
Primary use cases of MBSE libraries
The INCOSE MBSE Usability Group voted on the most important systems usability issues to investigate at

the January 2011 working group. The working group selected the library use case. This paper begins by

understanding the value of a brick and mortar library. Using the library analogy, use cases are developed

to describe basic concepts needed to use, develop, and maintain the library elements. Finally, usability

issues (UI) are identified. Usability issues reduce user efficiencies, increase the chance of user errors,

decrease the understandability, or increase the time it takes to learn. The desire of this paper is

encourage a discussion leading to more usable languages and tools.

To understand MBSE libraries, it is helpful to think of the original definition of a library. Webster’s

Student Dictionary of 1938 defines a library as a room or building given over to a collection of books

kept for use and not for sale; also an institution for managing such a collection. Webster’s definition of a

library can be extended to the MBSE library. A MBSE library is as a set of language, process, and tools

needed for an enterprise to create, maintain, organize and use a collection of common foundational

model library elements. Like a book, a library element is a self-contained publication that can be

referenced and re-used to create new model elements.

To use and manage MBSE libraries, there are three basic actors, the Product Modeler Actor, the Product

Support Actor, and the Library Modeler Actor. See Figure 1 below.

Figure 1: MBSE Library Use Cases

This section of the paper focuses on one of these five use cases, the Create Product Model use case. The

Product Modeler creates a product model, a behavior or structure model of the product, to meet a

modeling objective. The modeling objective includes both the understanding of what the model needs

to do and an understanding of the set of results. Example modeling objectives may include diverse

objectives such as modeling a software behavior used to generating target software, modeling a

network used to determine the correct number of switches, or modeling system behaviors to elicit

customer needs. To illustrate this use case, a very simple example of a low-pass filter testing model is

developed. The objective of this example model is to verify that the rise time of the low-pass is

consistent with the time constant. The example model is built using a SysML Activity Diagram.

Product Modeler

Create Library

Element
Create product model

Update a product model

with library element fixes
Library Modeler Modeling

Env ironment

Support

Publish a set of common

library elements

Update modeling tool

with library elements

The product modeler creates a product model by following the actions for the use case shown in Figure

2.

The pre-condition for this use case is a list of library elements that is

available and ready to use. The actions for this use case are listed

below:

1. Capture what the model needs to do (Requirements, use

case, and/or test) – Product models are built for a purpose.

The requirements, use cases, and/or tests capture this

purpose. The product modelers require the ability to change

the value of Tau for each instance of the Low pass filter. The

tester must verify that Tau can be changed.

2. Find library element - In this example, the Step Function, low

pass, and Time History Plot library elements are found in the

list of all library elements. The library elements are

implemented as SysML activities. The activities contain all of

the behaviors needed to execute the model.

a. Note: Users will often use 20% of the library elements

for 80% of the model.

b. UI 1 – It is hard to find, identify, and understand the

usage of library elements in a model. Tools must

minimize the time it takes to find and understand

what the library element is and how to use it.

Understanding comes from both an example and a

description that includes the environmental

constraints the library element requirements, and the realized tests.

3. Add library element - Create an instance of the library

element in the editor. In this example, a step

function action is placed in the editor. It becomes a

call action. The step function has one output and

no inputs. The pin placement is visible and is

located in the same place as the parameter on the

library element activity. The icon draws a picture of

a step function and scales the picture to mirror the

default value of 1 for the step input and 1 for the step size. See the diagram below:

a. UI 2 – It takes a number of steps to re-size the action and to place the pins around the

perimeter of the element. Tool vendors need to minimize the number of steps needed

to re-size and adjust the location of the pins. As an example of how to do this, some

vendors have used a template layout to position the pins and to size the action.

b. UI 3 – There is no graphical way to see which pin is an input and which pin is an output.

c. UI 4 – There is no language support for developing custom icons.

