
Air Vehicle Model-Based Design and Simulation Pilot 
 

Henson Graves 

Stephen Guest 

Jeff Vermette 

Yvonne Bijan 

Harold Banks 

Greg Whitehead 

Bill Ison 

Lockheed Martin Aeronautics 

P.O. Box 748 

Fort Worth, TX 76101 

817-935-5911 

henson.graves@lmco.com 

© 2009 Lockheed Martin Corporation 

 

Keywords: 

SysML, Simulation-Based Design, Model-Based System Engineering, dynamic modeling, capability analysis, 

statistical methods 

 

 

ABSTRACT: Integrating design models with operational simulations allow engineers to obtain quantitative results 

about design performance and incorporate the results in the design process far in advance of implementation. To 

demonstrate the technological maturity of modeling and simulation-based product design, this pilot effort developed 

executable SysML design models for a 1553 avionics architecture.  These models were integrated with 

behavioral/performance models of a production model aircraft operating in a digital environment.  The 1553 model 

provides a link between a model of new avionics functionality (e.g., terrain following, obstacle avoidance) with a 

model of an existing avionics system.  The 1553 design model represents the behavior of message flow between 

devices such as sensors and displays and specifies actual or desired performance such as message transmission times.  

The 1553 design model hosted actual terrain following software and the integrated simulations were used to 

determine how well the system would perform given various designs for collecting and fusing sensor data.  One 

benefit of this design modeling approach is full documentation of simulation experiments including documentation of 

operational and design models as well as the operational scenarios.  This development effort successfully met the 

technical challenge of cost effectively building design models with sufficient fidelity to provide valid results.   

 

 

1. Introduction 

 

The Design Space Mapping Pilot objective is to 

demonstrate that the integration of operational 

simulation with development of executable design 

models is sufficiently mature to form the core of 

product design processes.  The design task executed by 

the Pilot added a new capability to an existing air 

vehicle production model.  To demonstrate 

technological maturity of integrating design with 

simulation, the data results must have sufficient fidelity 

and must be cost effectively obtainable. The challenge 

is in choosing the appropriate level of fidelity for the 

models.  If the models have insufficient fidelity then 

the results have limited utility.  However, high fidelity 

models may be very expensive to obtain or build.  For 

the Pilot, we built high fidelity behavioral models of 

existing hardware and software. The ability to build 

these models cost effectively validates the feasibility of 

the approach.  We used a layered software architecture 

for the design models which allows increasingly higher 

fidelity of performance models to be substituted, as 

they are needed or become cost effective to generate.  

The layers also allow for an established baseline that 

can be reused for multiple trade studies.  The results of 

executing these models provided a depth of analysis 

that other wise would have been unavailable until the 

product was built. The Pilot paralleled an ongoing trade 

study and had access to subject mater experts.  The 

trade study allowed the Pilot to be completely realistic 

in its task.  

 

1.1 Integration of design modeling with operational 

simulation  
 

The Pilot integrates model-based design with 

simulation-based analysis.  The integration is achieved 

by developing executable design models and operating 



them in a simulation environment. The team used 

Rhapsody to develop and execute the SysML design 

models.  The Rhapsody execution environment was 

integrated with the operational models through shared 

memory. The result was an integrated environment 

containing dynamic models of the design, as well as 

actual flight software, behavioral models for an air 

vehicle, and models of the operating environment. The 

simulation integration provides quantitative results 

about design behavior that can be incorporated early in 

the design process well in advance of implementation.    

Figure 1 illustrates three integrated views of a 

simulation environment; a visual, logical and 

executable view stacked on top of each other.   The 

views are snapshots of the same simulation from 

different perspectives.  The top picture depicts the air 

vehicle in its operating environment.  Other 

components of the visual view may be cockpit displays 

and simulation monitors.  The middle layer is a logical 

view of the entities and their relationships.  During the 

course of a design mapping project, the logical view 

will evolve.  Early logical views may primarily be 

behavioral requirements models which then evolve to a 

design model.  The executable view describes how the 

simulations are interfaced and partitioned to run in a 

distributed computing environment.   

 

1.2 Using Simulation within the Design Process 

 

Product development or upgrades typically start with 

operational capability needs and progresses through 

design to implementation and verification.  Analysis is 

performed at each stage of development, first to 

solidify functional and subsystem requirements and 

verify feasibility, then as the design is synthesized to 

establish that the design meets its requirements [1].  

Developing a product design by constructing and 

iterating design models for a system is now common 

practice in both software and physical design [2]. 

