
Introduction to Pattern-Based Systems Engineering

(PBSE): Leveraging MBSE Techniques

Bill Schindel
schindel@ictt.com

1.5.3
1.7.4

Troy Peterson
tpeterson@systemxi.com

INCOSE Great Lakes Regional Conference 2016
Copyright © 2016 by Bill Schindel and Troy Peterson

Published and used by INCOSE with permission

Abstract

 page 2

Å This tutorial is a (half day) practitionerôs introduction to Pattern-Based Systems

Engineering (PBSE), including a specific system domain illustration. (For those

seeking a shorter awareness briefing on PBSE, a single-session overview is also

provided during the conference technical sessions.)

Å INCOSE thought leaders have discussed the need to address 10:1 more complex

systems with 10:1 reduction in effort, using people from a 10:1 larger community

than the ñsystems expertò group INCOSE currently reaches. The INCOSE Patterns

Working Group describes PBSE to enable INCOSE membership, and the larger

systems community beyond INCOSE, to achieve such order-of-magnitude

improvements.

Å PBSE leverages the power of Model-Based Systems Engineering (MBSE) to rapidly

deliver benefits to a larger community. Projects using PBSE get a ñlearning curve

jumpstartò from an existing Pattern, gaining the advantages of its content, and

improve that pattern with what they learn, for future users.

Å The major aspects of PBSE have been defined and practiced some years across a

number of enterprises and domains, but with limited INCOSE community

awareness. Addressing this, the INCOSE PBSE Challenge Team was started in

2013 as a part of the INCOSE/OMG MBSE Initiative, and it later became the

INCOSE Patterns Working Group.

Å This tutorial is for SE practitioners.

 ContentsðSummary

ÅThe need, call-to-arms, and vision

ÅConceptual summary of PBSE

ÅPBSE applications to date

ÅRepresenting system patterns: An example

ÅApplying system patterns: Example uses and benefits

ÅChallenges and opportunities

ÅConclusions

ÅReferences

 page 3

 ContentsðDetail & Timeline

Å The need, call-to-arms, and vision

Å Conceptual summary of PBSE

Å PBSE applications to date

Å Representing system patterns: An example

ï S*Metamodel framework

ï A Vehicle Pattern in SysML

ï A practice exercise

Coffee Break

Å Applying system patterns: Examples of uses and benefits

1. Stakeholder Features and Scenarios: Better stakeholders alignment sooner

2. Pattern Configuration: Generating better requirements faster

3. Selecting Solutions: More informed trades

4. Design for Change: Analyzing and improving platform resiliency

5. Risk Analysis: Pattern-enabled FMEAs

6. Verification: Generating better tests and reviews faster

Å Challenges and opportunities:

ï Human nature & organizations

ï Approaches to my situation

ï Exercise and discussion

Å Conclusions

Å References page 4

1:00 ï 2:30

3:00 ï 4:30

PBSE Addresses Speed, Leverage, Knowledge

ïINCOSE thought leaders have discussed

the growing need to address 10:1 more

complex systems with 1:10 reduction in

time and effort, using people from a 10:1

larger community than the ñsystems

expertò group

ïMany other SE efforts (other than

leveraging system patterns) are in some

way concerned with growing in complexity,

but donôt offer evidence of the sweeping

order-of-magnitude improvements

demanded by this call-to-arms.

ïPBSE is a methodical way to achieve this

order-of-magnitude improvement

1986 ~14 yrs.

1952 ~44 yrs.

1905 ~83 yrs.

Rates of system proliferation
decreased by 4:1 over 50 years

Source:
Microsoft,

published in the
INCOSE SE
Handbook

 page 5

Pattern-Based Systems Engineering (PBSE)

ÅWhat are System Patterns?

ÅWhat are System Patterns for?

 page 6

Pattern-Based Systems Engineering (PBSE)

ÅStandard Parts have been a great aid to progress:

ÅThe same part type can be used to make many things!

 page 7

Quick Exercise: Can you recognize this system?

 page 8

Using different views helps improve recognition:

Does rotating the parts improve recognition?

 page 9

Showing parts in relationship helps recognition

 page 10

Can we identify a system from its parts alone?

 page 11

Obviously not in many casesðand in all cases, the

parts list alone lacks critical information . . .

Any systems engineer will tell you . . .

 page 12

ÅWe need to know the relationships between the parts to

understand what the ñsystemò they create.

Physical Architecture

we are interested in much more than Physical Architecture:

 page 13

But . . .

Å Stakeholders

Å Requirements

Å Design

Å Interfaces

Å Modes

Å Performance

Å Failure Modes & Effects

Å Verification Plans

Å Alternatives

Å Configurability

Å Manufacturability

Å Maintainability

Å Operability

Å Reliability

Å Risks

Å etc., etc., etc.

we can still think of all these as kinds of ñpartsòðnot just

physical parts of a system, but parts of a system model:

Å Stakeholders

Å Requirements

Å Design

Å Interfaces

Å Modes

Å Performance

Å Failure Modes & Effects

Å Verification Plans

 page 14

And, in an ñinformation senseò, . . .

