

A Practical Guide to SysML: The Systems Modeling Language

by Sanford Friedenthal, Alan Moore and Rick Steiner
Elsevier Science and Technology Books, Inc.. (c) 2008. Copying Prohibited.

Reprinted for Jasmyn Davis, Lockheed Martin Corporation

jasmyn.davis@lmco.com

Reprinted with permission as a subscription benefit of Books24x7,
http://www.books24x7.com/

All rights reserved. Reproduction and/or distribution in whole or in part in electronic,paper or
other forms without written permission is prohibited.

http://www.books24x7.com/

Chapter 2: Model-Based Systems Engineering

Overview

Model-based systems engineering (MBSE) applies systems modeling as part of the systems engineering process
described in Chapter 1 to support analysis, specification, design, and verification of the system being developed. A primary
artifact of MBSE is a coherent model of the system being developed. This approach enhances communications,
specification and design precision, design integration, and reuse of system specification and design artifacts.

This chapter summarizes MBSE concepts to provide further context for SysML without emphasizing the specific modeling
language, method, or tools. MBSE is contrasted with the more traditional document-based approach to motivate the use of
MBSE and highlight its benefits. Principles for effective modeling are also discussed.

2.1 Contrasting the Document-Based and Model-Based Approach

The following sections contrast the document-based approach and the model-based approach to systems engineering.

2.1.1 Document-Based Systems Engineering Approach

Traditionally, large projects have employed a document-based systems engineering approach. This approach is
characterized by the generation of textual specifications and design documents, in hard-copy or electronic file format, that
are then exchanged between customers, users, developers, and testers. System requirements and design information are
expressed in these documents and drawings. The systems engineering emphasis is placed on controlling the
documentation and ensuring the documents and drawings are valid, complete, and consistent, and that the developed
system complies with the documentation.

In the document-based approach, specifications for a particular system, its subsystems, and its hardware and software
components are usually depicted in a hierarchical tree, called a specification tree. A systems engineering management
plan (SEMP) documents how the systems engineering process is employed on the project, and how the engineering
disciplines work together to develop the documentation needed to satisfy the requirements in the specification tree.
Systems engineering activities are planned by estimating the time and effort required to generate documentation, and
progress is then measured by the state of completion of the documents.

Document-based systems engineering typically relies on a concept of operation document to define how the system is
used to support the required mission or objective. Functional analysis is performed to allocate the top-level system
functions to the components of the system. Drawing tools are used to capture the system design, such as the functional
flow diagrams or schematic block diagrams. These diagrams are stored as separate files and included in the system
design documentation. Engineering trade studies and analyses are performed and documented by many different
disciplines to evaluate and optimize alternative designs and allocate performance requirements. The analysis may be
supported by individual analysis models for performance, reliability, safety, mass properties, and other aspects of the
system.

Requirements traceability is established and maintained in the document-based approach by tracing requirements between
the specifications at different levels of the specification hierarchy. Requirements management tools are used to parse
requirements contained in the specification documents and capture them in a requirements database. The traceability
between requirements and design is maintained by identifying the part of the system or subsystem that satisfies the
requirement, and/or the verification procedures used to verify the requirement, and then reflecting this in the requirements
database.

The document-based approach can be rigorous but has some fundamental limitations. The completeness, consistency,
and relationships between requirements, design, engineering analysis, and test information are difficult to assess since this
information is spread across several documents. This makes it difficult to understand a particular aspect of the system and
to perform the necessary traceability and change impact assessments. This, in turn, leads to poor synchronization between
system-level requirements and design and lower-level hardware and software design. It also makes it difficult to maintain or
reuse the system requirements and design information for an evolving or variant system design. Also, progress of the
systems engineering effort is based on the documentation status that may not adequately reflect the system requirements
and design quality. These limitations can result in inefficiencies and potential quality issues that often show up during
integration and testing, or worse, after the system is delivered to the customer.

