing trade

study and had access to subject mater experts. The

trade study allowed the Pilot to be completely realistic

in its task.

1.1 Integration of design modeling with operational

simulation

The Pilot integrates model-based design with

simulation-based analysis. The integration is achieved

by developing executable design models and operating

them in a simulation environment. The team used

Rhapsody to develop and execute the SysML design

models. The Rhapsody execution environment was

integrated with the operational models through shared

memory. The result was an integrated environment

containing dynamic models of the design, as well as

actual flight software, behavioral models for an air

vehicle, and models of the operating environment. The

simulation integration provides quantitative results

about design behavior that can be incorporated early in

the design process well in advance of implementation.

Figure 1 illustrates three integrated views of a

simulation environment; a visual, logical and

executable view stacked on top of each other. The

views are snapshots of the same simulation from

different perspectives. The top picture depicts the air

vehicle in its operating environment. Other

components of the visual view may be cockpit displays

and simulation monitors. The middle layer is a logical

view of the entities and their relationships. During the

course of a design mapping project, the logical view

will evolve. Early logical views may primarily be

behavioral requirements models which then evolve to a

design model. The executable view describes how the

simulations are interfaced and partitioned to run in a

distributed computing environment.

1.2 Using Simulation within the Design Process

Product development or upgrades typically start with

operational capability needs and progresses through

design to implementation and verification. Analysis is

performed at each stage of development, first to

solidify functional and subsystem requirements and

verify feasibility, then as the design is synthesized to

establish that the design meets its requirements [1].

Developing a product design by constructing and

iterating design models for a system is now common

practice in both software and physical design [2].

Simulation has traditionally been used for specific

design tasks, such as evaluation of flying

characteristics with high-fidelity pilot-in-the-loop

simulations. These simulation tasks occur late in the

design cycle normally after initial system design and

require a high level of fidelity not available in the early

design period [3]. However, integration of design

modeling with simulation for requirements

development and verification after design is less

common. The Pilot not only integrates design modeling

with requirements analysis and verification, but enables

fidelity to be increased as required without changing

the simulation framework. The result is a flexible

architecture that supports a wide range of models with

their associated fidelities.

The accuracy of simulation results is a function of

fidelity of the model used to obtain the results [4].

Models have fidelity provided they represent the

Figure 1 Visual, logical, and execution views of simulation environment

concepts and relationships at the level of abstraction

needed. With this integrated simulation architecture,

low fidelity models, can in certain situations, provide

sensitivity results relevant to design optimization [5].

As higher fidelity models become available, the design

can mature without the need for the same scope of

trade studies. This reduces the opportunity for design

errors to crop up later in the design process. Many of

the operational simulation toolsets tend to be highly

optimized for performance (in order to support high

fidelity real-time simulations) and can be tailored to

support large numbers of runs necessary for statistical

analysis of trade study results. For the Pilot timing

latency played a critical role, so we used a shared

simulation clock to synchronize the diverse

simulations. The ability to control the speed of the

clock allowed us to obtain the level of fidelity needed

for specific kinds of analyses.

1.3 Analysis

Traditionally, prediction of behavior for the integrated

system is difficult and carries significant risk until a

prototype has been built and tested. Small changes in

operation of a product’s subsystems as it interacts with

its environment may have significant impact on the

product’s successful performance [6]. Simulation of

dynamic behavior can significantly reduce risk in

understanding behavior. Simulation of operation of the

real design can be used to ascertain whether the design

can provide the functionality needed to perform a

mission capability, to develop allocated component

behavior and performance requirements, and to

produce validated performance models for the design.

The analyses of the simulations can provide insight

into the parameters that have the most significant

impact on the ability to perform a mission capability.

The Pilot simulations provided an analysis of desired

capability and existing constraints that allowed us to

calculate accurately latency constraints on the ability to

integrate sensor data required as input for the

functionality to be implemented. The timing constraint

analysis provided allocated budgets for a functional

decomposition. Based on this analysis we examined

the design candidates for implementing the desired

capability.

1.4 Test in Simulation Context

Analysts are generally interested in how the

implemented systems behaves for inputs (initial

conditions) varying over specific ranges. For example,

terrain, mission, and pilot responses are varied to

understand the terrain following and obstacle

avoidance implementation. Performance analysis of a

system typically consists of predicting observable

attribute values of the system at time points or

intervals, or when some event occurs, e.g., when object

detection occurs [7]. Observable (test) conditions are

often expressed in terms of input-output relationships.