Å Alternatives

Å Configurability

Å Manufacturability

Å Maintainability

Å Operability

Å Reliability

Å Risks

Å etc., etc., etc.

the relationships between these information components is

just as important as the lists of them, taken alone:

Å Stakeholders

Å Requirements

Å Design

Å Interfaces

Å Modes

Å Performance

Å Failure Modes & Effects

Å Verification Plans

 page 15

And, once again, it turns out that . . .

Å Alternatives

Å Configurability

Å Manufacturability

Å Maintainability

Å Operability

Å Reliability

Å Risks

Å etc., etc., etc.

Information Architecture Physical Architecture

??

the relationships between these information components is

just as important as the lists of them, taken alone:

Å Stakeholders

Å Requirements

Å Design

Å Interfaces

Å Modes

Å Performance

Å Failure Modes & Effects

Å Verification Plans

 page 16

And, once again, it turns out that . . .

Å Alternatives

Å Configurability

Å Manufacturability

Å Maintainability

Å Operability

Å Reliability

Å Risks

Å etc., etc., etc.

Information Architecture Physical Architecture

??

Taking advantage of Model-Based Systems Engineering (MBSE)

ïAn S* Model is a description of all those important things, and the relationships

between them.

ïTypically expressed in the ñviewsò of some modeling language (e.g., SysMLÊ).

ïThe S* Metamodel: The smallest set of information sufficient to describe a system

for systems engineering purposes.

ïIncludes not only the physical Platform information, but all the extended system

information (e.g., requirements, risk analysis, design trade-offs & alternatives,

decision processes, etc.):

 page 17

Extending the Concept to Patterns, and

Pattern-Based Systems Engineering (PBSE)

ïAn S* Pattern is a configurable, re-usable S* Model. It is an extension of the idea

of a Platform (which is a configurable, re-usable design) or Enterprise / Industry

Framework.

ïThe Pattern includes not only the physical Platform information, but all the

extended system information (e.g., pattern configuration rules, requirements, risk

analysis, design trade-offs & alternatives, decision processes, etc.):

 page 18

General Vehicle Pattern

Vehicle Product Lines

Specific Vehicle Configurations
Same S*Metamodel at each level

General Vehicle Pattern

Vehicle Product Lines

Specific Vehicle Configurations
Same S*Metamodel at each level

Concept Summary:

Pattern-Based Systems Engineering (PBSE)

ïBy including the appropriate S* Metamodel concepts, these can readily be managed in

(SysML or other) preferred modeling languages and MBSE toolsðthe ideas involved here

are not specific to a modeling language or specific tool.

ïThe order-of-magnitude changes have been realized because projects that use PBSE rapidly

start from an existing Pattern, gaining the advantages of its content, and feed the pattern

with what they learn, for future users.

ïThe ñgame changerò here is the shift from ñlearning to modelò to ñlearning the modelò, freeing

many people to rapidly configure, specialize, and apply patterns to deliver value in their

model-based projects.

 page 19

Concept Summary:

Pattern-Based Systems Engineering (PBSE)

ÅPBSE provides a specific technical method for implementing:

ïPlatform Management and Product Line Engineering (PLE)

ïEnterprise or Industry Frameworks

ïSystem Standards

ïExperience Accumulation for Systems of Innovation

ïLean Product Development & IP Asset Re-use

 page 20

Comparative Benefits and Costs Summary

 page 21

COMPARATIVE ROI

QUALITATIVE ANALYSIS

Traditional SE

Benefits to Users of

System Descriptions

(Recurring Benefit

Per Project)

Models Improve Understanding

Within Projects

Patterns Continuously Improve Understanding and

Content Across Projects and Enterprise

Investment

Per Project

(Recurring Cost

Per Project)

Model Creators Must
Create and Validate Model (possibly also learning to model)

Model Creators Need Only

Configure Model from Pattern

Methodology Governance Must Accommodate Modeling Rules Pattern Creators Must Manage IP Portfolio Asset

Cost to Support

Methodology

(Small group per Enterprise,

not Project Recurring)

Model-Based SE
(MBSE)

Pattern-Based SE
(PBSE/ MBSE)

ROI: Ratio of

Benefits (below) to

Investment (below)

(Recurring ROI

Per Project)

ά[ŜŀǊƴ to aƻŘŜƭέ ά[ŜŀǊƴ the aƻŘŜƭέ

(10X Scale)

(1X Scale)

R
at

io

R
at

io

R
at

io

Status of PBSE

ïThe major aspects of PBSE have been defined and practiced for years across a number of

enterprises and domains, but with limited integration or awareness within INCOSE community:

ïWhat makes these ñPBSEò applications?