2.1.2 Model-Based Systems Engineering Approach

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 2 / 10

A model-based approach has been standard practice in electrical and mechanical design and other disciplines for many
years. Mechanical engineering transitioned from the drawing board to increasingly more sophisticated two-dimensional
(2D) and then three-dimensional (3D) computer-aided design tools beginning in the 1980s. Electrical engineering
transitioned from manual circuit design to automated schematic capture and circuit analysis in a similar time frame.
Computer-aided software engineering became popular in the 1980s for using graphical models to represent software at
abstraction levels above the programming language. The use of modeling for software development is becoming more
widely adopted, particularly since the advent of the Unified Modeling Language in the 1990s.

The model-based approach is becoming more prevalent in systems engineering. A mathematical formalism for MBSE was
introduced in 1993 [24]. The increasing capability of computer processing, storage, and network technology along with
emphasis on systems engineering standards has created an opportunity to significantly advance the state of the practice of
MBSE. It is expected that MBSE will become standard practice in a similar way that it has with other engineering
disciplines.

"Model-based systems engineering (MBSE) is the formalized application of modeling to support system requirements,
design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases" [25]. MBSE is intended to facilitate systems engineering activities that have
traditionally been performed using the document-based approach and result in enhanced communications, specification
and design precision, system design integration, and reuse of system artifacts. The output of the systems engineering
activities is a coherent model of the system (i.e., system model), where the emphasis is placed on evolving and refining the
model using model-based methods and tools.

The System Model

The system model is generally created using a modeling tool and contained in a model repository. The system model
includes system specification, design, analysis, and verification information. The model consists of elements that represent
requirements, design elements, test cases, design rationale, and their interrelationships. Figure 2.1 shows the system
model as an interconnected set of model elements that represent key system aspects as defined in SysML, including its
structure, behavior, parametrics, and requirements.

Figure 2.1: Representative system model example in SysML. (Specific model elements have been deliberately
obscured and will be discussed in subsequent chapters.)

A primary use of the system model is to design a system that satisfies system requirements and allocates the requirements
to the system's components. Figure 2.2 depicts how the system model is used to specify the components of the system.

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 3 / 10

The system model includes component interconnections and interfaces, component interactions and related functions
components must perform, and component performance and physical characteristics. The textual requirements for the
components may also be captured in the model and traced to system requirements.

Figure 2.2: The system model is used to specify the components of the system.

In this regard, the system model is used to specify the component requirements and can be used as an agreement
between the system designer and the subsystem and or component developer. The component developers receive the
component requirements in a way that is meaningful to them either through a model data exchange mechanism or by
providing documentation that is automatically generated from the model. The component developer can provide information
about how the component design complies with its requirements in a similar way. The use of a system model provides a
mechanism to specify and integrate subsystems and components into the system and maintain traceability to higher-level
requirements.

The system model can also be integrated with engineering analysis and simulation models to perform computation and
dynamic execution. If the system model is executed directly, the system modeling environment must be augmented with an
execution environment. A brief discussion of executable models is included in Chapter 17.

The Model Repository

The model elements are stored in a model repository and depicted on diagrams by graphical symbols. The tool enables
the modeler to create, modify, and delete individual model elements and their relationships in the model repository. The
modeler uses the symbols on the diagrams to enter the information into the model repository and to view model repository
information. The specification, design, analysis, and verification information previously captured in documents is now
captured in the model repository. The model can be viewed in diagrams or tables or in reports generated by querying the
model repository. The views enable understanding and analysis of different aspects of the same system model. The
documents can continue to serve as an effective means for reporting the information, but in MBSE, the information
contained in documentation is generated from the model. In fact, many of the modeling tools have flexible and automated
document-generation capability that can significantly reduce the time and cost of building and maintaining the system
specification and design documentation.

Model elements corresponding to requirements, design, analysis, and verification information are traceable to one another
through their relationships, even if they are represented on different diagrams. For example, an engine component in an
automobile system model may have many relationships to other elements in the model. The engine, which is part of the
automobile system, is connected to the trans mission, satisfies a power requirement, performs a function to convert fuel to
mechanical energy, and has a weight property that contributes to the vehicle's weight.

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 4 / 10

The static semantics of the model impose rules that constrain which relationships can exist. For example, the model should
not allow a requirement to contain a system component or an activity to produce inputs instead of outputs. Additional model
constraints may be imposed based on the method being employed. An example of a method-imposed constraint may be
that all system functions must be decomposed and allocated to a component of the system. Modeling tools are expected to
enforce constraints at the time the model is constructed, or by running a model-checker routine at the modeler's
convenience and providing a report of the constraint violations.