Simulation has traditionally been used for specific 

design tasks, such as evaluation of flying 

characteristics with high-fidelity pilot-in-the-loop 

simulations.  These simulation tasks occur late in the 

design cycle normally after initial system design and 

require a high level of fidelity not available in the early 

design period [3].  However, integration of design 

modeling with simulation for requirements 

development and verification after design is less 

common. The Pilot not only integrates design modeling 

with requirements analysis and verification, but enables 

fidelity to be increased as required without changing 

the simulation framework.  The result is a flexible 

architecture that supports a wide range of models with 

their associated fidelities. 

 

The accuracy of simulation results is a function of 

fidelity of the model used to obtain the results [4].  

Models have fidelity provided they represent the 

Figure 1 Visual, logical, and execution views of simulation environment 



concepts and relationships at the level of abstraction 

needed. With this integrated simulation architecture, 

low fidelity models, can in certain situations, provide 

sensitivity results relevant to design optimization [5].  

As higher fidelity models become available, the design 

can mature without the need for the same scope of 

trade studies.  This reduces the opportunity for design 

errors to crop up later in the design process. Many of 

the operational simulation toolsets tend to be highly 

optimized for performance (in order to support high 

fidelity real-time simulations) and can be tailored to 

support large numbers of runs necessary for statistical 

analysis of trade study results. For the Pilot timing 

latency played a critical role, so we used a shared 

simulation clock to synchronize the diverse 

simulations. The ability to control the speed of the 

clock allowed us to obtain the level of fidelity needed 

for specific kinds of analyses.   

 

1.3 Analysis 
 

Traditionally, prediction of behavior for the integrated 

system is difficult and carries significant risk until a 

prototype has been built and tested.  Small changes in 

operation of a product’s subsystems as it interacts with 

its environment may have significant impact on the 

product’s successful performance [6].  Simulation of 

dynamic behavior can significantly reduce risk in 

understanding behavior. Simulation of operation of the 

real design can be used to ascertain whether the design 

can provide the functionality needed to perform a 

mission capability, to develop allocated component 

behavior and performance requirements, and to 

produce validated performance models for the design.  

The analyses of the simulations can provide insight 

into the parameters that have the most significant 

impact on the ability to perform a mission capability.  

The Pilot simulations provided an analysis of desired 

capability and existing constraints that allowed us to 

calculate accurately latency constraints on the ability to 

integrate sensor data required as input for the 

functionality to be implemented.  The timing constraint 

analysis provided allocated budgets for a functional 

decomposition.  Based on this analysis we examined 

the design candidates for implementing the desired 

capability.   

 

1.4 Test in Simulation Context 

 

Analysts are generally interested in how the 

implemented systems behaves for inputs (initial 

conditions) varying over specific ranges.  For example, 

terrain, mission, and pilot responses are varied to 

understand the terrain following and obstacle 

avoidance implementation.  Performance analysis of a 

system typically consists of predicting observable 

attribute values of the system at time points or 

intervals, or when some event occurs, e.g., when object 

detection occurs [7].  Observable (test) conditions are 

often expressed in terms of input-output relationships.  

Design analysis without simulation can provide 

estimates that can be used as inputs into performance 

(I/O) models and can include temporal analysis to 

make the results more realistic.  However, because of 

concurrency and difficulty of modeling the physics of 

systems in a complex environment, it is often difficult 

to make accurate predictions.  For example, the field of 

view of a trainable gun on a moving platform may be 

obstructed in ways that are hard to envision without 

geometric modeling that includes dynamics.  When a 

design has been implemented, then real physical tests 

can be performed and data collected. Design 

simulations can be used in the same way as real 

physical tests, but much earlier in the design process.  

For operational simulation to provide quantitative 

results, conditions whose values can be measured or 

recorded must be established. These data results of 

simulation can be directly analyzed.  

 

Evaluation conditions are often statistical in nature.  

The I/O relationships are not generally functional.  

Requirements are often stated in statistical terms, e.g., 

the accuracy of obstacle detection may be stated as a 

probability to be achieved. Detailed statistical analysis 

of I/O relationships is often required.  The same 

process of iterating the collection of data from physical 

test results can be applied to operational simulations.  

Varying input parameters can be used to construct 

regression models that can then be analyzed with 

statistical methods to understand what parameters 

made the most significant contribution to the outcome 

of the simulation experiment.  Parameters that might be 

varied include the power of the radar beam and the 

sweep pattern.  The resulting data sets are used to 

construct a performance model approximation to the 

full simulation model using regression analysis (curve 

fitting).  The performance model can then be used by 

statistical analysis tools to determine the contribution 

of input variables to the output result.  For the Pilot we 

examined a requirement for computing a safe flight 

corridor expressed as a probability value.  This value, 

from the allocated functional description for the 

capability to be implemented was calculated as the 

result of conditional probabilities of sensor detection 

and data integration.   