Design analysis without simulation can provide

estimates that can be used as inputs into performance

(I/O) models and can include temporal analysis to

make the results more realistic. However, because of

concurrency and difficulty of modeling the physics of

systems in a complex environment, it is often difficult

to make accurate predictions. For example, the field of

view of a trainable gun on a moving platform may be

obstructed in ways that are hard to envision without

geometric modeling that includes dynamics. When a

design has been implemented, then real physical tests

can be performed and data collected. Design

simulations can be used in the same way as real

physical tests, but much earlier in the design process.

For operational simulation to provide quantitative

results, conditions whose values can be measured or

recorded must be established. These data results of

simulation can be directly analyzed.

Evaluation conditions are often statistical in nature.

The I/O relationships are not generally functional.

Requirements are often stated in statistical terms, e.g.,

the accuracy of obstacle detection may be stated as a

probability to be achieved. Detailed statistical analysis

of I/O relationships is often required. The same

process of iterating the collection of data from physical

test results can be applied to operational simulations.

Varying input parameters can be used to construct

regression models that can then be analyzed with

statistical methods to understand what parameters

made the most significant contribution to the outcome

of the simulation experiment. Parameters that might be

varied include the power of the radar beam and the

sweep pattern. The resulting data sets are used to

construct a performance model approximation to the

full simulation model using regression analysis (curve

fitting). The performance model can then be used by

statistical analysis tools to determine the contribution

of input variables to the output result. For the Pilot we

examined a requirement for computing a safe flight

corridor expressed as a probability value. This value,

from the allocated functional description for the

capability to be implemented was calculated as the

result of conditional probabilities of sensor detection

and data integration.

1.5 How has modeling and simulation technology

improved?

The maturity and cost effectiveness in integrating

operational simulation with design simulation results

from (1) the availability of physics-based effects

modeling (sensor, aircraft, atmosphere, etc.) for

operation in simulation execution environments, (2) the

ability to develop executable design models using

design hiding and layering techniques which allow an

evolutionary development of increasing fidelity

models, and (3) the ability to efficiently integrate

simulations through a variety of interfaces such as

APIs, shared memory, and sockets. Finally, the ability

to integrate design and simulation with statistical data

analysis on the results of simulation experiments

provides quantitative results with known pedigree.

The software tools used to develop and execute the

models for this Pilot are common in most aerospace

development environments. System Architect was

used to develop and document both the integrated

simulation environment and the Pilot application

design process. Rhapsody was used to develop and

execute the design models. STK and Vega Prime were

used for simulation visualization and certain aspects of

the sensor/radar simulation. Minitab was used for data

analysis.

2. The Pilot Application

The Pilot design task added a terrain following and

obstacle avoidance capability to an existing air vehicle

production model. For the Pilot, the admissible design

space is defined by the equipment to be added to the

production model with details of how the equipment is

to be integrated. The specifications for the production

model aircraft were available, as well as specifications

for candidate equipment to be added for the

modification. The Pilot used simulation of the air

vehicle within its operating environment to assist with

mission analysis and to establish functional

requirements.

Figure 2 shows a snapshot from the Terrain Following

Terrain Avoidance Scenario. The green 250 to the left

of the aircraft is the airspeed. The green 4303 is the

altitude. The green 64 is the heading of the aircraft.

The red cone that points down is the radar altimeter

detecting the ground below the aircraft. The red cone

pointing from the nose of the aircraft is the terrain

detecting radar. The red shadow on the ground is the

footprint of the terrain following radar to show its track

along the terrain. As the simulation with the

executable design models for the TF/TA proceeds,

analysts can observe and record the aircraft changing

altitude and pitch to avoid the terrain.

The operating environment includes the air vehicle

with a pilot or autopilot flying under specific rules over

specific kinds of terrain in specific atmospheric

conditions. For terrain following and obstacle

avoidance, a “safe corridor” function calculates where

the aircraft should fly so as to avoid the obstacles based

on sensor data integrated with known terrain

information. Software that computes a safe corridor,

parameterized with performance characteristics of the

aircraft, is available. The computational results of the

safe corridor function at a given time are the distance

needed to obtain a safe altitude. Radar is used to detect

obstacles that are not part of the known terrain. The

operational loop of sensing data and modifying course

is implemented as devices on avionics bus architecture.

The avionics system, which uses the 1553 bus

architecture, is in operation and its properties are well

understood. Even though the component systems are

supplied with performance specifications or operational

flight software, the actual performance in operational

situations may be hard to predict. In this case, the

latencies of moving data on the 1553 bus becomes a

significant player because it impacts the time the

airplane has to react to changing sensor inputs. Having

the ability to determine the sensitivities of the different

1553 message rates as relating to sensor fusion, terrain

databases, and flight control commands, allows a more

accurate prediction of overall system performance.