Figure 3: Add Library Element

Capture what the model

needs to do (Requirements,

use case, and/or test)

Add library element

Test the model

Find library element

Tailor the library element

Create new product model

Select a requirement, use

case and/or test to

implement

:Product Modeler

[Found]

[Complete]

Figure 2: Actions for Create Product
Model Use Case

4. Tailor the library element – Set the

variant of a library element to a value

needed by the product model. A

variant is a library element parameter

that can change the form or function

of the library element. Tailoring is the

process needed to customize the

library element for a specific use in

the product model. In this example

we tailor the function instance by setting

the step insertion time at 1 second and

the step size at a value of 1.

a. UI 5 – It is difficult to look at a

diagram containing a library

element and see the items that

can be tailored on a library

element and to see the value

chosen for a tailoring.

b. UI 6 – It is easy to introduce errors in a model when pins are connected together with an

object flow. This is because the pins connected together with the object flow may have

incompatible types.

5. Test the model – Verifying the rise time

of the low-pass filter involves executing

the model, looking at the time-history

plot, and measuring the rise time.

a. UI 7 – It is difficult to execute

models. Sometimes executing

models involves creating classes

and placing the activities below

the class, and writing software.

This process should be easy to

setup and easy to understand.

b. UI 8 – It is difficult to visualize the results of an executable model. Capabilities such as

the ability to single step, watch the value of a pin, and plot the time-history of a pin help

understand the dynamics of a simulation and aid in testing.

Each of the remaining use cases un-cover additional usability issues. This is a subject for a future paper.

A summary of the use cases is described in the remaining part of this section of the paper.

Update a product model with library element fixes

Library elements will change over time. Changes may be driven by events such as feature

enhancements, dependencies, or bug fixes. The product modeler needs a way to update the product

Figure 4: Tailor the Library Element

Figure 5: Error Proof

Figure 6: Plot Simulation Results

model with changes. It is possible that changes to the library element will require fixes to the product

model that use the library element. A product modeler may also choose to not accept changes to a

library element. This may happen if the change is an enhancement to the library element that is not

needed by the product.

UI 9 – It is difficult to identify the dependencies on a library element change. Dependencies may include

new model elements that need to be loaded into the model because of an update and assumptions on

the environment that the model will work in.

Publish a set of common library elements

Common library elements only have value in an organization if they can be found and maintained over

time. The Library Modeler publishes common library elements and notifies the product team (product

support and product modelers).

UI 10 – It is difficult to package and share multiple elements in a sharable library element. Elements

include requirements, the design, the implementation, the tests, and the test results.

UI 11 – It is difficult to document the help on a library element.

Create library element

Creating library elements starts with creating a product model. Some of the model elements used to

create the product model is usable across multiple products in a product line, across all models in an

enterprise or across all models in a modeling discipline. The Library Modeler considers the requirements

of the user group and updates the library element, documents the library element, and tests the

element to show that it meets the requirements.

Update modeling tool with library elements

Finally, the Modeling Environment Support person updates the modeling tool when new or changed

library elements are available. If desired, the product team also needs a way to update the existing

models to use the new and improved library elements. Product teams want the option to update to the

new library elements. To make this decision, the product teams need to understand the differences

between the version of the library element they are using and the new published version. They also

want the option to either upgrade or to not upgrade to new library changes.

UI 12 - It is difficult to configuration manage multiple versions of a library element in a model. Managing

includes capabilities such as selecting only one version of a library element for use in a model, upgrading

to a new version of a library element, and differencing one version of a library element with another.

Conclusion
Creating product models from library elements is the most important use case selected by the MBSE

Usability Group. This paper details the use case steps needed to build and manage a model from library

elements. The roles of a product modeler, product supporter, and library modeler are described. The

product modelers use the modeling environment to create product models and to update a product

model with library element fixes. The library modeler uses the modeling environment to publish a set of

common library elements, to create library elements, and to modify library elements. The Product

Supporter uses the modeling environment to update the modeling tool with library elements and to find

library elements.

The use cases revealed a number of necessary features. For example, there needs to be a way to tailor

library elements, to capture environmental dependencies, to capture dependencies on other model

elements, and to package numerous artifacts together (requirements, tests, test results, etc.). These

features need to be supported by the tools, the tool environments, or by the underlying languages the

tools are based upon.