 

1.5 How has modeling and simulation technology 

improved? 

 

The maturity and cost effectiveness in integrating 

operational simulation with design simulation results 

from (1) the availability of physics-based effects 



modeling (sensor, aircraft, atmosphere, etc.) for 

operation in simulation execution environments, (2) the 

ability to develop executable design models using 

design hiding and layering techniques which allow an 

evolutionary development of increasing fidelity 

models, and (3) the ability to efficiently integrate 

simulations through a variety of interfaces such as 

APIs, shared memory, and sockets.  Finally, the ability 

to integrate design and simulation with statistical data 

analysis on the results of simulation experiments 

provides quantitative results with known pedigree.   

 

The software tools used to develop and execute the 

models for this Pilot are common in most aerospace 

development environments.  System Architect was 

used to develop and document both the integrated 

simulation environment and the Pilot application 

design process. Rhapsody was used to develop and 

execute the design models.  STK and Vega Prime were 

used for simulation visualization and certain aspects of 

the sensor/radar simulation.   Minitab was used for data 

analysis. 

 

2. The Pilot Application 

 

The Pilot design task added a terrain following and 

obstacle avoidance capability to an existing air vehicle 

production model. For the Pilot, the admissible design 

space is defined by the equipment to be added to the 

production model with details of how the equipment is 

to be integrated.  The specifications for the production 

model aircraft were available, as well as specifications 

for candidate equipment to be added for the 

modification.   The Pilot used simulation of the air 

vehicle within its operating environment to assist with 

mission analysis and to establish functional 

requirements. 

Figure 2 shows a snapshot from the Terrain Following 

Terrain Avoidance Scenario.  The green 250 to the left 

of the aircraft is the airspeed.  The green 4303 is the 

altitude.  The green 64 is the heading of the aircraft.  

The red cone that points down is the radar altimeter 

detecting the ground below the aircraft.  The red cone 

pointing from the nose of the aircraft is the terrain 

detecting radar.  The red shadow on the ground is the 

footprint of the terrain following radar to show its track 

along the terrain.  As the simulation with the 

executable design models for the TF/TA proceeds, 

analysts can observe and record the aircraft changing 

altitude and pitch to avoid the terrain. 

 

The operating environment includes the air vehicle 

with a pilot or autopilot flying under specific rules over 

specific kinds of terrain in specific atmospheric 

conditions.   For terrain following and obstacle 

avoidance, a “safe corridor” function calculates where 

the aircraft should fly so as to avoid the obstacles based 

on sensor data integrated with known terrain 

information.  Software that computes a safe corridor, 

parameterized with performance characteristics of the 

aircraft, is available.  The computational results of the 

safe corridor function at a given time are the distance 

needed to obtain a safe altitude.  Radar is used to detect 

obstacles that are not part of the known terrain.  The 

operational loop of sensing data and modifying course 

is implemented as devices on avionics bus architecture.   

 

The avionics system, which uses the 1553 bus 

architecture, is in operation and its properties are well 

understood.  Even though the component systems are 

supplied with performance specifications or operational 

flight software, the actual performance in operational 

situations may be hard to predict.  In this case, the 

latencies of moving data on the 1553 bus becomes a 

significant player because it impacts the time the 

airplane has to react to changing sensor inputs.  Having 

the ability to determine the sensitivities of the different 

1553 message rates as relating to sensor fusion, terrain 

databases, and flight control commands, allows a more 

accurate prediction of overall system performance.  

This in turn may provide the visibility to optimize on a 

less expensive solution than having to upgrade to a 

faster bus such as a fiber optic based solution.  

 

For the Pilot, we the used a simulation execution 

environment to host and integrate both the operational 

and the design models.   It provides all of the system-

level services required to simulate an integrated 

Avionics and Vehicle Systems environment, and 

allows for distributed processing of all of the 

subsystem and vehicle system models for performance 

balancing.  The actual distributed topology is self-

discovering and may be varied as needed for the 

Figure 2 Snapshot of TFTA Scenario 



particular experiment. Simulation models are used to 

represent design context and the candidate designs that 

are being explored.  The design process replaces the 

requirements model with an iteration of design models 

which satisfy the properties of the requirements 

models. 

 

3. Capability Analysis 

 

The requested capability is to enable the aircraft to 

follow terrain and avoid obstacles while flying close to 

the ground.  Analysis is needed to determine precise 

requirements that the design should satisfy.  This 

section outlines some of the analysis.  For the aircraft 

to maintain a safe course it must maintain a minimum 

safe distance from the terrain.  A safe distance is 

dependent on a number of factors such as aircraft 

speed, altitude, climb rate, direction, terrain profile, 

and distance of aircraft from the terrain. The analysis 

of the minimum safe distance required understanding 

exactly how the aircraft performs for the avoidance 

navigation in different situations.  The initial capability 

analysis consisted of (1) determining the operational 

situations, (2) analysis of the capability into functions, 

and (3) determination of timing intervals available for 

performing the functions to leave sufficient time for the 

aircraft to modify its course to maintain safe flight. 