ÅEach is based on an MBSE model of requirements, and often designs, failure modes,

other aspects;

ÅEach is a generalized model (pattern) that is configurable to different specific applications,

market segments, customers, or situations;

ÅEach is based on the underlying S*Metamodel.

ïThe PBSE Tutorial is more about integration of proven methods and INCOSE community

awareness and capability than about technically establishing a new methodðalthough it may

look new to INCOSE practitioners.

ïWe recognize that the human change aspect can be the most challenging ï but are not

suggesting that we also have to create new technical methods. We are introducing PBSE to a

larger community.

Medical Device Patterns Construction Equipment Patterns Commercial Vehicle

Patterns

Space Tourism Pattern

Manufacturing Process

Patterns

Vision System Patterns Packaging System Patterns Lawnmower Pattern

Embedded Intelligence

Patterns

Systems of Innovation (SOI)

Pattern

Baby Product Pattern Orbital Satellite Pattern

Development Process

Patterns

Production Material Handling

Patterns

Engine Controls Patterns Military Radio Systems

Pattern

Representing system patterns: An example

ÅS*Metamodel framework

ÅA Vehicle Pattern in SysML

ÅAn Exercise

 page 23

Representing System Patterns:

The S* Metamodel Framework

ÅWhat is the smallest amount of information we need to

represent pattern regularities?

ïSome people have used prose to describe system regularities.

ïThis is better than nothing, but usually not enough to deal with the

spectrum of issues in complex systems.

ÅWe use S* Models, which are the minimum model-based

information necessary:

ïThis is not a matter of modeling languageðyour current favorite

language and tools can readily be used for S* Models.

ïThe minimum underlying information classes are summarized in the

S* Metamodel, for use in any modeling language.

ÅThe resulting system model is made configurable and

reusable, thereby becoming an S* Pattern.

 page 24

Representing System Patterns:

The S* Metamodel Framework

ÅA metamodel is a model of other models;

ïSets forth how we will represent Requirements, Designs, Verification,

Failure Analysis, Trade-offs, etc.;

ïWe utilize the (language independent) S* Metamodel from

SystematicaÊ Methodology:

 page 25

Simple summary of detailed S* Metamodel.

Å The resulting system models may

be expressed in SysMLÊ, other

languages, DB tables, etc.

Å Has been applied to systems

engineering in aerospace,

transportation, medical, advanced

manufacturing, communication,

construction, other domains.

Definitions of some S* Metamodel Classes

Å System: A collection of interacting components. Example: Vehicle; Vehicle Domain

System.

Å Stakeholder: A person or other entity with something at stake in the life cycle of a

system. Example: Vehicle Operator; Vehicle Owner; Pedestrian

Å Feature: A behavior of a system that carries stakeholder value. Example: Automatic

Braking System Feature; Passenger Comfort Feature Group

Å Functional Interaction (Interaction): An exchange of energy, force, mass, or

information by two entities, in which one changes the state of the other. Example:

Refuel Vehicle; Travel Over Terrain

Å Functional Role (Role): The behavior performed by one of the interacting entities

during an Interaction. Example: Vehicle Operator; Vehicle Passenger Environment

Subsystem

Å Input-Output: That which is exchanged during an interaction (generally associated

with energy, force, mass, or information). Example: Fuel, Propulsion Force, Exhaust

Gas

 page 26

Ambulance

General

Vehicle

Definitions of some S* Metamodel Classes

Å System of Access: A system which provides the means for physical interaction

between two interacting entities. Examples: Fueling Nozzle-Receptacle; Grease Gun

Fitting; Steering Wheel; Dashboard; Brake Peddle

Å Interface: The association of a System (which ñhasò the interface), one or more

Interactions (which describe behavior at the interface), the Input-Outputs (which pass

through the interface), and a System of Access (which provides the means of the

interaction). Examples: Operator Interface; GPS Interface

Å State: A mode, situation, or condition that describes a Systemôs condition at some

moment or period of time. Example: Starting; Cruising; Performing Maneuvers

Å Design Component: A physical entity that has identity, whose behavior is described

by Functional Role(s) allocated to it. Examples: Garmin Model 332 GPS Receiver;

Michelin Model 155 Tire

Å Requirement Statement: A (usually prose) description of the behavior expected of (at

least part of) a Functional Role. Example: ñThe System will accept inflow of fuel at up to

10 gallons per minute without overflow or spillage.ò

 page 27

Physical Interactions: At the heart of S* models

ÅS* models represent Interactions as explicit objects:

ïGoes to the heart of 300 years of natural science of systems as a

foundation for engineering, including emergence.

ïAll physical laws of science are about interactions in some way.

ïAll functional requirements are revealed as external interactions (!)

 page 28

ÅOther Metamodel parts: See the Vehicle Pattern example.

