Model Management Requirements


Model Management Requirements
Working Document

Version 03
4 August 2011

CONTENTS

2Submission Facilities


2Questions / Issues


2Migration


2Priorities


3Contexts


3SBVR


4Classification versus Context


4Diagrams


5Profile Notes


5Approach


5Public v Private


6Sub-Packaging Implications


6What about sibling ontologies?


6Implications / Discussion


6Exporter v Import


7Packaging for Global Terms


8Recommendation:


8Ontology aggregations:


9Further Notes on Adaptive


9Logistics of the Standard


10Use Cases


10Subtleties


10Round Tripping issues


10Logistical question




Submission Facilities

Options:

· Be able to originate material in UML / ODM

· Be able to originate material in OWL

Consensus:

Both. OWL and UML.

It must be possible to originate material in OWL as well as UML tooling. 

Also note that XMI is not a very reliable interchange mechanism (opinions differ on this). This will improve. Some tooling support varies. 

Diagrams remain an issue with interchange, but this is not really part of XMI. Implementation by vendors is an issue but this is not an issue with XMI per se. 

The situation with class models in UML has improved a lot. 

If we can't accept stuff in OWL format this would be a limitation. 

Questions / Issues

How do we preserve the diagrams? 

How do we preserve (for OWL originated material) the visual appearances of the archetypes? 

These will be captured as annotation properties. 

If we have encoded the information of what the diagram has to show this would be great. 

The unknown: whether OWL editors in the future would be able to process our annotation properties to render the colors etc. 

Migration

May have to migrate to canonical ODM within EA. 

This would let us preserve the diagrams. 

Otherwise, migrate to OWL, and then re-import into both EA and Magicdraw, and Adaptive at the same time. 

Priorities

· Diagram preservation

· Class appearance preservation

The diagrams we have created can easily be discarded - we need to be able to render nice diagrams for presentation purposes. 
BUT

When we do put effort in to create nice diagrams that present well and focus on things in an intellectually manageable way - we must not lose those. 

Conclusions:

1. Want to be able to retain diagrams that we create in the future

2. Less important to retain diagrams that we created in the SME Reviews. 

Consensus (from SME Review folks):

Agreed. 

It may take a while to come up with a diagram format that works. Difficult to present the existing diagrams as they stand, to SMEs. 

Contexts

How to extract views

Multiple inheritance:

Individual contexts relate to different classification facets. 

Difference between classifying instance data and classification for extracting data models. 
Where do these converge? 

Issues with classification of financial products. 

SBVR
SBVR names for this:

· Categorization Scheme

This is part of the SBVR ontology. 

then ME, Covering etc:

If it's MECE, it's called a Segmentation. 

Can break off at any branch and have multiples of these part way down. 

The Categorization scheme name is what we have been calling Classification Facet
Then context: SBVR uses the ISO 1087 "Subject Field" = a discipline, profession, field of study". 

This is broader than our front office, back office etc. BUT SBVR also allows sub-subject fields. 

Also of course see Semantic Community. 

Context for terms. unique connection between term (words) in terminology, and the concept. 

Also: containers of concepts (where they reside), and packaging construct where a concept can be packaged in any number of these. 

"Subject field" is the context for definitions. 

Classification versus Context

Context is selecting the properties in the order in which we will use these. 

We may have to relate object properties to business contexts, not just classes. 

Then a diagram with particular Ops would then not have all the other classes that are not needed. 

To do this we need good encapsulation. 

Meaning? 

Example: Person has specific properties regardless of the context in which they exist. (it is an Independent Thing)

But one may ascribe a property to them which is not ... (?)

Age - doesn't change

Client - does change

Therefore modelers need to be disciplined about when they assign a property to something, they need to be clear about whether a property they assign to something is a property of the Independent Thing, or a property of the Relative Thing, for example the property of the thing as a Client, an Issuer and so on. 

Diagrams

The really focused diagrams - these are more valuable so we should aim not to lose them. 

Closing the loop on that conversation: Diagrams that are crafted for intellectual manageability. 

In future we would create diagrams in Adaptive. Also adaptive has the ability to run filters, and can create filtered diagrams. 
Consensus: find a way of getting to these simpler diagrams more simply. 

Meaning: coming up with patterns and criteria for diagramming. See for instance REA comments on having a common layout for the archetype and for the things which follow that grammar. 

Then when presenting concepts to people that will use them, we can break down the explanation. Also adapt it to the audience. 
Profile Notes

Exporter uses package hierarchy to imply owlImports.

Any package underneath an OWL Ontology package that does not have the owlOntology stereotype gets flattened. 

Creates an extension of the base ontology URL so that there is a sub namespace for each of the package. The entity names use the base URL of the package / the sub-package hierarchy separated by slashes, followed by the fragment identifier followed by the entity. 

Fragment identifier is the thing that follows the #sign in the URL (the name of the class or of the object property, the datatype property, the individual etc.)

The "Entity" here :

If you give the package an owlOntology stereotype you also have to go into the tags and create a base URL for that ontology. See tagged values under rdfDocument: "defaultNamespace" should have the Base URL in it. 