 

3.1 Operational Scenarios 
 

An operational scenario consists of the aircraft 

operating in a region described by parameters such as 

aircraft speed, altitude, direction, terrain profile, 

distance of aircraft from terrain, etc. This description of 

the operational context of the mission is referred to as a 

situation. The situation characterizes the aircraft 

operating environment.  Operational simulation was 

used to determine radar behavior and aircraft 

performance to determine inputs to the safe corridor 

function, and to validate the behavior of the aircraft 

under specified conditions, and to determine the 

minimum distance needed to climb to safe altitude.  

These simulations take into account climb rates of the 

aircraft model. The team used a dynamic model of the 

aircraft with perfect sensor detection of terrain to 

analyze radar detection ability. The results are input 

arguments for the safe corridor function.  Varying 

terrain shape and aircraft speed provides validation 

information for a safe corridor function.  At a more 

detailed level, the weight of the aircraft when the climb 

begins, as well as, altitude and atmospheric conditions 

are all used to determine safe corridor inputs.  We used 

simulation to determine the affect of mountains 

blocking the radar view of what is behind the 

mountains, which is something hard to predict without 

simulation or actual flight evidence. 

3.2 Functional Analysis 

 

From the functional analysis of the capability, we 

determine that the aircraft can plot a safe course 

provided it can (1) sense terrain obstacles, (2) has time 

integrate data about terrain with other sensed 

information regarding the aircraft’s position, speed, 

direction, and weather, (3) compute the course change, 

and then (4) has time, climb rate, necessary to achieve 

a safe course.  

 

Analysis of the desired capability led to a functional 

decomposition into six primary functions.  These 

functions are displayed as ovals in Figure 3.  The 

functions require input from other functions and from 

databases which are also described in Figure 3.  These 

functions can be directly allocated to existing or 

candidate hardware and software components of the 

aircraft system.  The design task is to define the precise 

behavior and performance for the functions and verify 

that the candidate components can execute the detailed 

function descriptions within the performance 

constraints. 

 

3.3 Aircraft Performance 
 

From a fixed aircraft performance model (constant 250 

knots airspeed, terrain following height of 500 feet, and 

a maximum climb rate based on 3 engine performance 

of 2000 feet per minute), our simulation indicates that 

in order to clear a 1355 foot terrain obstruction (above 

the aircraft altitude), the pull-up must occur at 2.6 

nautical miles out. Looking at a similar scenario helps 

demonstrate the criticality of system timing constraints 

Figure 4 Aircraft Performance Model 
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and the value of being able to fully simulate the 

numerous aspects of terrain following (see figure 4). 

 

At 250 knots with a terrain following altitude of 250 

feet, the aircraft can maintain a 10 degree pitch angle 

and would require 1.07 statute miles to clear a 1000 

foot obstacle. Iterative integrated simulation trials 

provide the analytical and statistical results necessary 

to not only evaluate the performance in this 

environment, but allow design permutation and 

optimizations as well. 

 

3.4 Radar Analysis 

 

While the radar to be used in this application has 

verified specifications such as the distance for which 

objects can be detected at various power levels, the 

actual variability of the radar’s ability to detect objects 

is highly dependent on how specific parameters of the 

radar are set as well as the ability of the radar to scan 

regions as the aircraft is maneuvered. The Pilot 

objective was to determine how to optimize detection 

ability.  The better the detection ability the more time 

that is available to determine inputs and make the 

calculations needed to calculate aircraft course changes 

necessary.  A radar model with the correct sweeping 

behavior was used to analyze the terrain detection 

behavior. We found the behavior of the radar on the 

moving air vehicle platform was not entirely 

predictable from documented specifications for the 

radar.  Radar sweep rate and power affect detection 

distance, as well as the shape of the actual terrain. 

Higher radiated power makes detecting the aircraft 

easier and decreases its survival rate.  

 

This radar has an active and blended mode which 

affects the power and scanning distance of the radar. 

The active mode requires more power and can scan 

further out but it increases the probability of the aircraft 

being detected by enemies.  The blended mode has a 

range of 3.8 nautical miles and a reduced probability of 

the aircraft being detected.  The Pilot utilized the 

smaller detection range mode of blended.  The radar 

can scan from -30 to 30 degrees Azimuth with respect 

to the nose of the aircraft.  While the aircraft is flying a 

straight path, it only scans directly ahead.   

