
26th Annual INCOSE International Symposium (IS 2016)

Edinburgh, Scotland, UK, July 18-21, 2016

Explicating System Value through First Principles:

Re-Uniting Decision Analysis with Systems Engineering

Troy Peterson

Technical Fellow

Chief Engineer

Booz Allen Hamilton

Troy, MI 48084

 Bill Schindel

President

ICTT System Sciences

Terre Haute, IN 47803

Copyright © 2016 by Troy A. Peterson and Bill Schindel. Published and used by INCOSE with permission.

Abstract. System complexity continues to grow, creating many new challenges for engineers

and decision makers. To maximize value delivery, “both” Systems Engineering and Decision

Analysis are essential. The systems engineering profession has had a significant focus on

improving systems engineering processes. While process plays an important role, the focus on

process was often at the expense of foundational engineering axioms and their contribution to

system value. As a consequence, Systems Engineers were viewed as process developers and

managers versus technical leaders with a deep understanding of how system interactions are

linked to stakeholder value.. With the recent shift toward Model Based Systems Engineering

(MBSE), Systems Engineering is “getting back to basics,” focusing on value delivery via first

principles, using established laws of engineering and science. This paper describes how Pattern

Based Systems Engineering (PBSE), as outlined within INCOSE’s Model Based Systems

Engineering (MBSE) initiative, explicates system value through modeling of first principles,

re-uniting Systems Engineering and Decision Analysis capabilities.

2

Introduction

Complexity in Systems and Decisions: Today, the scope of engineering efforts often rapidly

expands to include more and more external interactions. Additionally, within a defined system

boundary, systems are becoming significantly more interconnected. Collectively this is

accelerating the number of interactions engineers need to understand and manage. This

increase and the associated challenges show no sign of abatement as shown in Figure 1 which

depicts the explosion of the Internet of Things (IoT). IoT is a significant contributor to the

increase in connectedness and system complexity, and we are still only in the formative stages

of this exponential growth. Furthermore, this interconnected phenomena is ubiquitous,

occurring across domains and with systems we use every day.

In addition to the increased density of interactions, the pace of contextual change is also

increasing. The contextual dynamics have the effect of continually altering a system’s fitness

and value. This further complicates matters, adding the challenge to design into systems the

necessary flexibility and agility, giving rise to a more stochastic view of design rather than a

more traditional steady state, deterministic perspective.

This context obviously brings about many challenges for engineers and decision makers, which

extend beyond the technical domain. Given the complexity and web of interactions, a decision

that may appear simple at first could have significant strategic, social, political and economic

impact. Where an engineer or manager’s intuition may have been sufficient decades ago –

today, when trying to consider of second, third and fourth order impacts, the complexity can

quickly overwhelm any one person or even a highly capable team.

Figure 1: Explosive Growth in the Internet of Thingsi

In his book Notes on the Synthesis of Form, Christopher Alexander articulated this context

eloquently over 50 years ago. The following statements are excerpts from his bookii:

3

Today more and more design problems are reaching insoluble levels of complexity

At the same time that problems increase in quantity, complexity and difficulty, they also

change faster than before

Trial-and-error design is an admirable method. But it is just real world trial and error

which we are trying to replace by a symbolic method. Because trial and error is too

expensive and too slow

These statements are more applicable today than they were 50 years ago and they will be even

more applicable 50 years from now. Consequently, approaches which leverage symbolic

method, speed feedback and iterations, build in agility and ensure a holistic view are essential.

One important aspect of ensuring our methods emphasize such results is to better couple the

decision making and innovation processes and related models.

History and a call for a new view: The history of Systems Engineering has strong ties to

fundamental engineering disciplines, the sciences and to mathematical modeling and

managerial decision support (management sciences) - often referred to as Decision Analysis,

Industrial Engineering or Operations Research. So in many ways a discussion of how to

integrate these disciplines is a return to an early foundational element of systems engineering.