Physical Interactions: At the heart of S* models

ÅS* models represent Physical Interactions as explicit objects:

 page 29

Aspirate: The interaction of the vehicle

with the Local Atmosphere, through which

air is taken into the vehicle for operational

purposes, and gaseous emissions are

expelled into the atmosphere.
Interaction Diagram

Vehicle Pattern Interactions

Metamodel

Pattern-based systems engineering (PBSE)

ÅModel-based Patterns:

ï In this approach, Patterns are reusable, configurable S* models of

families (product lines, sets, ensembles) of systems.

ïA Pattern is not just the physical product familyðit includes its behavior,

decomposition structure, failure modes, and other aspects of its model.

ÅThese Patterns are ready to be configured to serve as Models

of individual systems in projects.

ÅConfigured here is specifically limited to mean that:

ïPattern model components are populated / de-populated, and

ïPattern model attribute (parameter) values are set

ïboth based on Configuration Rules that are part of the Pattern.

ÅPatterns based on the same Metamodel as ñordinaryò Models

 page 30

Pattern-based systems engineering (PBSE)

Å Pattern-Based Systems Engineering (PBSE) has two overall processes:

ï Pattern Management Process: Creates the general pattern, and

periodically updates it based on application project discovery and learning;

ï Pattern Configuration Process: Configures the pattern into a specific

model configuration (e.g., a new product) for application in a project.

 page 31 Weôll discuss examples from both processes in this tutorial.

Pattern configurations

Å A table of configurations illustrates how patterns facilitate compression;

Å Each column in the table is a compressed system representation with respect to

(ñmoduloò) the pattern;

Å The compression is typically very large;

Å The compression ratio tells us how much of the pattern is variable and how

much fixed, across the family of potential configurations.

 page 32

Checking holistic alignment to a pattern

ÅGestalt Rules express what is meant by holistic

conformance to a pattern:

ïExpressing regularities of whole things, versus same ñpartsò

 page 33

Governing pattern

Candidate model
configuration ñdoes it
conform to pattern?

The Gestalt Rules

1. Every component class in the candidate model must be a subclass of a

parent superclass in the patternðno ñorphan classesò.

2. Every relationship between component classes must be a subclass of a

parent relationship in the pattern, and which must relate parent superclasses

of those same component classesðno ñorphan relationshipsò.

3. Refining the pattern superclasses and their relationships is a permissible

way to achieve conformance to (1) and (2).

Governing pattern

Candidate model
configuration ñdoes it
conform to pattern?

Example: State Model Pattern ñillustrates how visual is the òclass
splittingó and òrelationship rubber bandingó of the Gestalt Rules

 page 35

 page 36

A vehicle pattern in SysML

 page 37

Vehicle Pattern:

Model Organization (Packages)

 page 38

Vehicle Features

Model

 page 39

Vehicle Features

Model

The feature of targeted configurations of

the vehicle being developed at an

acceptable cost in an acceptable time,

with acceptable risk.
The feature of being capable of being

efficiently arranged or rearranged,

adjusted or altered for a different use

within the limitations of the current design.

This includes support for maintaining

awareness of the current or other

configurations of the system.

 page 40

Vehicle Domain Model

 page 41

Vehicle State Model

Vehicle Interaction Model

 page 42

pkg Interactions

«Interaction»

Account for

System

«Interaction»

Aspirate

«Interaction»

Attack Hostile

System

«Interaction»

Avoid Obstacle

«Interaction»

Configure Vehicle

«Interaction»

Deliver Vehicle

«Interaction»

Interact with

Higher Control

«Interaction»

Interact with

Nearby Vehicle

«Interaction»

Interact with

Operator

«Interaction»

Maintain System

«Interaction»

Manage Vehicle

Performance

«Interaction»

Navigate

«Interaction»

Perform

Application

«Interaction»

Perform Dock

Approach &

Departure

«Interaction»

Refuel Vehicle

«Interaction»

Ride in Vehicle

«Interaction»

Secure Vehicle

«Interaction»

Survive Attack

«Interaction»

Transport Vehicle

«Interaction»

Travel Over

Terrain

«Interaction»

View Vehicle

Vehicle Interactions:

Which Actors Participate in Interaction?

 page 43

Vehicle Feature-Interaction Associations

 page 44

Logical Architecture Model

 page 45

Logical Architecture Model

 page 46

The vehicle logical subsystem responsible for

transmitting forces and maintaining structural

integrity of the overall vehicle. This includes

smoothing of dynamical forces during travel

across uneven terrain.

The vehicle logical subsystem responsible for

storing chemical, electrical, or mechanical

energy until needed, and converting that energy

into forms useful for propulsion or internal

consumption.

The vehicle logical subsystem responsible for

managing vehicle-level performance,

configuration, faults, security, or accounting.

This includes interaction with external

management systems, including the vehicle

operator.