 

The radar scans in an upward direction, stops when it 

detects horizon, turns around and moves back down to 

the bottom of the vertical scan, then scans upwards 

again.  It does not scan while moving downward.  Each 

scan is called a bar.  While the aircraft is flying 

straight, it uses 2 to 3 bars.  Three bars provide more 

data but it takes longer to scan.  However, when the 

aircraft is turning it can scan up to 30 degrees in the 

direction of the turn.  While turning, the mission 

computer increases the number of bars to scan ahead of 

the aircraft and in the direction of the turn. 

 

In Figure 5, the simulation 

environment consists of a 

mountainous region with two 

ridges. The elevation scanning 

range is -30 to 10 degrees with 

respect to the horizon.  There is an 

overlap between the scan bars.   

For the pilot, the overlap was set to 

0.  There are normally 2 scan bars 

per sweep when the aircraft is 

flying straight, but there can be up 

to 15 bars while turning.  The scan beam moves up by 

0.325 degrees as it scans a bar.  The radar scans 

upwards at 60 degrees per second and moves 

downward at 85 degrees per second.  Radar data is sent 

from the sensor to the computer after the completion of 

a bar.  The sensor takes 0.25 seconds to turnaround on 

either end of the bars. 

 

For terrain detection we used an experimental situation 

defined by terrain profiles, and weather, to determine 

radar detection performance.  For example, a testable 

condition for the terrain following system is the 

elapsed time from obstacle detection until information 

regarding object location and type of obstacle are 

computed and fed into the safe corridor function.  The 

following table describes aircraft performance 

constraints, radar specifications, and terrain 

configuration used in simulation experiments to 

determine terrain detection performance. 

 

Table 1 - Configuration 

Aircraft 

Max dive rate -5.5 degrees 

Max climb rate 610 meters per minute 

Max bank angle 30 degrees 

Max turn rate 3 degrees per second 

  

Radar 

Max Range in Blended 

mode 

3.8 nautical miles 

Azimuth scanning 

range 

-30 to +30 degrees with 

respect to aircraft 

Elevation scanning 

range 

-30 to + 10 degrees with 

respect to horizon 

Beam Size 2.9 x 3.9 degrees (Az x El) 

Overlap (Placeholder) 0 degrees Azimuth 

Scanning pattern 2 – 15 bars 

Beam step size 0.325 degrees Elevation 

Environment 

Mountainous  2 ridges 

Height 1000 feet 

Figure 5 Radar 

Scan Behavior 



 

The aircraft’s flight path is limited by the parameters in 

Table 1 and cannot be altered.  The dive angle during 

descent cannot exceed -5.5 degrees.  The climb rate 

varies with weight and temperature, but for the 

purposes of the pilot, it was set to a max value of 610 

meters per minute.  The max bank angle is the 

maximum angle of the aircraft during turns.  The bank 

angle reduces the aircraft’s ability to climb and is 

limited to 30 degrees.  The max turn rate is limited by 

the ability to scan the area ahead of the aircraft in the 

direction of the turn without outpacing the scans.  

Table 2 describes a collection of simulation runs with 

the input parameters that were varied. 

 

Table 2 - Input Parameters 

Run Aircraft Radar 

1 250 

knots 

2 bars, normal sweep pattern, 

normal sweep rates 

2 250 

knots 

3 bars, normal sweep pattern, 

normal sweep rates 

3 250 

knots 

2 bars, normal sweep pattern, 

double sweep rates 

4 250 

knots 

2 bars, full sweep pattern, normal 

sweep rates 

5 250 

knots 

2 bars, no pauses for the sensor to 

turn around, normal sweep rates 

6 200 

knots 

2 bars, normal sweep pattern, 

normal sweep rates 

 

Run 1 is the baseline run with every parameter set to 

nominal values.  Run 2 modified the number of bars 

which increases the detail of the scan but increases the 

time to perform a full sweep.  Run 3 doubled the scan 

rate in the upwards and downwards direction which 

decreased the time it takes to perform one bar and the 

time it takes the sensor to return to the bottom 

elevation.  Run 4 scanned the full elevation range 

instead of stopping after detecting horizon, which 

results in scanning areas that do not need to be 

scanned, unnecessarily increasing the scanning time. 

Run 5, removed the turn around time which effectively 

decreased the amount of time the scanner is not 

scanning.  Run 6 slowed the aircraft down to gives it 

more response time for avoiding obstacles. The pilot 

analyzed the detection distance for the five runs 

performed at 250 knots.  The detection distance has a 

lognormal distribution that skewed towards the aircraft 

due to the radar continuously detecting the same terrain 

as the aircraft moved closer to the ridges in the 

scenario.   

 

Only the full sweep has a different detection range.  