To help address the complexity previously outlined and to better re-integrate Systems

Engineering and Decision Analysis many efforts are underway within industry, the

government and non-profits. For example, a working group within INCOSE focuses on

Decision Analysis with the purpose of advancing the state of the practices, education and

theory of Decision Analysis and its relationship to other systems engineering disciplines. The

Council of Engineering Systems Universities (CESUN) is another example which was formed

to address the great challenges posed by large-scale, interconnected, and therefore highly

complex and dynamic, socio-technical systems. The excerpt from the CESUN website which

follows articulates the contributions of SE and DA to Engineering Systems.

As many engineers began to delve deeper and deeper into science, some others

stressed the design perspective and explored how to solve the problems arising from

greater technical complexity. Operations research, systems and decision analysis,

industrial engineering, systems engineering—these all contributed to the expansion of

engineering—but at a certain point there was a recognition that some of the greatest

challenges were precisely where the technical systems had their interfaces with people,

policies, regulations, culture, and behavioriii.

This excerpt also calls out the expanded and new view at the “…interfaces with people,

policies, regulations, culture and behavior.” This perspective brings with it a diverse set of

stakeholders and an expanded view of value. To achieve value delivery in this new view we

must have an improved coupling of Systems Engineering and Decision Analysis. The

disciplines are absolutely complementary with Systems Engineering providing an overall

approach to systematically innovate and Decision Analysis providing a systematic approach to

think about, experiment with, and analyze complex problems or opportunities throughout the

innovation process.

To fully integrate these disciplines the third bullet from Alexander noted above makes an

important observation about the use of “…symbolic method. Because trial and error is too

expensive and slow.” This brings us first to the use of models and model based systems

4

engineering (the symbolic part) and then to the Agile Systems Engineering Life Cycle Pattern

(the sped-up “trial and error” part).

One might at first assume that this sets up a rivalry between symbolic model-based analysis and

simulation versus waiting for post-development market judgment. However, the Agile Systems

Engineering Life Cycle Pattern (Schindel and Dove 2016 iv) reminds us of the limits of

symbolic models and provides a “middle way”: Using “the market” throughout the

development cycle, moving “who makes the decisions” of development-time Decision

Analysis, to include the ultimate decision-maker—the stakeholder.

Re-Uniting Decision Analysis with Systems Engineering

Many frameworks group, categorize or connect Decision Analysis (DA) with Systems

Engineering (SE). This is true within the overview of System Engineering provided by the

Defense Acquisition University shown in Figure 2, and with the INCOSE Handbook (Walden

et al 2015v) as shown in Figure 3. Figure 4 is from the Agile Systems Engineering Life Cycle

Management (ASELCM) Patterniv

The Process View: The Defense Acquisition University states that the decision analysis

process transforms a broadly stated decision opportunity into a traceable, defendable, and

actionable plan. Furthermore, that it is performed at all systems levels and across the life cycle.

The DAU outlines Decision Analysis integration specifically with the process areas of

Technical Planning, Assessment, Stakeholder Requirements, Requirements Analysis and

Architecture Design all shown in Figure 2. INCOSE also notes the Decision Management

Process, which includes Decision Analysis, integrates with all other SE processes in its System

Life-Cycle Process N2 Chart found in the Appendix A of the Systems Engineering Handbook.

Figure 3 provides a view of the system life cycle processes aligned with ISO 15288 and

INCOSE’s Systems Engineering Handbook. The ASECLM reference boundary diagram

shown in Figure 4 contains the same SE processes in an abstract form as life cycle system

management processes (shown in yellow boxes) however it also introduces the Target System,

Target System models and the Target Environment all of which are essential when considering

how to fully integrate SE and DA.

Figure 2: DAU Systems Engineering Diagramvi

5

Figure 3: INCOSE System Life-Cycle Processes Overview per ISO 15288.

Figure 4: Iconic view of the Agile Systems Engineering Life Cycle Management (ASELCM) reference

boundaries iv.

6

While these views and their associated processes play an essential role in engineering complex

systems this view alone is insufficient. Taken to the extreme, some focused solely on Systems

Engineering processes omitting an essential aspect of fully integrating SE and DA found in

how system interactions deliver value. As a consequence, Systems Engineers at times have

been viewed solely as process developers and managers versus technical leaders with a deep

understanding of how system interactions are connected to stakeholder value.