Physical Architecture Model

 page 47

Allocation of Logical Roles to Physical Architecture

 page 48

Allocation of Logical Roles to Physical Architecture

Å Same Logical Architecture covers many Physical Architectures:

 page 49

Attribute Coupling Model

 page 50

Logical Architecture Views
Block Diagram and Design Structure Matrix (DSM)

ÅThe structure shown in these architectural diagrams can

also be expressed in matrix form

ïThese matrices are known as: N2 matrices, Adjacency Matrices

and Design or Dependency Structure Matrices (DSMs)

ïN2 because their column and row headings are identical, with the

matrix cells showing ñmarksò indicating relationships between

components.

 page 51

Logical Arch. DSM

 Diagram .

Logical Architecture Views
Block Diagram and Design Structure Matrix (DSM)

Å In the case of Logical Architecture:

ïThe blocks in the LA diagram become rows and columns of the DSM

ïThe connection lines in the LA diagram become marks in the DSM

ÅBoth views are visualizations of the same information:

ïHowever the functionality has been partitioned into interacting

subsets ï Vehicle Functional Roles and Interfaces in this case.

 page 52

Logical Arch. DSM

 Diagram .

Physical Architecture Views
Block Diagram and Design Structure Matrix (DSM)

Å In the case of Physical Architecture:
ï The blocks in the LA diagram become rows and columns of the DSM

ï The connection lines in the LA diagram become subsystems or components in

the DSM shown in rows and columns

ÅBoth views provide visualizations of hierarchy
ï How the physical system has been partitioned into physical sub-systems that are

physically related (connected, contained, adjacent, etc.)

ï The DSM additionally shows the interactions of subsystems

 page 53

 Physical Arch. DSM

Diagram .

Domain Structure Matrix (DSM) View of Same

Å In the case of Coupled Parameters (attributes):

ïAttributes become row and column headings in the DSM

ïThis includes adding rows and columns to the Logical Architecture

DSM, showing attributes of the Logical Subsystems

ïConnection lines in the drawing become marked cells in the DSM

ÅBoth views convey the same information:

ïWhich attributes are coupled (impact each othersô values)

Å

Å

Å

Å

 page 54

Parametric DSM

Diagram .

Domain Structure Matrix (DSM) View of Same

Å Instead of just showing which attributes are coupled, the DSM (like the

Parametric Diagram) can also symbolize the named Coupling that connects

them:

ï This provides a reference to a (separately documented) quantitative coupling

description.

Å The names of the couplings can be introduced as row and column

headings, separate from the rows and columns that list the attribute names:

ï This becomes a Multi-Domain Matrix (MDM):

 page 55

Parametric DSM

Diagram .

Requirement Statements

 page 56

Failure Modes Model

 page 57

<Insert Failure Modes Model from Vehicle

SysML Pattern before 9/20>

Physical Entity Failure Mode

Vehicle ECM Dead ECM

Vehicle ECM Network Connector Open

Vehicle ECM Network Connector Short

Vehicle ECM Erratic ECM

Battery Discharged Battery

Battery Battery Cell Short

Battery Battery Cell Open

Battery Battery Leak

Panel Display Fractured Display

Panel Display Illuminator Fail

Bluetooth Module Module Hard Fail

Bluetooth Module Transmitter Fail

Bluetooth Module Receiver Fail

Filling in the Feature Population Formð

with Stakeholder Needs

 page 58

Resulting Auto-Populated Requirements

 page 59

Break out: Practice exercise

ÅFor the Vehicle Pattern:

ïThink of some Vehicle Application

ïFill in the Feature Configuration Form for your application

ïDid you need any new Features not in the Vehicle Pattern?

ÅFor your own Pattern: Interactions

ïThink of a new Interaction between the Vehicle and some Actor

(you can add a new Actor)

ïCreate an Interaction Diagram

ïWrite requirements on the Vehicle for this Interaction

ÅGroup Discussion of Exercise

 page 60

Applying system patterns

Å Example Uses and Benefits:

1. Stakeholder Features and Scenarios: Better stakeholder alignment

sooner

2. Pattern Configuration: Generating better requirements faster

3. Selecting Solutions: More informed trade-offs

4. Design for Change: Analyzing and improving platform resiliency

5. Risk Analysis: Pattern-enabled FMEAs

6. Verification: Generating better tests faster

Å At the end: What seems most important?

 page 61

1. Stakeholder Features and Scenarios:

Better stakeholders alignment sooner

ÅAlignment with stakeholders is critical to program success.

ÅThat alignment can be achieved earlier and maintained

stronger using:

ïStakeholder Feature Pattern: Aligns understanding of system

capabilities (base as well as options) and the nature of their value to

stakeholders

ïScenario Pattern: Aligns understanding of the concepts of operations,

support, manufacture, distribution, other life cycle situations; accelerates

alignment of system documentation, training, and communication.