The full sweep pattern takes longer than the others 

which impacts the detection distance.  This indicates 

that ending the sweep when the horizon is detected has 

an impact on the detection distance while the other 

variables had little or no impact.  This is a useful 

feature to have for the radar since scanning past the 

terrain also increases the probability of detection. 

 

The radar analysis and the aircraft performance 

analysis provided inputs to the safe corridor function.  

We validated the overall performance of the 

operational loop of sensing data and modifying course 

based on realistic radar performance and perfect ability 

to integrate sensed data with terrain data and provide 

results to the safe corridor function. In order to clear an 

obstacle, the radar needs to detect the obstacle far 

enough away to for the aircraft to have time to climb to 

the clearance altitude without exceeding the maximum 

climb rate.  The larger the obstacle, the further out the 

aircraft needs to detect it.   

 

The radar, after TF/TA modifications, will have a 2.07 

statute mile look ahead scan.  For this case, that means 

we will have one mile (at 250 knots) or 14.4 seconds to 

react once the radar has detected the obstacle.  This 

does not, however, take into account that the sweep 

pattern timing can delay the detection by almost a 

second since the radar does not capture data as it 

moves from the end of one scan bar to the beginning of 

the next. 

 

Since we only need 1.07 mile detection range, if we 

chose to lower the radar power such that the scan range 

was reduced to 1.2 miles (to lower the probability of 

detection), that means that we now have 0.13 miles, or 

1.63 seconds before the pull-up must be established.  

Based the radar sweep performance, it might be 

roughly a second before the radar can detect the 

obstacle and therefore barely more than 0.6 seconds is 

available to move the radar data to the proper 

subsystems, process the information and propagate a 

pull-up command. 

 

4. Requirements Analysis 
 

Requirements analysis is used to precisely define the 

requirements and analyze how the requirements can be 

verified.  In this section, we focus on the requirement 

that an aircraft has a safe course to fly for a given flight 

scenario.  The previous analysis of the aircraft flying 

within various operational situations (e.g. terrain, 

obstacles, and weather), characterized features of the 

situations that could affect the ability of the radar to 

detect an obstacle and the ability of the aircraft to 

safely navigate to avoid the obstacles.  A situation in 

which the aircraft must have a safe course is described 

by parameters such as aircraft speed, altitude, heading, 

terrain profile, distance of aircraft from terrain, etc. that 

characterize the aircraft operating environment.  We 



assume that the general terrain is known and that any 

unknown obstacle on the terrain has limited height 

above the terrain which can be avoided by flying over 

or around it as long as the obstacle can be detected at a 

sufficiently far distance.  The probability of having a 

safe course depends on the time the aircraft takes to 

traverse the distance from the point the obstacle is 

detected to the obstacle being greater than the time it 

takes the mission computer to integrate various data 

plus the time it takes to calculate a safe course plus the 

time it takes to fly to the safe position above the 

terrain. 

 

An aircraft has a safe course in a situation provided the 

avionics system can compute a new course that the 

aircraft can actually implement (e.g. within climb rate 

constraints) in the time available.  The difference 

between detection time and time to change course is 

the time budget available to the avionics system to 

integrate the data, compute a safe course and command 

a course change.   The result of the operational analysis 

is an allocated time budget for the avionics system to 

integrate the terrain data with other sensed information 

regarding the position, speed, and heading of the 

aircraft and weather conditions. For example, situation 

1 (S1) is flown at a given speed of 250 knots, with a 

clearance altitude of 500 feet, flying level and with an 

obstacle height of 1000 feet.  The distance to detect 

terrain obstacles with a probability of 99% is 4 nautical 

miles.  The time budget available to integrate data and 

calculate a course change in this situation is tb.  The 

height of the obstacle above the height of the aircraft 

plus the clearance altitude is y, the horizontal climb 

distance is xc, the speed of the aircraft is v, the distance 

the aircraft flies to the object is d, the time the aircraft 

takes to over fly the object is t, the horizontal detection 

distance is xd, the max climb rate is cm and the 

horizontal component of speed is vh.  See Figure 6. 

 

Figure 6 Geometry 

 

The maximum time allowed for calculation depends on 

the speed of the aircraft, maximum climb rate and 

height of the obstacle. 

 

t = y / cm                vh = v * cos (ө)  ө = arcsin ( cm / v) 

xc = v * cos (ө) * t xc = v * cos (ө) * y / cm 

xc = v * cos ( arcsin ( cm / v )) * y / cm 

tb = ( xd – xc ) / v   

tb = ( xd - v * cos ( arcsin ( cm / v )) * y / cm) / v 

 

The climb rate required to clear an obstacle is the 

height of the obstacle divided by the time it takes to 

clear the obstacle.  The time it takes to clear the 

obstacle depends on the speed of the aircraft. 

d = (xc
2
 + y

2
)

0.5
      t = d / v 

Climb rate = y / t  = y * v / (xc
2
 + y

2
)

0.5
     

 

If the computed climb rate is less than the maximum 

climb rate, the aircraft will be able to clear the obstacle. 