For well over a decade the systems engineering profession has had a significant focus on

improving systems engineering processes – as illustrated by CMMI vii and ISO 15288.

Connections between the SE and DA exist at a high level as shown in Figures 2 and 3 as well as

within many more detailed process architectures. These connections are important and help

program teams manage the complex system of innovation. However, there is a deeper need in

connecting these disciplines, both more deeply and in a more explicit way to ensure value

delivery.

Models of Process vs Models of Systems: Process integration is important and helpful, but

alone it is not sufficient to manage the complexity in systems today--in fact it can become

nearly impossible to avoid unintended consequences without detailed models of the Target

System. Much of the integration effort of SE and DA has been focused on process – the

infrastructure for information about the system of interest. It has not been, however, as focused

on the information that passes through the process about the Target System.

With the recent shift toward Model Based Systems Engineering (MBSE), the Systems

Engineering discipline is “getting back to basics” and back to the foundational engineering

axioms built upon first principles and established laws of science and engineering. This focus

is more aligned with the genesis of classical mechanics, beginning with Newtonian interactions

and their emergent properties, so that the whole is greater than the sum of the parts. First

principles as used here mean interactions of force, energy, mass flow and information flow.

This includes established laws of physics and emerging higher level laws. For example this

could include well-formed and understood interactions and patterns within domains such as

Automotive, Healthcare, Energy and othersviii.

Using models to connect first principles to stakeholder value is first accomplished through an

explicit connection in the metamodel of how we model systems. More specifically by

expressing and directly connecting both stakeholder value and system interactions. At risk in

this connection is misunderstanding the value to first principle connections, for example

having a narrowly defined stakeholder space and omitting one or more stakeholders. This risk

is addressed in the Agile Systems Engineering Life Cycle Pattern, which expresses stakeholder

value as demonstrated by selection interactions in the Target System Environment which more

frequently incorporate feedback and design iterations.

Model Based Systems Engineering

INCOSE defines Model-Based Systems Engineering (MBSE) as “the formalized application of

modeling to support system requirements, design, analysis, verification and validation

activities beginning in the conceptual design phase and continuing throughout development

and later life cycle phases… ”ix The Object Management Group’s MBSE wiki notes that

“Modeling has always been an important part of systems engineering to support functional,

performance, and other types of engineering analysis. ”x

7

The application of MBSE has increased dramatically in recent years and is becoming a

standard practice to help manage the complexity seen in systems today. MBSE has been

enabled by the continued maturity of modeling languages such as SysML and significant

advancements made by tools vendors. These advancements are improving communications

and providing a foundation to integrate diverse models. MBSE is often discussed as being

composed of three fundamental elements – tool, language and method. The third element,

method, however has not always been given proper consideration. Because the language and

tool are relatively method independent, it is methodology which further differentiates the

effectiveness of any MBSE approach and its ability to help manage the complex and

interrelated functionality of today’s highly interconnected systems. For the approach discussed

in this paper, the “methodology” includes not only process as discussed in the previous section

in accordance with ISO 15288, INCOSE, DAU or others, but more significantly the very

concept of the underlying system information those processes produce and consume,

independent of modeling language and tools.

Pattern Based Systems Engineering

Pattern Based Systems Engineering (PBSE) as outlined within INCOSE’s Model Based

Systems Engineering (MBSE) initiativexi, is a methodology which formalizes historical pattern

efforts using explicit, re-usable, configurable S*Models (S*Patterns). Moreover, it explicates

system value through an understanding of system interactions and their projection onto value

space (Features). Pattern-Based Systems Engineering (PBSE) can address 10:1 more complex

systems with 10:1 reduction in modeling effort, using people from a 10:1 larger community

than the “systems expert” group, producing more consistent and complete models sooner.

These dramatic gains are possible because projects using PBSE get a “learning curve

jumpstart” from an existing pattern and its previous users, rapidly gaining the advantages of its

content, and improving the pattern with what is learned, for future users. The major aspects of

PBSE have been defined and practiced for many years across a number of enterprises and

domains. To increase awareness of the PBSE approach, two years ago INCOSE started a

Patterns Challenge Team (now the Patterns Working Group) within the INCOSE MBSE

Initiative.