ÅBoth of these are ñpattern configurationsò directly generated

from the System Patternðnot separate and unsynchronized

information.

 page 62

1. Using the Feature Pattern to Rapidly Capture &

Validate Stakeholder Requirements: An Example

Å Concept: The Feature Pattern is a powerful tool for establishing Stakeholder

Requirementsðas a ñconfigurationò of Feature Pattern.

Å By ñconfigurationò, we mean that individual Features from the Pattern are

(1) either populated or de-populated, and (2) their Feature Attributes

(parameters) are given values:

Å These can be expressed (1) as configured Feature objects and their attribute

values or (2) as sentence-type statements if desired, but in any case the

degrees of freedom (stakeholder choices) are brought into clear focus.

 page 63

Using the Feature Pattern to Rapidly Capture &

Validate Stakeholder Requirements: An Example

 page 64

Stakeholder

Requirements

Document

Stakeholder

Interview

Process

Feature Pattern

Stakeholder

Interview

Template

Populates the

questions & issues
Generates

1. Using the Feature Pattern to Rapidly Capture &

Validate Stakeholder Requirements: An Example

 page 65

1. Using the Feature Pattern to Rapidly Capture &

Validate Stakeholder Requirements: An Example

 page 66

1. Using the Feature Pattern to Rapidly Capture

& Validate Stakeholder Requirements

 page 67

Å Benefits:

ïA more complete set of stakeholder requirementsðreduce omissions;

ïStronger alignment with stakeholders, soonerðsurface issues earlier;

ïPattern identifies classes of stakeholders that might have been missed;

ïPattern makes very clear the difference between Stakeholder

Requirements versus Design Constraints or Technical Requirements;

ïThe Pattern provides a clear place to accumulate new learning (e.g.,

additional Features);

ïSets up subsequent uses of Feature Pattern in support of Trade Space,

Risk Management, FMEA ñeffectsò, and other applications.

Å No free lunch:

ï Interviewer needs to be knowledgeable about the Features;

ïStakeholders wonôt have all the answersðfind the right representative;

ïStakeholder representatives need know they are formal representatives;

ïThe Feature Pattern needs to be relatively complete.

How do I know whether I have all the Features?

ÅThis is why we use a Pattern!

ïMoves problem to the builder of the original pattern, plus maintainer.

ÅRelated key points for the builder of the Feature Pattern:
ï First, identify all the Stakeholder classes

ï Then, all the Features for each Stakeholder class

ï Validate the Features with their Stakeholder Representatives

ï Then, make sure all the Interactions are reviewed for associated Feature value

ï There are well-known abstract Feature classes (e.g., Maintainability)

ÅEvery time we discover another Feature, we add it to the

Pattern; for example:
ï Every argument / decision should invoke trade space Features as its ultimate

rationale ï a new one might appear during an argument.

ï Every impactful Failure Mode should cause Feature impacting Effects ï a new

one might appear while discussing a Failure Mode.

 page 68

1. Using the Interactions & States Pattern to Rapidly

Generate & Validate Scenarios: An Example

ÅConcept: Scenarios can be efficiently generated, as single

thread tracings through the configured pattern State Model;

ÅEach scenario ñtells a storyò within the systemôs life cycleð

operations, maintenance, or other CONOPS type view;

ÅEarly in life cycle: Stakeholders validate (or give feedback)

scenario;

ÅLater in life cycle: Generates base data for training and

documentation, as well as test plans;

ÅAkin to typical Use Case process, but easier maintained

ongoing as a part of the configured pattern;

ÅReference: Operational Views (OV)

 page 69

1. Using the Interactions & States Pattern to Rapidly

Generate & Validate Scenarios: An Example

 page 70

Scenario

Validation

Process

Populates States,

Interactions
Generates

Interaction Name Definition

V
e
h
ic

le

O
p
e
ra

to
r

P
a
s
s
e
n
g

e
r

V
e
h
ic

le
 O

c
c
u
p
a
n
t

N
e
a
rb

y
P

e
d
e
s
tr

ia
n

E
xt

e
rn

a
l

O
b
s
e
rv

e
r

M
a
in

ta
in

e
r

M
a
in

te
n
a
n
c
e

S

ys
te

m

L
o
c
a
l

A
tm

o
s
p
h
e
re

R
e
fu

e
l

S
ys

te
m

H
o
s
ti
le

 S
ys

te
m

E
xt

e
rn

a
l

A
tt
a
c
h
m

e
n
t

L
o
a
d

A
p
p
li
c
a
ti
o
n

S

ys
te

m

T
ra

ff
ic

 C
o
n
tr

o
l

S
ys

te
m

N
e
a
rb

y
V

e
h
ic

le

V
e
h
ic

le
 T

ra
n
s
p
o
rt

S
ys

te
m

C
u
rb

 &
 D

o
c
k

S
ys

te
m

L
o
c
a
l

T
e
rr

a
in

G
lo

b
a
l

R
e
g

io
n

R
e
m

o
te

M

a
n
a
g

e
m

e
n
t

S
ys

te
m

Travel Over Terrain The interaction of the vehicle with the terrain over which it travels, by means

of which the vehicle moves over the terrain.