The model provides much finer-grain control of the information than is available in a document-based approach, where this
information may be spread across many documents and the relationships may not be explicitly defined. The model-based
approach promotes rigor in the specification, design, analysis, and verification process. It also significantly enhances the
quality and timeliness of traceability and impact assessment over the document-based approach.

Transitioning to MBSE

Models have been used as part of the document-based systems engineering approach for many years, and include
functional flow diagrams, behavior diagrams, schematic block diagrams, N2 charts, performance simulations, and reliability
models, to name a few. However, the use of models has generally been limited in scope to support specific types of
analysis or selected aspects of system design. The individual models have not been integrated into a coherent model of
the overall system, and the modeling activities have not been integrated into the systems engineering process. The
transition from document-based systems engineering to MBSE is a shift in emphasis from controlling the documentation
about the system to controlling the model of the system. MBSE integrates system requirements, design, analysis, and
verification models to address multiple aspects of the system in a cohesive manner, rather than a disparate collection of
individual models.

MBSE provides an opportunity to address many of the limitations of the document-based approach by providing a more
rigorous means for capturing and integrating system requirements, design, analysis, and verification information, and
facilitating the maintenance, assessment, and communication of this information across the system's life cycle. Some of the
MBSE potential benefits include the following:

n Enhanced communications

¡ Shared understanding of the system across the development team and other stakeholders

¡ Ability to integrate views of the system from multiple perspectives

n Reduced development risk

¡ Ongoing requirements validation and design verification

¡ More accurate cost estimates to develop the system

n Improved quality

¡ More complete, unambiguous, and verifiable requirements

¡ More rigorous traceability between requirements, design, analysis, and testing

¡ Enhanced design integrity

n Increased productivity

¡ Faster impact analysis of requirements and design changes

¡ Reuse of existing models to support design evolution

¡ Reduced errors and time during integration and testing

¡ Automated document generation

n Enhanced knowledge transfer

¡ Specification and design information captured in a standard format that can be accessed via query and retrieval

MBSE can provide additional rigor in the specification and design process when implemented using appropriate methods

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 5 / 10

and tools. However, this rigor does not come without a price. Clearly, transitioning to MBSE underscores the need for up-
front investment in processes, methods, tools, and training. It is expected that during the transition, MBSE is performed in
combination with document-based approaches. For example, the upgrade of a large, complex legacy system still relies
heavily on the legacy documentation, and only parts of the system may be modeled. Careful tailoring of the approach and
scoping of the modeling effort is essential to meet the needs of a particular project. The considerations for transitioning to
MBSE are discussed in Chapter 18.

2.2 Modeling Principles

The following sections provide a brief overview of some of the key modeling principles.

2.2.1 Model and MBSE Method Definition

A model is a representation of one or more concepts that may be realized in the physical world. It generally describes a
domain of interest. A key feature of a model is that it is an abstraction that does not contain all the detail of the modeled
entities within the domain of interest. Models are represented in many forms including graphical, mathematical, and logical
representations, and physical prototypes. For example, a model of a building may include a blueprint and a scaled
prototype physical model. The building blueprint is a specification for one or more buildings that are built. The blueprint is
an abstraction that does not contain all the building's detail such as the characteristics of its materials.

A SysML model is analogous to a building blueprint that specifies a system to be implemented. Instead of a geometric
representation of the system, the SysML model represents the behavior, structure, properties, constraints, and
requirements of the system. SysML has a semantic foundation that specifies the types of model elements and the
relationships that can appear in the system model. The model elements that comprise the system model are stored in a
model repository and can be represented graphically. A SysML model can also be simulated if it is supported by an
execution environment.

A method is a set of related activities, techniques, and conventions that implement one or more processes and is
generally supported by a set of tools. A model-based systems engineering method can be characterized as a method
that implements all or part of the systems engineering process, and it produces a system model as one of its primary
artifacts.