The requirement for an aircraft having a safe course in 

a given situation, S1, can be specified in terms of a 

conditional probability. 

 probability (SafeCourse|S1) > 0.99 

This statement is interpreted as the probability that a 

randomly chosen flight course is in SafeCourse given 

the situation S1 is greater than 99%.  The 

probability(SafeCourse|S1) is the product:  

probability(DetectObstacle|S1)* 

probability(ComputeSafeCourseInTime|S1)* 

probability 

(SufficientTimeAvailableFlySafeCourse|S1).   

However, the probabilities of DetectObstacle and 

ComputeSafeCourseInTime are close to 1 and so the 

verification of the probability of a safe course reduces 

to the probability of sufficient time is available to fly 

the safe course. From a functional analysis, we obtain 

that the aircraft has time to fly a safe course provided it  

• has time to integrate data about terrain with 

other sensed information regarding the 

aircraft’s position, speed, direction, and 

weather,  

• has time to compute the course change, and  

• has the time and climb rate necessary to 

achieve a safe course.   

The time to achieve a safe course depends on the 

distance from the obstacle when it is detected, height of 

the obstacle, aircraft speed and climb rate.   

 

At the current time, we are planning to run simulations 

to collect data regarding the time to achieve a safe 

course using radar detection distances with varying 

speeds and climb rates.  Also, we are planning to 

record the success/failure of avoiding obstacles during 

the various situations. 
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5 Design Analyses 
 

The design analysis is based on dynamic models of the 

avionics system.  We built executable models of the 

1553 bus and controller architecture. The bus controller 

model is initialized with the same data files as used in 

the aircraft model.  The model uses a table of 

performance parameters to achieve the same statistical 

performance for data transfer as the actual bus. The 

design models used for the upgrade are developed 

using model-based design principles and are executed 

in the distributed simulation execution environment 

used for operational simulations such as the radar and 

the aircraft performance. 

 

The major design question was whether the equipment 

could be integrated on the existing avionics bus to 

achieve the performance needed, or whether the 

performance could be achieved only by adding an 

auxiliary bus for data integration.  While the behavior 

of the avionics controller and bus are deterministic, the 

time needed for computations, the behavior of a pilot, 

the air vehicle, and other entities in the environment 

are not deterministic.  A critical aspect of the design 

analysis is determining whether the avionics 

architecture can integrate sensor data and provide the 

integrated data used as input to software that calculates 

where the air vehicle should fly. Analysis of the design 

alternatives requires understanding whether the 1553 

bus architecture can provide the data transfer speed and 

volume needed to integrate sensor data with terrain 

data to be used to compute a safe corridor function.  

 

Figure 7 provides a system view of the models that are 

part of the combined execution environment.  The blue 

oval is the Rhapsody execution environment for the 

SysML models and the yellow oval is the Vega 

execution environment for the operational models. The 

arrows show the data flow between and among the 

models.   

 

6. The Simulation Execution Architecture 
 

The simulation architecture uses virtual shared memory 

for time, sharing data between applications and other 

global states.  All of the executable models are clock 

driven with a simulation clock.  The clock can be set at 

slower or faster than real time, and it can be stopped 

and restarted.  All of the simulations operate using 

simulation time.  Bridge models are used to provide 

interfaces to both design model execution and 

simulation model execution.   

 

Figure 8 is a SysML [8] design model for the avionics 

system.  The behavior of this model is described by 

state charts.  The model controls message flow between 

devices such as sensors and displays and specifies 

actual or desired performance such as message 

transmission times. The model is the bridge between 

models for the design of new functionality to be added 

to the avionics system, such as terrain following and 

obstacle avoidance, and a simulation environment that 

models the behavior and performance of operating 

aircraft.  

 

In Figure 8, the “Simulation Control” element controls 

the graceful start-up and user control of the entire 

simulation, essentially modeling the power-on 

sequence of the aircraft’s avionics and vehicle systems 

as well as injection of power-cycling or simulated 

software restart events. The “Simulation Clock” 

element is the master time source for every 

participating executable in the simulation environment.  