The term “pattern” appears repeatedly in the history of design, such as civil architecture,

software design, and systems engineeringxii xiii xiv. These are all similar in the abstract, in that

they refer to regularities that repeat, modulo some variable aspects, across different instances in

space or time. However, the PBSE methodology referred to by this paper is distinguished from

those cases by certain important differences:

1. S*Patterns are Model-Based: We are referring here to patterns represented by formal

system models, and specifically those which are re-usable, configurable models based

on the underlying S*Metamodel. (By contrast, not all the historical “patterns” noted

above are described by MBSE models.)

2. Scope of S*Patterns: We are referring here to patterns which will usually cover entire

systems, not just smaller-scale element design patterns within them. For this reason, the

typical scope of an S*Pattern applications may be thought of as re-usable, configurable

models of whole domains or platform systems—whether formal platform management

is already recognized or not. (By contrast, most of the historical “patterns” noted above

describe smaller, reusable subsystem or component patterns.) S*Patterns are similar to

architectural frameworks, although they contain more information.

8

Fundamental to Pattern-Based Systems Engineering is the use of the S*Metamodel

(summarized by Figure 5), a relational / object information model used in the Systematica™

Methodology to describe requirements, designs, and other information in S*models such as

verification, failure analysis, etc. xv. A metamodel is a model of other models—a

framework or plan governing the models that it describes. These may be represented in

SysML™, database tables, or other languages. As an MBSE enabled approach PBSE can be

implemented across multiple third party COTS tools and languages (i.e. PLM systems,

modeling tools, architecture tools, databases, SysML, IDEF)

Specifically, an S*Pattern is a re-usable, configurable S*Model of a family of systems (product

line, set, ensemble etc.) as shown in Figure 6 below.

Figure 5: A summary view of the S*Metamodel

S*Metamodel for

Model-Based Systems

Engineering (MBSE)

S*Pattern Hierarchy for

Pattern-Based Systems

Engineering (PBSE)

System Pattern

Class Hierarchy

Individual Product

or System Configurations

Product Lines or

System Families

Configure,

Specialize

Pattern

Improve

Pattern

General
System
Pattern

State

Input/

Output

Interface

Functional

Interaction

(Interaction)
System

System of

Access

attribute

Technical

Requirement

Statement

Stakeholder Feature

attribute

Design

Component

attribute

(physical system)

(logical system)

Functional

Role

attribute

“A” Matrix

Couplings

“B” Matrix
Couplings

Stakeholder

World

Language

High Level

Requirements

Technical

World

Language

attribute

Design

Constraint

Statement

attribute

Stakeholder

Requirement

Statement

BB

WB
Detail Level

Requirements

High Level

Design

BB

WB

Figure 6: Pattern Hierarchy for PBSE

9

Over several decades, Pattern-Based Systems Engineering has been developed and practiced

across a range of domains, including carrier grade telecommunications, engines and power

systems, automotive and off road heavy equipment, telecommunications, military and

aerospace, medical devices, pharmaceutical manufacturing, consumer products, and advanced

manufacturing systems.

Engineers in these and many other domains spend resources developing or supporting systems

that virtually always include major content from repeating system paradigms at the heart of

their business (e.g., core ideas about airplanes, engines, switching systems, etc.). In spite of this,

the main paradigm apparent in most enterprises to leverage “what we know” is to build and

maintain a staff of experienced technologists, designers, application engineers, managers or

other human repositories of knowledge.

The physical sciences are based upon the discovery of regularities (patterns), which we say

express laws of both nature and systems value markets. Although re-usable content has some

history in systems engineering, there is less recognition of a set of “Maxwell’s Equations” or

“Newton’s Laws” expressing the nature of the physical world, as the basis of those systems

patterns. If Electrical Engineering and Mechanical Engineering disciplines have physical law

at their foundation, why cannot Systems Engineering do the same?