X X

Perform Application The interaction of the vehicle with an external Application System, through

which the vehicle performs a specialized application.

X X

Avoid Obstacle The interaction of the vehicle with an external object, during which the vehicle

minimizes contact with or proximity to the object.

X X

Ride In Vehicle The interaction of the vehicle with its occupant(s) during, before, or after travel

by the vehicle.

X X X X

View Vehicle The interaction of the vehicle with an external viewer, during which the viewer

observes the vehicle.

X X

Maintain System The interaction of the vehicle with a maintainer and/or maintenance system,

through which faults in the vehicle are prevented or corrected, so that the

intended qualified operating state of the vehicle is maintained.

X X X

Aspirate The interaction of the vehicle with the Local Atmosphere, through which air is

taken into the vehicle for operational purposes, and gaseous emissions are

expelled into the atmosphere.

X X

Refuel Vehicle The interaction of the vehicle with a fueling system and its operator, through

which fuel is added to the vehicle.

X X

Survive Attack The interaction of the vehicle with an external hostile system, during which the

vehicle protects its occupants and minimizes damage to itself.

X X

Attack Hostile System The interaction of the vehicle with an external hostile system, during which the

vehicle projects an attack onto the hostile system's condition.

X X

Interact with Traffic Control The interaction of the vehicle with an external traffic control system, through

which fhe vehicle is fit into larger scale traffic objectives.

X X

Transport Vehicle The interaction of the vehicle with a Vehicle Transport System, through which

the Vehicle is transported to an intended destination.

X X

Perform Dock Approach & Departure The interaction of the vehicle with an external docking system, through which

the vehicle arrives at, aligns with, or departs from a loading / unloading dock.

X X

Secure Vehicle The interaction of the vehicle with external actors that may or may not have

privileges to access or make use of the resources of the vehicle, or with

actors managing that vehicle security.

X X

Configure Vehicle The interaction of the vehicle with people or systems that manage its

arrangement or configuration for intended use.

X X X

Manage Vehicle Performance The interaction of the vehicle with its operator and/or external management

system, through which the performance of the vehicle is managed to achieve

its operational purpose and objectives.

X X

Interactions &

States Pattern

Concept of

Operations

Document

Concept of

Operations

Document

Concept of

Operations

Document

Operational

(or other)

Scenario Model

1. Using the Interactions & States Pattern to Rapidly

Generate & Validate Scenarios: An Example

Scenario plan as state model tracing:

 page 71

1. Using the Interactions & States Pattern to Rapidly

Generate & Validate Scenarios: An Example

 page 72

Scenario plan as sequence diagram and requirements:

State Interaction Capability Actor Req ID Requirement

Operating Navigate Central Mission

Route Download

Vehicle VEH-1031 The system shall allow the operator to select a pre-stored route for travel on a mission.

Operating Navigate Trip and Mission

Route Display and

Directions

Vehicle VEH-1032 The system shall calculate and display a recommended route to an operator-specified destination from

the current location, providing turn-by-turn en route directions and progress tracking.

Operating Navigate GPS-based

Location Sensing

Vehicle VEH-1029 The system shall sense the location of the vehicle by accessing the Global Positioning System (GPS)

satellite constellation and computing location on the surface of the earth, accurate to 10 feet.

Operating Navigate Map Location

Display

Vehicle VEH-1030 The system shall display position of the vehicle on a pre-stored graphic map presentation, including major

road and geographic features, updating while enroute to reflect travel of the vehicle.

Operating Navigate GPS-based

Location Sensing

Vehicle VEH-1033 The system shall display to the vehicle operator a location confidence indicator, signaling whether

accurate GPS location sensing is currently available.

1. Using the Interactions & States Pattern to

Rapidly Generate & Validate Scenarios

 page 73

Å Benefits:

ïA more complete set of scenariosðreduces omissions;

ïEasier to generate from pattern;

ïEasier to keep consistent with configured system model as it evolves

over the delivery and life cycle;

ïValuable not only for initial validation, but also as seed information for

generation of system training, documentation, SOPs;

ïAs system requirements are configured, becomes progressively more

detailed;

ïThe Pattern provides a clear place to accumulate new learning (e.g.,

additional Scenarios);

Å No free lunch:

ïThe State and Interaction Pattern needs to be relatively complete.