This in turn may provide the visibility to optimize on a

less expensive solution than having to upgrade to a

faster bus such as a fiber optic based solution.

For the Pilot, we the used a simulation execution

environment to host and integrate both the operational

and the design models. It provides all of the system-

level services required to simulate an integrated

Avionics and Vehicle Systems environment, and

allows for distributed processing of all of the

subsystem and vehicle system models for performance

balancing. The actual distributed topology is self-

discovering and may be varied as needed for the

Figure 2 Snapshot of TFTA Scenario

particular experiment. Simulation models are used to

represent design context and the candidate designs that

are being explored. The design process replaces the

requirements model with an iteration of design models

which satisfy the properties of the requirements

models.

3. Capability Analysis

The requested capability is to enable the aircraft to

follow terrain and avoid obstacles while flying close to

the ground. Analysis is needed to determine precise

requirements that the design should satisfy. This

section outlines some of the analysis. For the aircraft

to maintain a safe course it must maintain a minimum

safe distance from the terrain. A safe distance is

dependent on a number of factors such as aircraft

speed, altitude, climb rate, direction, terrain profile,

and distance of aircraft from the terrain. The analysis

of the minimum safe distance required understanding

exactly how the aircraft performs for the avoidance

navigation in different situations. The initial capability

analysis consisted of (1) determining the operational

situations, (2) analysis of the capability into functions,

and (3) determination of timing intervals available for

performing the functions to leave sufficient time for the

aircraft to modify its course to maintain safe flight.

3.1 Operational Scenarios

An operational scenario consists of the aircraft

operating in a region described by parameters such as

aircraft speed, altitude, direction, terrain profile,

distance of aircraft from terrain, etc. This description of

the operational context of the mission is referred to as a

situation. The situation characterizes the aircraft

operating environment. Operational simulation was

used to determine radar behavior and aircraft

performance to determine inputs to the safe corridor

function, and to validate the behavior of the aircraft

under specified conditions, and to determine the

minimum distance needed to climb to safe altitude.

These simulations take into account climb rates of the

aircraft model. The team used a dynamic model of the

aircraft with perfect sensor detection of terrain to

analyze radar detection ability. The results are input

arguments for the safe corridor function. Varying

terrain shape and aircraft speed provides validation

information for a safe corridor function. At a more

detailed level, the weight of the aircraft when the climb

begins, as well as, altitude and atmospheric conditions

are all used to determine safe corridor inputs. We used

simulation to determine the affect of mountains

blocking the radar view of what is behind the

mountains, which is something hard to predict without

simulation or actual flight evidence.

3.2 Functional Analysis

From the functional analysis of the capability, we

determine that the aircraft can plot a safe course

provided it can (1) sense terrain obstacles, (2) has time

integrate data about terrain with other sensed

information regarding the aircraft’s position, speed,

direction, and weather, (3) compute the course change,

and then (4) has time, climb rate, necessary to achieve

a safe course.

Analysis of the desired capability led to a functional

decomposition into six primary functions. These

functions are displayed as ovals in Figure 3. The

functions require input from other functions and from

databases which are also described in Figure 3. These

functions can be directly allocated to existing or

candidate hardware and software components of the

aircraft system. The design task is to define the precise

behavior and performance for the functions and verify

that the candidate components can execute the detailed

function descriptions within the performance

constraints.

3.3 Aircraft Performance

From a fixed aircraft performance model (constant 250

knots airspeed, terrain following height of 500 feet, and

a maximum climb rate based on 3 engine performance

of 2000 feet per minute), our simulation indicates that

in order to clear a 1355 foot terrain obstruction (above

the aircraft altitude), the pull-up must occur at 2.6

nautical miles out. Looking at a similar scenario helps

demonstrate the criticality of system timing constraints

Figure 4 Aircraft Performance Model

Integrate Terrain
and Obstacle

Data

Command
Air Vehicle

Determine
Aircraft PPLI

Detect
Terrain

Detect
Weather

Conditions

Calculate
Safe

Corridor

Obstacles DB

safe corridor

integrated terrain data

terrain data weather dataaircraft data

obstacle db data

Figure 3 Functional Decomposition of Capability

and the value of being able to fully simulate the

numerous aspects of terrain following (see figure 4).

At 250 knots with a terrain following altitude of 250

feet, the aircraft can maintain a 10 degree pitch angle

and would require 1.07 statute miles to clear a 1000

foot obstacle. Iterative integrated simulation trials

provide the analytical and statistical results necessary

to not only evaluate the performance in this

environment, but allow design permutation and

optimizations as well.