By contrast, the S*Metamodel is focused on the very physical interactions that are the basis of

the physical sciences, and which we assert are at the heart of the definition of System (in this

methodology) as a collection of interacting components . The S*Patterns that arise from the

explicit representation of physical Interactions re-form the foundation of system

representations to align more explicitly with the physical sciences.

At its very foundation, the ASELCM Pattern of PBSE links decision analysis and systems

engineering ensuring system configurations are directly traceable and driven by stakeholder

values. PBSE explicates system value via a formal model of interactions, whether force, mass

flow, energy or information exchanges which are foundational to science and to the first

principles of system design and market responses.

SYSTEM VALUE – Stakeholder Features

System value is measured by the selection interactions of stakeholders or their representatives;

in the S*Metamodel these values are expressed explicitly as Features. In the ASELCM Pattern,

these selections are as explicit as the (other) interactions of the system of interest. Features and

their associated attributes contain the value space for a system of interest codified as

formalized stakeholder needs/values. The connection between Stakeholders and Features is

clear within the S*Metamodel shown in Figure 5. Features are shown at the top of the figure

using a black box. Figure 7 reformats and displays just a portion of the S*Metamodel clearly

annotating the classes from which we derive system value. Features are parameterized by

Feature attributes which provide a measure of value – including all stakeholder measures of

effectiveness (MOEs). Within Figures 5 and 7 these Feature attributes are represented by a

white elongated oval adjacent to the black Feature box, or by other symbology in SysML or

other language.

As outlined in the introduction, just as the system boundary has broadened, the set of

stakeholders and their respective values must also be broadened. It is important to note that

10

stakeholders include all classes of stakeholders and not just those who may purchase or use a

product or system of interest. Stakeholders include shareholders, manufacturers, society, and

others. Every trade off or decision which sets the direction of a system design is a value

judgment (selection interaction) from the perspective of one or more stakeholders. Given this

view it is absolutely necessary to have a holistic view and identify the full complement of

stakeholders.

System Value Space

(Trade Space, Fitness Landscape)

External Stakeholder Domain:

First Principles-Based

Selection Interaction Space

Subject System:

First Principles-Based

Interaction Space

Stakeholder

Feature

attribute

Functional

Interaction

Functional

Role

attribute

Functional

Interaction

Functional

Role

attribute

Figure 7: S*Agile Systems Engineering Life Cycle Pattern extract, highlighting System Value which is

generated via interactions - the first principles of engineering and science

In fact, it is the omission of stakeholders early in a systems program that often leads to costly

rework, redesign, failures in system validation and sometimes program cancelation. When

Feature space is mature and expansive it can significantly reduce technical and programmatic

risk. While ensuring the set of stakeholders is comprehensive it should not be assumed

however that all stakeholders and their associated values are equal.

Since Feature space contains the full complement of stakeholder values (the fitness landscape)

it contains the entire trade space for the design and development of systems. This includes the

full breadth and hierarchical depth of value including objectives and measures, weights and

rationale prescribed in texts focused on Decision Analysis (Keeneyxvi , Clemen-Reilly, and the

Defense Acquisition Guidebook References). With Stakeholders and their Features well

understood the Features are used to configure systems that conform to the selections and the

dialing in of their associated attributes.

Feature space is where selection-based decision analysis occurs. It is used as the basis of

analysis and defense of all decision-making including optimization and trade-offs. This gives

rise to the next class of information in Figures 5 and 7 which delivers system value - Functional

Interactions.

11

FIRST PRINCIPLES - Functional Interactions

Functional Interactions are what define a system (a group of interacting, elements forming a

complex whole) and through which the system delivers value. Functional interactions involve

the exchange of forces, mass, energy or information. When we think of these fundamental

exchanges, it brings to mind the work one would become intimately familiar in the study of

physics, chemistry, mechanics and many other engineering, science, or mathematics. These

exchanges return us to the first principles of these disciplines and how they apply to the

systems we design and develop. Additionally, as our understanding grows within a particular

domain or with a specific type of system we often begin to learn the first principles of these

systems which are also expressed as interactions. These interactions can be at the component,

subsystem or system level, and especially with the external environment of a system of interest.