2. Using Pattern Configuration to generate

better System Requirements faster: Example

ÅConcept: Configured System Requirements can be semi-

automatically generated from Configured Features, using

the System Pattern;

ÅLow dimensionality / degrees of freedom choices in Feature

stakeholder space imply higher dimensionality / degrees of

freedom choices in Requirements space:

ïThe difference is made up by relationships encoded in the Pattern.

 page 74

System Pattern

2. Using Pattern Configuration to generate better

System Requirements faster: Example

 page 75

Requirements

Configuration

Process

Populates Requirements

and Requirements Attributes
System

Requirements

System

Requirements

Document

Configured

System

Features

User Visibleñ
ot her it ems
t ypically not
user visible

User Visible

User Visible

User Visible

Feature

FPK
At t r ibut e
At t r ibut e
At t r ibut e

 Functional

Interaction

I PK

 Functional

Role

RPK
At t r ibut e
At t r ibut e

 Requirement

Statement

RSPK
At t r ibut e
At t r ibut e

Pa
tt

e
rn

C
on

fi
gu

re
d

 P
a
tt

e
rn

 (
M

od
e

l)

 Configured

Feature

FPK
At t r ibut e
At t r ibut e
At t r ibut e

 Configured

Functional

Interaction
I PK

 Configured

Functional

Role
RPK

At t r ibut e
At t r ibut e

Configured

Requirement

Statement
RSPK

At t r ibut e
At t r ibut e

Feature-Interaction Table

Feat ur e FPK I nt er act ion I PK Rule

Interaction ï Role Table

I nt er act ion Role RPK Rule

I nt er act ion Role Requir ement RSPK Rule

Interaction-Role-Requirement Table

Populat ed by
Pat t er n (Aut o)

Populat ed by
Pat t er n (Aut o)

Populat ed by
Pat t er n (Aut o)

PK Value Set by
Pat t er n (Aut o)

PK Value Set
by Pat t er n

(Aut o)

SystematicaÊ
Conf igur at ion Wor kbook
Pat t er n Conf igur at ion

V1.4.1 03-15-16

Populat ed by
Pat t er n
(Aut o)

 Design

Component

I PPK
At t r ibut e
At t r ibut e

Role Phys Comp I PPK Rule

Role-Phys Compon Table

 Configured

Design

Component
PCPK

At t r ibut e
At t r ibut e

Populat ed by
User or
Pat t er n (Aut o)

At t r ibut e
At t r ibut e

Reqõd Vals Capabilit y Vals

Values

Values

Values

Attribute

Coupling

Attribute

Coupling

Populat ed by
Pat t er n (Aut o)

Populat ed by
Pat t er n (Aut o)

Populat ed by
Pat t er n (Aut o)

ACPK

ACPK

Populat ed by
User , f r om
St akeholder
Needs

ÅThe S*Pattern links Features to Requirements:

ïThis means that populating a configuration of Features can

automatically populate a configuration of Requirements--

 page 76

2. Using the Feature Pattern to Rapidly Capture &

Validate Stakeholder Requirements: An Example

Populating / depopulating Features:

 page 77

Configuring Features: Setting Feature Attribute Values

 page 78

2. Using the Feature Pattern to Rapidly Capture &

Validate Stakeholder Requirements: An Example

ÅResulting Requirements:

 Attribute values can also be set, in line or in tables

 page 79

2. Using Pattern Configuration to generate

better System Requirements faster: Example

ÅRequirements Attribute Value Setting:

ïA part of the configuration process

ïExample: Cruise Control Speed Stability

ï In PBSE, requirements attribute value setting can be manual, semi-

automatic, or automaticðin all cases, driven by Feature Attribute

Values and Attribute Couplings:

 page 80

2. Using Pattern Configuration to generate

better System Requirements faster: Example

In general, Configuration Rules are found in the Relationships that associate

the model Classes, and also those that associate the model Attributes:

 page 81

2. Using Pattern Configuration to generate

better System Requirements faster

ÅThe scope of a System Pattern can include more

than Requirements:

ïDesign Patterns include Physical Architecture,

Requirements Decomposition, Requirements Allocations:

 page 82

 page 83

2. Using Pattern Configuration to generate better

System Requirements faster

ÅPBSE processes continuously improve the content of the

pattern, accumulating lessons for use in future projects:

3. Selecting Solutions
 More Informed Trade-offs

 page 84

Introduction:

Understanding trade-offs are an essential and critical

part of engineering systems

Trades include many formalized methodologies to

make informed decisions

Trade-offs seek to:

ï Identify practical alternatives / optimal solutions

ï Resolve conflicting objectives

ï Account for the full spectrum of stakeholder needs

to ensure a balanced system solution

ï Methods incorporate identifying/defining

stakeholders, requirements, values, attributes,

metrics, costs, governing equations, interactions

etc.

1

2

3

1. Bullets from MIT, ESD.77 MDO Course, Oli deWeck

2. SEARI Ref: http://seari.mit.edu/short_courses.php#value

3. Defense Acquisition University SE Handbook Trades Studies process

