

Custom Integration Framework for MBSE and CAE using Open Standards

Aditya Shah John Deere

Aditya Shah Senior Engineer Advanced Modeling & Simulation Group

- 8 years with John Deere
- Focused on intersection of Simulation & Systems Engineering
 - Front line experience conducting physical systems modeling for construction equipment design
 - Graduate research in model based systems engineering

Key Takeaways

- Integration challenges will continue to increase within CAE and MBSE
- It is advantageous for users and vendors both to embrace deeper API access and develop (common) neutral data models
- Interest in collaboration
 - NAFEMS-INCOSE Systems Modeling and Simulation WG (SMSWG)?
 - <u>https://www.nafems.org/about/technical-working-groups/systems_modeling/</u>

Agenda

- Introduction: Need for integration in CAE and MBSE
- Problem: Traditional integration methods not practical
- Proposed: Custom workflows using APIs, OSLC and neutral data models
- Summary

Similar trends in CAE and MBSE

CAE and MBSE Initiatives

[2] https://www.nafems.org/about/regional/americas/events/2020vision/

Systems Engineering Vision 2025

Leveraging Technology for Systems Engineering Tools

ROM	From
urrent systems egree, and mak	tools have limited integration with other
mited integration	engineering tools

то

The systems engineering tools of 2025 will facilitate systems engineering practices as part of a fully integrated engineering environment. Systems engineering tools will support high fidelity simulation, immersive

technolo and reas benefit f with rela agemen environr tools.

[3] https://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf

Number of tools and workflows will explode

- More compute
- New CAE technologies
- New applications

- FEA + CFD
 - FEA + 1D Systems + MBD + ...
 - 1D Systems + Requirements
 - 1D Systems + System of System
 + ADAS + Software +...

Multiphysics

nafems.org/caase18

Process

automation

Number of tools and workflows will explode

More compute
New CAE technologies
New applications

nafems.org/caase18

CFD

MBD

• • •

FEA

0D / 1D

Systems

Traditional integration methods not practical

- Challenging for both users
 and vendors
- Integration workflows
 evolve over time
 - More tools to support
 - Different elements to connect
- Who maintains the integrations?

Alternative approach: Custom workflows using OSLC and neutral data models

Example workflow Integrating requirements with systems simulation Proof of concept

"The mass of 317G Compact Track Loader shall be less than 5000 kg"

XML representation of database

Benefits of this approach for Users and Vendors

- Increased flexibility
 - Users can define multiple workflows depending on need
 - Data from different sources can be mixed as needed
 - Vendors can shift focus away from specific integration workflows
- More emphasis on user experience

- Simulation and model use will increase (democratization)

- Easier to compete on specific application performance

Challenges

- Developing data model
 - Interface management is part of Systems Engineering
 - Who does this? Can it be common?
- Tool vendors
 - API access, OSLC connectivity
 - Reluctance to change based on historic business model
- Users
 - Technical competencies required
 - Cultural change necessary; internally and externally with vendors

In spite of these challenges, why is now the right time for this? FMI for co-simulation

- FMI is supported by over 108 tools
 - Used by automotive and non-automotive organizations throughout Europe, Asia and North America.

Functional Mock-up Interface (FMI) - Motivation (1)

Problems / Needs

- Component development by supplier
- Integration by OEM 7
- Many different simulation tools

Solution

- Reuse of supplier models by OEM:
 - DLL (model import) and/or
 - Tool coupling (co-simulation)
 - Protection of model IP of supplier

Added Value

- Early validation of design
- Increased process 7 efficiency and quality

modelisa

slide from Nick Suyam, Daimler (adapted)

Modelica 2011: Functional Mockup Interface

[4] https://trac.fmi-standard.org/export/700/branches/public/docs/Modelica2011/The Functional Mockup Interface.pdf