Alternatives as outlined within Decision Analysis are the options to evaluate against decision

criteria or the objectives and measures. Functional Roles, displayed as the yellow box in

Figures 5 and 7, are solution neutral logical roles which participate in an interaction. An

identified Functional Interaction may be implemented by various combinations of functional

roles. This gives rise to many alternatives when making traditional functional allocations.

In Figure 7 the Feature and Functional Role attributes are coupled as shown by the dotted line.

This particular coupling qualifies the fitness or trade space. The Feature attribute defines the

measure of effectiveness and the Functional Role attribute provides a means and measure of

value delivery (level of performance) depending upon the selection of design components

filling the Functional Role.

Parameterization and Configuration: S*Models are intended to establish modeled Feature

sets for all Stakeholders. This (Features) portion of an S*Pattern is then used to configure the

pattern for individual applications, product configurations, or other instances. It turns out that

the variation of configuration across a product line is always for reasons of one stakeholder

value or another, so Feature selection becomes a proxy for configuring the rest of an S*Pattern

into a specifically configured instance model.

Because S*Features and their Feature Attributes (parameters) characterize the value space of

system stakeholders, the resulting S*Feature Configuration Space becomes the formal

expression of the trade space for the system. It is therefore used as the basis of analysis and

defense of all decision-making, including optimizations and trade-offs. The S*Feature Space

also becomes the basis of top-level dashboard model views that can be used to track the

technical status of a project or product. All “gaps” and “overshoots” in detailed technical

requirements or technologies are projected into the S*Feature Space to understand their

relative impact.

As illustrated by the “down stroke” in Figure 6, a generic S*Pattern of a family of systems is

specialized or “configured” to produce an S*Model of a more specific system, or at least a

narrower family of systems. Since the S*Pattern is itself already built out of S*Metamodel

components, for a mature pattern the process of producing a “configured model” is limited to

two transformation operations:

1. Populate: Individual classes, relationships, and attributes found in the S*Pattern are

populated (instantiated) in the configured S*Model. This can include instances of Features,

Interactions, Requirements, Design Components, or any other elements of the S*Pattern. These

elements are selectively populated, as not all necessarily apply. In many cases, more than one

12

instance of a given element may be populated (e.g., four different seats in a vehicle, five

different types of safety hazard, etc.). Population of the S*Model is driven by what is found in

the S*Pattern, and what Features are selected from the S*Pattern, based on Stakeholder needs

and configuration rules of the pattern, built into that pattern.

2. Adjust Values of Attributes: The values of populated Attributes of Features, Functional

Roles/Technical Requirements, and Physical Components are established or adjusted.

This brings into sharp focus what are the fixed and variable aspects of S*Patterns (sometimes

also referred to as “hard points and soft points” of platforms). The variable data is called

“configuration data”. It is typically small in comparison to the fixed S*Pattern data. Since users

of a given S*Pattern become more familiar over time with its fixed (“hard points”) content (e.g.,

definitions, prose requirements, etc.), this larger part is typically consulted less and less by

veterans, who tend to do most of their work in the configuration data (soft points). That data is

usually dominated by tables of attribute values, containing the key variables of a configuration.

Since this is smaller than the fixed part of the pattern, in effect the users of the pattern

experience a “data compression” benefit that can be very significant, allowing them to

concentrate on what is or may be changing. (Schindel 2011).

Just as feature attributes parameterize stakeholder values, functional role attributes

parameterize technical behavior. The coupling of these attributes shown in Figures 5 and 7

provides a model based approach to coupling the first principles of engineering and science

with stakeholder value. It is through this coupling that Pattern Based Systems Engineering

explicates system value through first principles.

The Agile System Life Cycle Pattern: INCOSE is currently executing the 2015-16 Agile

Systems Engineering Life Cycle Model (ASELCM) Projectiv. Working across a series of North

American and European enterprises and industries, this discovery project is articulating and

validating the ASELCM Pattern mentioned in this paper, in the form of a formal S*Pattern.