2.2.2 The Purpose for Modeling a System

The purpose for modeling a system for a particular project must be clearly defined in terms of the expected results of the
modeling effort, the stakeholders who use the results, and how the results are intended to be used. The model purpose is
used to determine the scope of the modeling effort in terms of model breadth, depth, and fidelity. This scope should be
balanced with the available schedule, budget, skill levels, and other resources. Understanding the purpose and scope
provides the basis for establishing realistic expectations for the modeling effort. The purposes for modeling a system may
emphasize different aspects of the systems engineering process or support other life-cycle uses, including the following:

n Characterize an existing system

n Specify and design a new or modified system

¡ Represent a system concept

¡ Specify and validate system requirements

¡ Synthesize system designs

¡ Specify component requirements

¡ Maintain requirements traceability

n Evaluate the system

¡ Conduct system design trade-offs

¡ Analyze system performance requirements or other quality attributes

¡ Verify that the system design satisfies its requirements

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 6 / 10

¡ Assess the impact of requirements and design changes

n Train users on how to operate or maintain a system

2.2.3 Establishing Criteria to Meet the Model Purpose

Criteria can be established to assess how well a model can meet its modeling purpose. However, one must first distinguish
between a good model and a good design. One can have a good model of a poor design or a poor model of a good design.
A good model meets its intended purpose. A good design is based on how well the design satisfies its requirements and
the extent to which it incorporates quality design principles. As an example, one could have a good model of a chair that
meets its intended purpose by providing an accurate representation of the modeled system. However, the chair's design
may be a poor design if it does not have structural integrity. A good model provides visibility to aid the design team in
identifying issues and assessing design quality. The selected MBSE method and tools should facilitate a skilled team to
develop both a good model and a good design.

The answers to the following questions can be used to assess the goodness of the model and derive quality attributes of it.
The quality attributes in turn can be used to establish preferred modeling practices.

Is the Model's Scope Sufficient to Meet its Purpose?

Assuming the purpose is clearly defined as described earlier, the scope of the model is defined in terms of its breadth,
depth, and fidelity. The model scope significantly impacts the level of resources required to support the modeling effort.

Model breadth. The breadth of the model must be sufficient for the purpose by determining which parts of the system
need to be modeled. This question is particularly relevant to large systems where one may not need to model the entire
system to meet project needs. If new functionality is being added to an existing system, one may choose to focus on
modeling only those portions needed to support the new functionality. In an automobile design, for example, if the
emphasis is on new requirements for fuel economy and acceleration, the model may focus on elements related to the
power train, with less focus on the braking and steering subsystems.

Model depth. The depth of the model must be sufficient for the purpose by determining the level of the system design
hierarchy that the model must encompass. For a conceptual design or initial design iteration, the model may only
address a fairly high level of the design. In the automobile example, the initial iterations may only model to the engine
level, where a future design iteration may model the engine parts if it is subject to further development.

Model fidelity. The fidelity of the model must be sufficient for the purpose by determining the required level of detail for
different modeling constructs. For example, a low-fidelity behavioral model may be sufficient to communicate a simple
ordering of actions in an activity diagram. Additional detail is required if the behavioral model is intended to be executed
to validate the logic. When modeling interfaces, a low-fidelity model may only include the logical interface description,
where as a higher-fidelity model may model the communication protocol. Additional detail is required to model system
performance.

Is the Model Complete Relative to its Scope?

A necessary condition for the model to be complete is that its breadth, depth, and fidelity must match its defined scope.
Other completion criteria may relate to other quality attributes of the model (e.g., whether the naming conventions have
been properly applied) and design completion criteria (e.g., whether all design elements are traced to a requirement). The
MBSE metrics discussed in Section 2.2.4 can be used to establish additional completion criteria.

Is the Model Well Formed Such that Model Constraints are Adhered To?

A well-formed model conforms to its static semantics. For example, the static semantics in SysML do not allow a
requirement to contain a system component, although other relationships are allowed between components and
requirements such as the satisfy relationship. The modeling tool should enforce the constraints imposed by the static
semantics or provide a report of violations.

Is the Model Consistent?

In SysML, some rules are built into the language to ensure model consistency. For example, compatibility rules can support
type checking to determine whether interfaces are compatible or whether units are consistent on different properties.
Additional constraints can be imposed by the method used. For example, a method may impose a constraint that logical
components can only be allocated to hardware, software, or operational procedures. These constraints can be expressed
in the object constraint language (OCL) [26] and enforced by the modeling tool.