Slide 2

supplier5

OEM

Favorable trends in broader software community

• Rise of open source software

Linked Data for MBSE GitHub project [6] https://github.com/ld4mbse

oslc-adapter-magicdraw-sysml

Java-based Implementation of OSLC MagicDraw SysML Adapter

Java 😵 2 Updated on Apr 3

lyo.core

Forked from eclipse/lyo.core Lyo project repository (lyo.core)

🔵 Java 🛛 😵 6 🛛 Updated on Jan 19

oslc-adapter-simulink

Java-based Implementation of OSLC Simulink Adapter

Java ¥4 Updated on Nov 8, 2017

oslc4j

OSLC4J library of Eclipse Lyo for Java-based implementation of OSLC adapters

🛑 HTML 🚖 1 🛛 😵 3 Updated on Nov 8, 2017

16

magicdrawsysml2rdf

Favorable trends in broader software community

- Neutral data models are already in use on the web
 - Known as semantic web technologies
 - Web for Humans and Machines [7]

Favorable trends in broader software community

- Rise of specialized cloud software, focused on user experience and specific needs [8]
 - Enabled by providing full API access
 - New business models are possible
- Industry support for OSLC [9]
 OSLC (Open Services for Lifecycle Collaboration)

[10] http://oslc.co/about/#supporters

Summary

- Favorable conditions for success of custom workflows using OSLC and neutral data models:
 - Interest from community (e.g. ST4SE at INCOSE IW 2018 [11])
 - Technologies are maturing (data models, OSLC, etc.)
 - User expectations (democratization)
 - Business environment (tool vendors and users work together)
- How best to continue this discussion externally?
 - NAFEMS-INCOSE Systems Modeling and Simulation WG (SMSWG) https://www.nafems.org/about/technical-working-groups/systems_modeling/

- 1. V-model: Designing for Transportation Management and Operations: A Primer (<u>https://ops.fhwa.dot.gov/publications/fhwahop13013/ch2.htm#s25</u>)
- 2. NAFEMS Simulation 20/20: <u>https://www.nafems.org/about/regional/americas/events/2020vision</u>
- 3. INCOSE SE Vision 2025: <u>https://www.incose.org/docs/default-source/aboutse/se-vision-2025.pdf</u>
- 4. Functional Mock-up Interface Motivation: <u>https://trac.fmi-</u> <u>standard.org/export/700/branches/public/docs/Modelica2011/The_Functional_Mockup_Interface.pdf</u>
- 5. Open source software: <u>http://subversion.apache.org/</u>, <u>https://www.python.org/</u>, <u>https://github.com/</u>, <u>https://jenkins.io/</u>, <u>https://www.w3.org/standards/semanticweb/</u>, <u>https://www.w3.org/RDF/</u>
- 6. Linked Data for MBSE: <u>https://github.com/ld4mbse</u>
- 7. Guha, Ramanathan V.; Light at the End of the Tunnel (shema.org): <u>http://videolectures.net/iswc2013_guha_tunnel/</u>, <u>http://videolectures.net/site/normal_dl/tag=817824/iswc2013_guha_tunnel_01.pdf</u>
- 8. Thompson, Ben; Mulesoft IPO, Okta S-1, Cohort Analysis in S-1s (<u>https://stratechery.com/2017/mulesoft-ipo-okta-s-1-cohort-analysis-in-s-1s/</u>)
- Reichwein, Axel; OSLC Overview: <u>http://portals.omg.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_iw_2018:overview_of_oslc_-</u> <u>axel_reichwein - january 21_2018.pdf</u>
- 10. OSLC industry support: <u>http://oslc.co/about/#supporters</u>
- 11. Jenkins, Steven; ST4SE (Semantic Technologies for Systems Engineering): <u>http://portals.omg.org/MBSE/lib/exe/fetch.php?media=mbse:incose_mbse_iw_2018:st4se_incose_mbse_2018-01-20.pptx</u>

The Conference on Advancing Analysis & Simulation in Engineering

June 5 - 7, Cleveland, Ohio

Thank You!