The ASELCM Pattern explicates the points summarized in this paper, including:

1. The deeper re-integration of DA and SE, with the decisions shared between “internal”

decision-makers and agile-measured “external” stakeholder representatives, whose

selection behaviors are studied as a faster and surer path to good decisions.

2. The use of explicit MBSE Models to express life cycle system requirements, design,

generated from MBSE Patterns by configuration and reconfiguration, as the

environment changes in non-deterministic ways, and as a point of accumulation of

learning.

Conclusions

System complexity and interconnectedness continue to rapidly increase, making systems

development extremely challenging. Additionally, the context in which developed systems

operate is continually changing, altering the fitness and value delivered systems provide. The

Systems Engineering discipline has made many great improvements through process definition

and integration. While these improvements have enabled and structured innovation, they are

not sufficient to overcome the outlined challenges, which are likely to only increase over time.

Our traditional development activities must be revisited and enhanced to manage significant

complexity, nth order impacts, highly dynamic contexts, complicated decisions and significant

ambiguity.

13

An important aspect to an improved approach is to better integrate Decision Analysis and

Systems Engineering and to leverage “symbolic method” (to the extent that symbolic analysis

and simulation are sufficient) while also improving ability to capture stakeholder and market

judgments without undue delay (to the extent that empirical experiment is also required). This

leads us to modeling methods and the promise provided by Model Based Systems Engineering.

As a particular MBSE methodology, PBSE is particularly well suited to model complex

systems. With Interactions and Features at the core of the S*Metamodel, PBSE focuses the

engineering effort on how systems fundamentally provide value. It couples system value,

experienced by Stakeholders as Features, with the first principles of engineering and science,

expressed as Functional Interactions, making for a strengthened Systems Engineering

approach. This approach also shifts the focus from the innovation process to the information

passing through the process, which describes the system of interest, which ultimately

determines the level of value provided to stakeholders. The explicit coupling within the

modeling approach permits rapid iteration, configuration, assessment and analysis.

PBSE provides a data model and framework that is both holistic and compact. It addresses the

core system science or first principles of systems required to design complex systems by

making interactions more visible and directly relating these to how they deliver value described

by stakeholders, noted as features in the S*Metamodel. Additional benefits of the PBSE

approach include:

• Strong expression of fitness landscapes as the basis for selection, trades, improvements,

decisions, innovations, configuration, and understanding of risk and failure.

• Explication of the System Phenomenonviii as a real world-based science and math

foundation for systems engineering, amenable to systems science, connected to

historical math/science models of other engineering disciplines, and encouraging

discovery and expression

• A detailed MBSE approach to Platform Management for system families and product

lines.

• Compatibility with contemporary modeling language standards.

• Direct mapping into contemporary modeling tools, PLM information systems, and

other COTS tools and enterprise systems, increasing the value of existing information

technologies.

• Deeper support for federated data across differing information systems, for integration

with emerging open systems life cycle standard technologies.

Pattern Based Systems Engineering (PBSE) is a methodology which explicates system value

through an understanding and explicit modeling of first principles better uniting the Systems

Engineering and Decision Analysis capabilities.

14

Troy Peterson is a Booz Allen Fellow and Chief Engineer at Booz Allen

Hamilton. His experience spans commercial, government and academic

environments across all product life cycle phases. Troy is INCOSE’s AD

for SE Transformation and the co-lead of the Patterns Working Group.

Troy received his B.S. in ME from Michigan State University, his M.S. in

Technology Management from RPI, and an advanced graduate certificate in

Systems Design and Management from the MIT. He is also INCOSE CSEP,

PMI PMP and ASQ SSBB certified.

Bill Schindel is president of ICTT System Sciences. His engineering career

began in mil/aero systems with IBM Federal Systems, included faculty

service at Rose-Hulman Institute of Technology, and founding of three

systems enterprises. Bill co-led a project on Systems of Innovation in the

INCOSE System Science Working Group, co-leads the Patterns Working

Group, and is a member of the lead team of the INCOSE Agile Systems

Engineering Life Cycle Project.