3.4 Radar Analysis

While the radar to be used in this application has

verified specifications such as the distance for which

objects can be detected at various power levels, the

actual variability of the radar’s ability to detect objects

is highly dependent on how specific parameters of the

radar are set as well as the ability of the radar to scan

regions as the aircraft is maneuvered. The Pilot

objective was to determine how to optimize detection

ability. The better the detection ability the more time

that is available to determine inputs and make the

calculations needed to calculate aircraft course changes

necessary. A radar model with the correct sweeping

behavior was used to analyze the terrain detection

behavior. We found the behavior of the radar on the

moving air vehicle platform was not entirely

predictable from documented specifications for the

radar. Radar sweep rate and power affect detection

distance, as well as the shape of the actual terrain.

Higher radiated power makes detecting the aircraft

easier and decreases its survival rate.

This radar has an active and blended mode which

affects the power and scanning distance of the radar.

The active mode requires more power and can scan

further out but it increases the probability of the aircraft

being detected by enemies. The blended mode has a

range of 3.8 nautical miles and a reduced probability of

the aircraft being detected. The Pilot utilized the

smaller detection range mode of blended. The radar

can scan from -30 to 30 degrees Azimuth with respect

to the nose of the aircraft. While the aircraft is flying a

straight path, it only scans directly ahead.

The radar scans in an upward direction, stops when it

detects horizon, turns around and moves back down to

the bottom of the vertical scan, then scans upwards

again. It does not scan while moving downward. Each

scan is called a bar. While the aircraft is flying

straight, it uses 2 to 3 bars. Three bars provide more

data but it takes longer to scan. However, when the

aircraft is turning it can scan up to 30 degrees in the

direction of the turn. While turning, the mission

computer increases the number of bars to scan ahead of

the aircraft and in the direction of the turn.

In Figure 5, the simulation

environment consists of a

mountainous region with two

ridges. The elevation scanning

range is -30 to 10 degrees with

respect to the horizon. There is an

overlap between the scan bars.

For the pilot, the overlap was set to

0. There are normally 2 scan bars

per sweep when the aircraft is

flying straight, but there can be up

to 15 bars while turning. The scan beam moves up by

0.325 degrees as it scans a bar. The radar scans

upwards at 60 degrees per second and moves

downward at 85 degrees per second. Radar data is sent

from the sensor to the computer after the completion of

a bar. The sensor takes 0.25 seconds to turnaround on

either end of the bars.

For terrain detection we used an experimental situation

defined by terrain profiles, and weather, to determine

radar detection performance. For example, a testable

condition for the terrain following system is the

elapsed time from obstacle detection until information

regarding object location and type of obstacle are

computed and fed into the safe corridor function. The

following table describes aircraft performance

constraints, radar specifications, and terrain

configuration used in simulation experiments to

determine terrain detection performance.

Table 1 - Configuration

Aircraft

Max dive rate -5.5 degrees

Max climb rate 610 meters per minute

Max bank angle 30 degrees

Max turn rate 3 degrees per second

Radar

Max Range in Blended

mode

3.8 nautical miles

Azimuth scanning

range

-30 to +30 degrees with

respect to aircraft

Elevation scanning

range

-30 to + 10 degrees with

respect to horizon

Beam Size 2.9 x 3.9 degrees (Az x El)

Overlap (Placeholder) 0 degrees Azimuth

Scanning pattern 2 – 15 bars

Beam step size 0.325 degrees Elevation

Environment

Mountainous 2 ridges

Height 1000 feet

Figure 5 Radar

Scan Behavior

The aircraft’s flight path is limited by the parameters in

Table 1 and cannot be altered. The dive angle during

descent cannot exceed -5.5 degrees. The climb rate

varies with weight and temperature, but for the

purposes of the pilot, it was set to a max value of 610

meters per minute. The max bank angle is the

maximum angle of the aircraft during turns. The bank

angle reduces the aircraft’s ability to climb and is

limited to 30 degrees. The max turn rate is limited by

the ability to scan the area ahead of the aircraft in the

direction of the turn without outpacing the scans.

Table 2 describes a collection of simulation runs with

the input parameters that were varied.