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 7 / 10

Enforcing constraints assists in maintaining consistency across the model, but it does not prevent inconsistencies. A simple
example may be that a modeler inadvertently gives a component two different names that are interpreted by a model
checker as different components. The likelihood of inconsistencies increases when multiple people are working on the
model. A combination of well-defined model conventions and a disciplined process can limit this from happening.

Is the Model Understandable?

There are many factors driven by the model-based method and modeling style that can contribute to understandability. A
key contributing factor to enhance understandability is the effective use of model abstraction. For example, when
describing the functionality of an automobile, one could describe a top-level function as "drive car" or provide a more
detailed functional description such as "turn ignition on, put gear into drive, push accelerator pedal," and so on. An
understandable model should include multiple levels of abstraction that represent different levels of detail but relate to one
another. As will be described in later chapters, the use of decomposition, specialization, allocations, views, and other
modeling approaches in SysML can be used to represent different levels of abstraction.

Another factor that impacts understandability relates to the presentation of information on the diagrams themselves. Often,
there is a lot of detail in the model, but only selected information is relevant to communicate a particular design aspect. The
information on the diagram can be controlled by using the tool capability to elide (hide) nonessential information and
display only the information relevant to the diagram's purpose. Again, the goal is to avoid information overload for the
reviewer of the model.

Other factors that contribute to understandability are the use of modeling conventions and the extent to which the model is
self-documenting as described next.

Are Modeling Conventions Documented and Used Consistently?

Modeling conventions and standards are critical to ensure consistent representation and style across the model. This
includes establishing naming conventions for each type of model element, diagram names, and diagram content. Naming
conventions may include stylistic aspects of the language, such as when to use uppercase versus lowercase, and when to
use spaces in names. The conventions and standards should also account for tool-imposed constraints, such as limitations
in the use of alphanumeric and special characters. It is also recommended that a template be established for each diagram
type so that consistent style can be applied.

Is the Model Self-Documenting in Terms of Providing Sufficient Supporting Information?

The use of annotations and descriptions throughout the model can help to provide value-added information if applied
consistently. This can include the rationale for design decisions, flagging issues or problem areas for resolution, and
providing additional textual descriptions for model elements. This enables longer-term maintenance of the model and
enables it to be more effectively communicated to others.

Does the Model Integrate with Other Models?

The system model may need to be integrated with electrical, mechanical, software, test, and engineering analysis models.
This capability is determined by the specific method, tool implementation, and modeling languages used. For example, the
approach for passing information from the system model using SysML to a software model using UML can be defined for
specific methods and tools. In general, this is addressed by establishing an agreed-on expression of the modeling
information so that it can be best communicated to the user of the information, such as hardware and software developers,
testers, and engineering analysts.

2.2.4 Model-Based Metrics

Measurement data collection, analysis, and reporting can be used as a management technique throughout the
development process to assess design quality and progress. This in turn is used to assess status and risk and to support
ongoing project planning and control. Model-based metrics can provide useful data that can be derived from the model and
can help answer the following questions. This discussion refers to metrics that can be derived from a typical SysML model.

What is the Quality of the Design?

Metrics can be defined to measure the quality of a model-based system design based on metrics that have been
traditionally used in document-centric designs. This includes metrics for assessing requirements satisfaction, critical
performance properties, and how well the design is partitioned.

A SysML model can provide explicit relationships that can be used to measure the extent that the requirements are

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 8 / 10

satisfied. The model can provide granularity by identifying model elements that satisfy specific requirements. The
requirements traceability can be established from mission-level requirements down to component-level requirements. Other
SysML relationships can be used in a similar way to measure which requirements have been verified. These data can be
captured directly from the model or indirectly from a requirements management tool that is integrated with the SysML
modeling tool.

A SysML model can include critical properties that are monitored throughout the design process. Typical properties may
include performance properties, such as latency, physical properties (e.g., weight), and other properties (e.g., reliability
and cost). These properties can be monitored using standard technical performance measurement (TPM) techniques. The
model can also include relationships among the properties that indicate how they may be impacted as a result of design
decisions.