15

References

i Cisco Internet of Things (IoT) Graphic

https://www.ncta.com/platform/industry-news/infographic-the-growth-of-the-internet-

of-things/

ii Christopher Alexander, “Notes on the Synthesis of Form” Harvard University Press,

Cambridge Massachusetts, 1964

iii http://cesun.mit.edu/about/purpose

iv Schindel, W., and Dove, R., “Introduction to the Agile Systems Engineering Life Cycle

MBSE Pattern”, INCOSE 2016 International Symposium (submitted).

v Walden, D., et al, ed., The Systems Engineering Handbook, Version 4, INCOSE, 2015.

vi https://acc.dau.mil/CommunityBrowser.aspx?id=638297

vii CMMI® for Development (CMMI-DEV), Version 1.3 - CMU/SEI-2010-TR-033.

November 2010.

viii Schindel, W., “Got Phenomena? Science-Based Disciplines for Emerging Systems

Challenges”, INCOSE 2016 International Symposium (submitted)

ix INCOSE SE Vision 2020 - INCOSE-TP-2004-004-02 September, 2007

x http://www.omgwiki.org/MBSE/doku.php

xi http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

xii Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid

Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press, New

York, 1977.

xiii Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Publishing Company, Reading,

MA, 1995.

xiv Robert Cloutier. Applicability of Patterns to Architecting Complex Systems: Making

Implicit Knowledge Explicit. VDM Verlag Dr. Müller. 2008.

xv Bill Schindel, Troy Peterson, “Introduction to Pattern-Based Systems Engineering (PBSE):

Leveraging MBSE Techniques”, in Proc. of INCOSE 2013 Great Lakes Regional

Conference on Systems Engineering, Tutorial, October, 2013.

 W. Schindel, “System Interactions: Making The Heart of Systems More Visible”, in Proc. of

INCOSE Great Lakes 2013 Regional Conference on Systems Engineering, October,

2013.

 Abbreviated Systematica Glossary, Ordered by Concept, V 4.2.2, ICTT System Sciences,

2013.

https://www.ncta.com/platform/industry-news/infographic-the-growth-of-the-internet-of-things/
https://www.ncta.com/platform/industry-news/infographic-the-growth-of-the-internet-of-things/
http://www.omgwiki.org/MBSE/doku.php

16

 W. Schindel, “The Impact of ‘Dark Patterns’ On Uncertainty: Enhancing Adaptability In The

Systems World”, in Proc. of INCOSE Great Lakes 2011 Regional Conference on

Systems Engineering, Dearborn, MI, 2011.

 W. Schindel, “Failure Analysis: Insights from Model-Based Systems Engineering”, in

Proceedings of INCOSE 2010 Symposium, July 2010.

 W. Schindel, “Pattern-Based Systems Engineering: An Extension of Model-Based SE”,

INCOSE IS2005 Tutorial TIES 4, (2005).

 W. Schindel, “Requirements Statements Are Transfer Functions: An Insight from

Model-Based Systems Engineering”, in Proc. of INCOSE 2005 International

Symposium, (2005).

 W. Schindel, and V. Smith, “Results of Applying a Families-of-Systems Approach to

Systems Engineering of Product Line Families”, SAE International, Technical Report

2002-01-3086 (2002).

 J. Bradley, M. Hughes, and W. Schindel, “Optimizing Delivery of Global Pharmaceutical

Packaging Solutions, Using Systems Engineering Patterns”, in Proc. of the INCOSE

2010 International Symposium (2010).

 W. Schindel, “Integrating Materials, Process & Product Portfolios: Lessons from

Pattern-Based Systems Engineering”, in Proc. of 2012 Conference of Society for the

Advancement of Material and Process Engineering, 2012.

 W. Schindel, “What Is the Smallest Model of a System?”, in Proc. of the INCOSE 2011

International Symposium, International Council on Systems Engineering (2011).

 W. Schindel, “Pattern Based System Engineering Methodology” MBSE Initiative,

Methodology Summary for INCOSE June 2015.

xvi R.L. Keeney. Value-Focused Thinking — A Path to Creative Decision Making. Harvard

University Press, Cambridge, MA, 1992.Biography