Table 2 - Input Parameters

Run Aircraft Radar

1 250

knots

2 bars, normal sweep pattern,

normal sweep rates

2 250

knots

3 bars, normal sweep pattern,

normal sweep rates

3 250

knots

2 bars, normal sweep pattern,

double sweep rates

4 250

knots

2 bars, full sweep pattern, normal

sweep rates

5 250

knots

2 bars, no pauses for the sensor to

turn around, normal sweep rates

6 200

knots

2 bars, normal sweep pattern,

normal sweep rates

Run 1 is the baseline run with every parameter set to

nominal values. Run 2 modified the number of bars

which increases the detail of the scan but increases the

time to perform a full sweep. Run 3 doubled the scan

rate in the upwards and downwards direction which

decreased the time it takes to perform one bar and the

time it takes the sensor to return to the bottom

elevation. Run 4 scanned the full elevation range

instead of stopping after detecting horizon, which

results in scanning areas that do not need to be

scanned, unnecessarily increasing the scanning time.

Run 5, removed the turn around time which effectively

decreased the amount of time the scanner is not

scanning. Run 6 slowed the aircraft down to gives it

more response time for avoiding obstacles. The pilot

analyzed the detection distance for the five runs

performed at 250 knots. The detection distance has a

lognormal distribution that skewed towards the aircraft

due to the radar continuously detecting the same terrain

as the aircraft moved closer to the ridges in the

scenario.

Only the full sweep has a different detection range.

The full sweep pattern takes longer than the others

which impacts the detection distance. This indicates

that ending the sweep when the horizon is detected has

an impact on the detection distance while the other

variables had little or no impact. This is a useful

feature to have for the radar since scanning past the

terrain also increases the probability of detection.

The radar analysis and the aircraft performance

analysis provided inputs to the safe corridor function.

We validated the overall performance of the

operational loop of sensing data and modifying course

based on realistic radar performance and perfect ability

to integrate sensed data with terrain data and provide

results to the safe corridor function. In order to clear an

obstacle, the radar needs to detect the obstacle far

enough away to for the aircraft to have time to climb to

the clearance altitude without exceeding the maximum

climb rate. The larger the obstacle, the further out the

aircraft needs to detect it.

The radar, after TF/TA modifications, will have a 2.07

statute mile look ahead scan. For this case, that means

we will have one mile (at 250 knots) or 14.4 seconds to

react once the radar has detected the obstacle. This

does not, however, take into account that the sweep

pattern timing can delay the detection by almost a

second since the radar does not capture data as it

moves from the end of one scan bar to the beginning of

the next.

Since we only need 1.07 mile detection range, if we

chose to lower the radar power such that the scan range

was reduced to 1.2 miles (to lower the probability of

detection), that means that we now have 0.13 miles, or

1.63 seconds before the pull-up must be established.

Based the radar sweep performance, it might be

roughly a second before the radar can detect the

obstacle and therefore barely more than 0.6 seconds is

available to move the radar data to the proper

subsystems, process the information and propagate a

pull-up command.

4. Requirements Analysis

Requirements analysis is used to precisely define the

requirements and analyze how the requirements can be

verified. In this section, we focus on the requirement

that an aircraft has a safe course to fly for a given flight

scenario. The previous analysis of the aircraft flying

within various operational situations (e.g. terrain,

obstacles, and weather), characterized features of the

situations that could affect the ability of the radar to

detect an obstacle and the ability of the aircraft to

safely navigate to avoid the obstacles. A situation in

which the aircraft must have a safe course is described

by parameters such as aircraft speed, altitude, heading,

terrain profile, distance of aircraft from terrain, etc. that

characterize the aircraft operating environment. We

assume that the general terrain is known and that any

unknown obstacle on the terrain has limited height

above the terrain which can be avoided by flying over

or around it as long as the obstacle can be detected at a

sufficiently far distance. The probability of having a

safe course depends on the time the aircraft takes to

traverse the distance from the point the obstacle is

detected to the obstacle being greater than the time it

takes the mission computer to integrate various data

plus the time it takes to calculate a safe course plus the

time it takes to fly to the safe position above the

terrain.

An aircraft has a safe course in a situation provided the

avionics system can compute a new course that the

aircraft can actually implement (e.g. within climb rate

constraints) in the time available. The difference

between detection time and time to change course is

the time budget available to the avionics system to

integrate the data, compute a safe course and command

a course change. The result of the operational analysis

is an allocated time budget for the avionics system to

integrate the terrain data with other sensed information

regarding the position, speed, and heading of the

aircraft and weather conditions. For example, situation

1 (S1) is flown at a given speed of 250 knots, with a

clearance altitude of 500 feet, flying level and with an

obstacle height of 1000 feet. The distance to detect

terrain obstacles with a probability of 99% is 4 nautical

miles. The time budget available to integrate data and

calculate a course change in this situation is tb. The

height of the obstacle above the height of the aircraft

plus the clearance altitude is y, the horizontal climb

distance is xc, the speed of the aircraft is v, the distance

the aircraft flies to the object is d, the time the aircraft

takes to over fly the object is t, the horizontal detection

distance is xd, the max climb rate is cm and the

horizontal component of speed is vh. See Figure 6.