The clock can be set slower or faster than real time, 

and it can be paused and restarted.   A critical 

capability in such a simulation environment is that the 

data transfers across simulated networks have 

performance characteristics that match the actual 

hardware being simulated.  The simulation clock 

therefore waits until all of the executables in the 

distributed environment have completed performing 

the tasks that the real hardware would have completed 

in a given time slice before it advances the simulation 

time.  This forces synchronization across the entire 

simulation, in a manner that guarantees accurate 

fidelity of data flow, with a tradeoff between time slice 

size and real-time performance.  This tradeoff can be 

managed by distributing the simulation elements across 

more or faster processors.  The simulation architecture 

uses virtual shared memory for time, sharing data 

between applications and other global states.  All data 

logging occurs at simulation time in order to factor out 

any simulated vs. real time differences.  The “Bus A” 
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and “Bus B” are instances of the generic 1553B Bus 

model described in section 6.  Each bus model 

communicates with the Simulation Clock as well as 

with all of the subsystem models which are virtually 

attached to that bus.   

 

Several example Avionics subsystem models are 

shown on the diagram, along with “Shared Memory” 

and Vehicle Systems model placeholders.  The “Fuel 

Sensor” and “Fuel Gauge” models are attached to Bus 

B, while the “Radar Sensor” model is attached to Bus 

A.  The “Fuel Supply” model is not attached to either 

bus.  It provides data to the Fuel Sensor model through 

shared memory, using the same services as the entire 

Vehicle Systems suite of simulation models.  

 

With the executable avionics model we are now in a 

position to do the simulation experiments to determine 

the available time for integrating data and computing 

the change course.   

 

7. The Bus Architecture Model 
 

The 1553B Bus model provides a simulated Mux 

which manages the transfer of data among models 

which themselves are simulations of various 

subsystems (see Figure 9).  The subsystems supported 

by this architecture can be both avionics and vehicle 

systems models, allowing for any necessary subset of 

the entire air vehicle system to be simulated.  The 

1553B model supports varying degrees of fidelity, with 

corresponding performance implications, in order to 

allow for engineers to study different aspects of 

candidate designs.  The model is generic and reusable, 

with all communications passing through four ports.   
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The “Config Port” provides for all tailoring and 

customization of the Mux behavior. The model is 

generic, and reuse is supported by providing the 

topology information, messaging schedules, rate 

groups and bus transport performance characteristics 

via this port.  The “Clock Port” provides all time 

services into and out of the Mux model.  This allows 

for some of the most powerful capabilities of the 

model.  Simulation time is maintained rigorously such 

that data transfers across the modeled 1553B Muxes 

matches the behavior that would occur in an actual 

hardware environment.  For each data transfer, the 

Mux model determines how much real time would 

have passed, and provides this information back to the 

overall simulation clock in order to pace all of the other 

models and keep everything in sync.  Simulated time 

can therefore be paused or run faster or slower than 

real time, within the limits of the processors used for 

the experiment.  The “BC Port” provides for simulation 

control of the Bus Control functions for the modeled 

Mux.  This allows for studying several aspects of the 

air vehicle dynamically that are difficult to analyze in a 

static environment.  For example, the model supports 

the simulation of backup bus control switchovers, 

including messages lost during a switchover and the 

behavior of a backup bus controller during startup.  

Also, the model supports failure injection, allowing for 

simulation with various fail/retry schemes to study 

their effects on the simulated system behaviors.  The 

“RT Port” is a set of ports which provide the modeled 

attachment points for all of the subsystem models.  

Each RT supports send/receive services, time 

synchronization, the ability to be distributed across a 

set of processors, communications with the modeled 

Mux via TCP/IP port/socket services, and data logging 

for offline analysis post-test.  Data can be transferred to 

subsystem models directly via compiled RT code or 

indirectly through shared memory structures without 

modifying the source code of the subsystem models.  

This allows for great flexibility in reuse of legacy 

models. 
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8. Conclusion 
 

While at this point in time not all of the simulation 

trials have been run and the data collected and 

analyzed, we believe that the pilot successfully 

demonstrates that the capability to integrate design 

models with physics based operational simulations is 

entirely feasible with the current maturity of modeling 

and simulation-based product design tools.  The results 

of simulation exercises are fully incorporated into the 

design process, and the data has a documented 

pedigree.  A description of a simulation trial includes 

the air vehicle configuration, the operational 

environment description, the fidelity of all of the 

models used, as well as, the actual data recorded as part 

of the simulation trial.  A description of a simulation 

exercise includes multiple trials where parameters are 

varied over specified ranges.  The results have allowed 

us to obtain much better estimates of the avionics 

performance under operational conditions than could 

have been done without flying the actual aircraft.  The 

effort involved the integration of such toolsets into a 

common operating infrastructure, along with the 

development of appropriate fidelity models.  The 

resulting infrastructure is reusable in a variety of 

contexts, and will be used for other design trades for 

this aircraft model, and may be used for designing a 

new generation avionics architecture.   
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