Design partitioning can be measured in terms of the level of cohesion and coupling of the design. Coupling can be
measured in terms of the number of interfaces or in terms of more complex measures of dependencies between different
model parts. Cohesion metrics are more difficult to define, but measure the extent to which a component can perform its
functions without requiring access to external data. The object-oriented concept of encapsulation reflects this concept.

What is the Progress of the Design and Development Effort?

Model-based metrics can be defined to assess design progress by establishing completion criteria for the design. The
quality attributes in the previous section referred to whether the model is complete relative to the defined scope of the
modeling effort. This is necessary, but not sufficient, to assess design completeness. The requirements satisfaction
described to measure design quality can also be used to assess design completeness. Other intermediate metrics may
include the number of use case scenarios that have been completed or the percent of logical components that have been
allocated to physical components. From a systems engineering perspective, a key measure of system design
completeness is the extent to which components have been specified. This metric can be measured in terms of the
completeness of the specification of component interfaces, behavior, and properties.

Other metrics for assessing progress include the extent to which components have been verified and integrated into the
system, and the extent to which the system has been verified to satisfy its requirements. Test cases and verification status
can be captured in the model and used as a basis for this assessment.

What is the Estimated Effort to Complete Design and Development?

The Constructive Systems Engineering Cost Model (COSYSMO) is used for estimating the cost and effort to perform
systems engineering activities. This model includes both sizing and productivity parameters, where the size estimates the
magnitude of the effort, and productivity factors are applied to come up with an actual labor estimate to do the work.

When using model-based approaches, sizing parameters can be identified in the model in terms of numbers of different
modeling constructs that may include the following:

Requirements

Use cases

Scenarios

States

System and component interfaces

System and component activities or operations

System and component properties

Components by type (e.g., hardware, software, data, operational procedures)

Test cases

The MBSE sizing parameters will need to be integrated into the cost model. Data will need to be collected and validated
over time to establish statistically meaningful data. However, early users of MBSE can identify sizing parameters that
contribute most significantly to the modeling effort, and use this data for local estimates and to assess productivity
improvements over time.

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 9 / 10

2.2.5 Other Model-Based Metrics

The previous discussion is a sampling of some of the model-based metrics that can be defined. Many other metrics can
also be derived from the model, such as the stability of the number of requirements and design changes over time, or
potential defect rates. The metrics can also be derived to establish benchmarks from which to measure the MBSE benefits
as described in Section 2.1.2, such as the productivity improvements resulting from MBSE over time. Chapter 18 includes
a discussion of additional organizational metrics related to deploying MBSE in an organization.

2.3 Summary

The practice of systems engineering is transitioning from a document-based approach to a model-based approach like
many of the other engineering disciplines, such as mechanical and electrical engineering, have already done. MBSE offers
significant potential benefits to enhance communications, specification and design precision, design integration, and reuse
that can improve design quality, productivity, and reduce development risk. The emphasis in MBSE is on producing and
controlling a coherent system model, and using this model to specify and design the system. Quality attributes of a model
such as model consistency, understandability, and well formedness, and the use of modeling conventions, can be used to
assess the goodness of a model and to derive preferred modeling practices. MBSE metrics can be used to assess design
quality, progress and risk, and support management of the development effort.

2.4 Questions

1. What are some of the primary distinctions between MBSE and a document-based approach?

2. What are some of the benefits of MBSE over the document-based approach?

3. Where are the model elements of a system model stored?

4. Which aspects of the model can be used to define the scope of the model?

5. What constitutes a good model?

6. What are some of the quality attributes of a good model?

7. What is the difference between a good model and a good design?

8. What are examples of questions that MBSE metrics can help answer?

9. What are possible sizing parameters that could be used to estimate an MBSE effort?

A Practical Guide to SysML: The Systems Modeling Language

Reprinted for jasmyn.davis@lmco.com, Lockheed Martin Corporation Elsevier Science and Technology Books, Inc., Elsevier Inc. (c) 2008, Copying Prohibited

Page 10 / 10

	Chapter 2: Model-Based Systems Engineering
	Overview
	2.1 Contrasting the Document-Based and Model-Based Approach
	2.2 Modeling Principles
	2.3 Summary
	2.4 Questions