Figure 6 Geometry

The maximum time allowed for calculation depends on

the speed of the aircraft, maximum climb rate and

height of the obstacle.

t = y / cm vh = v * cos (ө) ө = arcsin (cm / v)

xc = v * cos (ө) * t xc = v * cos (ө) * y / cm

xc = v * cos (arcsin (cm / v)) * y / cm

tb = (xd – xc) / v

tb = (xd - v * cos (arcsin (cm / v)) * y / cm) / v

The climb rate required to clear an obstacle is the

height of the obstacle divided by the time it takes to

clear the obstacle. The time it takes to clear the

obstacle depends on the speed of the aircraft.

d = (xc
2
 + y

2
)

0.5
 t = d / v

Climb rate = y / t = y * v / (xc
2
 + y

2
)

0.5

If the computed climb rate is less than the maximum

climb rate, the aircraft will be able to clear the obstacle.

The requirement for an aircraft having a safe course in

a given situation, S1, can be specified in terms of a

conditional probability.

 probability (SafeCourse|S1) > 0.99

This statement is interpreted as the probability that a

randomly chosen flight course is in SafeCourse given

the situation S1 is greater than 99%. The

probability(SafeCourse|S1) is the product:

probability(DetectObstacle|S1)*

probability(ComputeSafeCourseInTime|S1)*

probability

(SufficientTimeAvailableFlySafeCourse|S1).

However, the probabilities of DetectObstacle and

ComputeSafeCourseInTime are close to 1 and so the

verification of the probability of a safe course reduces

to the probability of sufficient time is available to fly

the safe course. From a functional analysis, we obtain

that the aircraft has time to fly a safe course provided it

• has time to integrate data about terrain with

other sensed information regarding the

aircraft’s position, speed, direction, and

weather,

• has time to compute the course change, and

• has the time and climb rate necessary to

achieve a safe course.

The time to achieve a safe course depends on the

distance from the obstacle when it is detected, height of

the obstacle, aircraft speed and climb rate.

At the current time, we are planning to run simulations

to collect data regarding the time to achieve a safe

course using radar detection distances with varying

speeds and climb rates. Also, we are planning to

record the success/failure of avoiding obstacles during

the various situations.

v

xd

y

cm
ө

vh
xc

v

d

5 Design Analyses

The design analysis is based on dynamic models of the

avionics system. We built executable models of the

1553 bus and controller architecture. The bus controller

model is initialized with the same data files as used in

the aircraft model. The model uses a table of

performance parameters to achieve the same statistical

performance for data transfer as the actual bus. The

design models used for the upgrade are developed

using model-based design principles and are executed

in the distributed simulation execution environment

used for operational simulations such as the radar and

the aircraft performance.

The major design question was whether the equipment

could be integrated on the existing avionics bus to

achieve the performance needed, or whether the

performance could be achieved only by adding an

auxiliary bus for data integration. While the behavior

of the avionics controller and bus are deterministic, the

time needed for computations, the behavior of a pilot,

the air vehicle, and other entities in the environment

are not deterministic. A critical aspect of the design

analysis is determining whether the avionics

architecture can integrate sensor data and provide the

integrated data used as input to software that calculates

where the air vehicle should fly. Analysis of the design

alternatives requires understanding whether the 1553

bus architecture can provide the data transfer speed and

volume needed to integrate sensor data with terrain

data to be used to compute a safe corridor function.

Figure 7 provides a system view of the models that are

part of the combined execution environment. The blue

oval is the Rhapsody execution environment for the

SysML models and the yellow oval is the Vega

execution environment for the operational models. The

arrows show the data flow between and among the

models.

6. The Simulation Execution Architecture

The simulation architecture uses virtual shared memory

for time, sharing data between applications and other

global states. All of the executable models are clock

driven with a simulation clock. The clock can be set at

slower or faster than real time, and it can be stopped

and restarted. All of the simulations operate using

simulation time. Bridge models are used to provide

interfaces to both design model execution and

simulation model execution.

Figure 8 is a SysML [8] design model for the avionics

system. The behavior of this model is described by

state charts. The model controls message flow between

devices such as sensors and displays and specifies

actual or desired performance such as message

transmission times. The model is the bridge between

models for the design of new functionality to be added

to the avionics system, such as terrain following and

obstacle avoidance, and a simulation environment that

models the behavior and performance of operating

aircraft.

In Figure 8, the “Simulation Control” element controls

the graceful start-up and user control of the entire

simulation, essentially modeling the power-on

sequence of the aircraft’s avionics and vehicle systems

as well as injection of power-cycling or simulated

software restart events. The “Simulation Clock”

element is the master time source for every

participating executable in the simulation environment.

The clock can be set slower or faster than real time,

and it can be paused and restarted. A critical

capability in such a simulation environment is that the

data transfers across simulated networks have

performance characteristics that match the actual

hardware being simulated. The simulation clock

therefore waits until all of the executables in the

distributed environment have completed performing

the tasks that the real hardware would have completed

in a given time slice before it advances the simulation

time. This forces synchronization across the entire

simulation, in a manner that guarantees accurate

fidelity of data flow, with a tradeoff between time slice

size and real-time performance. This tradeoff can be

managed by distributing the simulation elements across

more or faster processors. The simulation architecture

uses virtual shared memory for time, sharing data

between applications and other global states. All data

logging occurs at simulation time in order to factor out

any simulated vs. real time differences. The “Bus A”

Rhapsody
Enivronment

Simulator
Environment

Avionics
Air Vehicle

Environment

RT - Air Data

RT - Display

Mission Computers

1553 Buses

Bus Controllers

Displays

Sensors

sensed
data

sensed
environment

raw data

raw
data

sensor
data command

command

command

synchronization time

bus
command

bus
feedback

Figure 7 System View of Integrated Models

and “Bus B” are instances of the generic 1553B Bus

model described in section 6. Each bus model

communicates with the Simulation Clock as well as

with all of the subsystem models which are virtually

attached to that bus.

Several example Avionics subsystem models are

shown on the diagram, along with “Shared Memory”

and Vehicle Systems model placeholders. The “Fuel

Sensor” and “Fuel Gauge” models are attached to Bus

B, while the “Radar Sensor” model is attached to Bus

A. The “Fuel Supply” model is not attached to either

bus. It provides data to the Fuel Sensor model through

shared memory, using the same services as the entire

Vehicle Systems suite of simulation models.

With the executable avionics model we are now in a

position to do the simulation experiments to determine

the available time for integrating data and computing

the change course.

7. The Bus Architecture Model

The 1553B Bus model provides a simulated Mux

which manages the transfer of data among models

which themselves are simulations of various

subsystems (see Figure 9). The subsystems supported

by this architecture can be both avionics and vehicle

systems models, allowing for any necessary subset of

the entire air vehicle system to be simulated. The

1553B model supports varying degrees of fidelity, with

corresponding performance implications, in order to

allow for engineers to study different aspects of

candidate designs. The model is generic and reusable,

with all communications passing through four ports.

FuelSupply

SimulationControl

11

1
itsSimulationClock:SimulationClock1

I_clock

clockOut[2]1

1 Bus_A:Bus15531

rtPort[c_RTCount]bcPortconfigPort
I_clock

clockPort1

Bus_B:Bus15531

rtPort[c_RTCount]bcPortconfigPort
I_clock

clockPort11

1

RadarSensorA:RadarSensor1 MUXPort

1

1

FuelSensorA:FuelSensor1

I_MuxXMIT

MUXPort
1

1 itsFuelGauge:FuelGauge1
MUXPort

1

Avionics Architecture Model Concurrent with Vehicle Systems

«Usage»

lmSharedMemory

«Usage»
«Usage»

«Usage»

«Usage»

«Usage»
«Usage»

«Usage»

«Usage»

VehicleSystemsModels

«Usage»

Figure 8 The Avionics Design Model

The “Config Port” provides for all tailoring and

customization of the Mux behavior. The model is

generic, and reuse is supported by providing the

topology information, messaging schedules, rate

groups and bus transport performance characteristics

via this port. The “Clock Port” provides all time

services into and out of the Mux model. This allows

for some of the most powerful capabilities of the

model. Simulation time is maintained rigorously such

that data transfers across the modeled 1553B Muxes

matches the behavior that would occur in an actual

hardware environment. For each data transfer, the

Mux model determines how much real time would

have passed, and provides this information back to the

overall simulation clock in order to pace all of the other

models and keep everything in sync. Simulated time

can therefore be paused or run faster or slower than

real time, within the limits of the processors used for

the experiment. The “BC Port” provides for simulation

control of the Bus Control functions for the modeled

Mux. This allows for studying several aspects of the

air vehicle dynamically that are difficult to analyze in a

static environment. For example, the model supports

the simulation of backup bus control switchovers,

including messages lost during a switchover and the

behavior of a backup bus controller during startup.

Also, the model supports failure injection, allowing for

simulation with various fail/retry schemes to study

their effects on the simulated system behaviors. The

“RT Port” is a set of ports which provide the modeled

attachment points for all of the subsystem models.

Each RT supports send/receive services, time

synchronization, the ability to be distributed across a

set of processors, communications with the modeled

Mux via TCP/IP port/socket services, and data logging

for offline analysis post-test. Data can be transferred to

subsystem models directly via compiled RT code or

indirectly through shared memory structures without

modifying the source code of the subsystem models.

This allows for great flexibility in reuse of legacy

models.

Bus1553

itsBusClock1
I_clock

clockIn

itsBusTransport1

1

1

itsBusController1

bcInOut

1 1

1

TopologyMap
1

1

BusControlTable
1

RateGroupSchedule
1

BusPerformanceProfile

1

itsRemoteTerminalc_RTCount

I_MuxXMITrtInOut[c_RTCount]

c_RTCount

itsBusConfigurer1

configInOut

1

1

1

1

rtPort[c_RTCount]bcPort configPort

I_clock

clockPort

1

1

1 1

1

1

1

1

1

1

c_RTCount

1

1

1

1

Reusable 1553B Bus Model

Distributed_RT

itsLocal_RT_API1
port_0

I_MuxXMIT

port_0

Figure 9 The Avionics Design Model

8. Conclusion

While at this point in time not all of the simulation

trials have been run and the data collected and

analyzed, we believe that the pilot successfully

demonstrates that the capability to integrate design

models with physics based operational simulations is

entirely feasible with the current maturity of modeling

and simulation-based product design tools. The results

of simulation exercises are fully incorporated into the

design process, and the data has a documented

pedigree. A description of a simulation trial includes

the air vehicle configuration, the operational

environment description, the fidelity of all of the

models used, as well as, the actual data recorded as part

of the simulation trial. A description of a simulation

exercise includes multiple trials where parameters are

varied over specified ranges. The results have allowed

us to obtain much better estimates of the avionics

performance under operational conditions than could

have been done without flying the actual aircraft. The

effort involved the integration of such toolsets into a

common operating infrastructure, along with the

development of appropriate fidelity models. The

resulting infrastructure is reusable in a variety of

contexts, and will be used for other design trades for

this aircraft model, and may be used for designing a

new generation avionics architecture.

8. References
[1] Johnson, T., Paredis. C., and Burkhart, R.

Integrating Models and Simulations of Continuous

Dynamics into SysML. Modelica Conference, 2008.

[2] Haley, T., Friedenthal, S., Assessing the application

of SysML to systems of systems simulations,

Proceedings of the Spring Simulation

Interoperability Workshop, September, 2008.

[3] Steinhauser, R., Looye, G., and Brieger, O., Design

and Evaluation of Control Laws for the X-31A with

Reduced Vertical Tail. Proceedings of the AIAA

Guidance and Control Conference, Providence,

Rhode Island, August 2004.

[4] Sargent, R., Verification and validation of

simulation models. Proceedings of the Winter

Simulation Interoperability Workshop, 2005.

[5] A. Kossiakoff, and W. Sweet. Systems

Engineering: Principles and Practice. Hoboken: John

Wiley & Sons, Inc., 2003.

[6] C.Wasson, System Analysis, Design, and

Development – Concepts, Principles, and Practices.

Hoboken: John Wiley & Sons, Inc., 2006.

[7] Buede, Dennis M. The Engineering Design of

Systems: Models and Methods. Hoboken: John

Wiley & Sons, Inc., 2000.

[8] Friedenthal, S., Moore, A., and Steiner. F., OMG

Systems Modeling Language (OMG SysML™)

Tutorial, INCOSE Intl. Symp, 2006.

Author Biographies

HENSON GRAVES is LM Senior Fellow and the

project lead.

STEPHAN GUEST is a LM Fellow in advanced

visualization and the operational lead for simulation

activities.

JEFF VERMETTE is a Principal Systems Engineer

and a Mission Systems and Avionics Senior Architect.

YVONNE BIJAN is a Certified Enterprise Architect

and the integrated architect and analyst for the Pilot.

HAROLD BANKS specializes in flight safety

simulations.

GREG WHITEHEAD is a Certified Enterprise

Architect.

BILL ISON, PhD is a Certified Enterprise Architect.