There is also a tag for version URI. 

Earlier: assumed a single base URL defined in the exporter interface. We want the URL inthe ODM model. 

Preliminary version of the 1.2 ontology with this stuff set up in it. 
Approach

1. Create tag

2. create association between Package entity and some other entity that would carry the required information. 

On (2), in the case of the Base URI and the version URI it would be some entity of type URI. 

How will this look:

Since Package is technically an instance, would have a version URI and base URI that would have an attribute value as some instance URI. 

Wy tags: 

· UI is simpler. 

· The code to find this stuff in the EA model is dramatically simpler.

Decision was made on the basis of implementation practicality. 

Public v Private

Not relevant for Profile. Does not read whether things are labeled Public or Private. 

But we should check out these.

Sub-Packaging Implications

Suppose we have ontology 'Foo'

Base URI = http://www.foo.com/foo

Then is foo has sub-package 'Bar'
Case: sub package Bar is not stereotypes as an owlOntology

URI of an entity 'Sam':

http://www.foo.com/foo#Sam

What exporter does:

http://www.foo.com/foo/bar

Then 'Fred' in sub package

http://www.foo.com/foo/bar#Fred

In Protégé this will appear as full URKL if no abbreviation, or if there is an abbreviation set, it will be bar#fred

This preserves the structural information from the EA model. 

Case: Other package is an ontology

Separate OWL file

Separate base URI (per tagged value as above)

Import statement that imports the parent. 

Do we need the ODM owlImports construct?

Yes - if we have an external ontology that is not part of the EA model, we need some explicit rendition of the OWL import. 

What about sibling ontologies?

Imports is applied to sub-packages. Not sibling. 

But, in looking through the model to see what references there are to non local packages, it computes a list of all the entities that are referenced in a non local package: if I expot foo, and there is a reference to bar (package) then if the bar package also has owlOntology stereotype OR is a sub-package of a package that has owlOntology then the reference is memorized in the exporter, and when it exports it picks all these up. 
If there are mutual references, these are rendered as mutual owlImports. 

Implications / Discussion

Should we have a warning when this happens? 

What are the implications? It just means they are aware of each other's namespaces. There is no semantic problem. 

Exporter v Import

Is there a corresponding importer? No. 

Some clarity: 
The exporter separate from Sandpiper Visual thing. 

Imports OWL and RDF files. You get a model but no diagrams. 

Round tripping not advised. 

For this reason, the Exporter is separate. Also it is UML product specific (the one that works with MagicDraw will not work for EA - there is no standard for APIs for UML tools. It is a one time export only thing written against the EA external scripting APIs. 

Does the MagicDraw one do the same thing? i.e. does it also automatically generate the OWL imports based on the dependencies? No because it uses separate models rather than package. 
Why? ODM specification is silent on this question. Vendors and practitioners have chosen different methods for dealing with what are the boundaries of the ontology.

Another question: whether conversion should be via API or via XMI? 

XMI does not really protect us from the model differences. Also it is much more code (has to import XMI, construct a model form that, interpret and re-export it as RDF XML). 

So...
Packaging for Global Terms

3 ways to dispose an external ontology:

1. ontology = model

2. Package within model

3. Outside of the model device

Consequences:

(3) problems with entity names for things outside. Purpose of owlImports is to make available a namespace for use within the importing ontology. Otherwise you would have to construct them as char strings using some invented syntax. 

Therefore disqualify (3). 

(1) and (2) largely equivalent. Any UML editor that supports an aggregation of multiple models. 

To clarify what (3) means, an example would be if I invented a tag corresponding to an external ontology that I want to import, I might use a URI as a value of that tag. I would know a part of the namespace URI but not any of the actual individual entities within that ontology. It is not practical to construct a name in the EA or MD model that would reference that external ontology. 

I would have some model entity that would correspond to that external ontology and I would end up adding classes to that entity in order to get access to the names, to extract these etc. 

This raises an problem in wanting to refer to some external ontology: I don't need to faithfully represent the details in that ontology, I would only need the namespaces. 

Packaging for Global Terms: Option (1) leaves packages to be used for rdfCollection. rdfCollection would only be detected by use of that stereotype. So we only use unstereotyped package in the way described above. 

Recommendations:

· Use owlOntology stereotype in all cases
Assumes: if package is not stereotyped, it is assumed just to be UML Package.

Implicit assumption is that packages within an ontology, when not stereotyped, then the content is content of the ontology that contains them, and only the namespace is affected. 

We have not used rdfCollection

Recommendation:
The model should be complete. If the exporter can detect than an import is implied, there should be a warning telling the modeler to make it explicit. We should not end up with implicit imports.

The automatic generation of these namespaces is a potential issue: either we should make everything explicit, or implicit. 

Counter view: Resist explicit definitions of imports, since this can cause inconsistencies which would be hard to detect. 

Names might not be resolved in implicit imports that happen. Would discover errors when loading into another tool. Doing it automatically would be error free since the import is only implied. 

Ontology aggregations: 

Is what you end up with in a UML tool. Single UML "Project" v Eclipse Project (the resource keeper). Different to linked data / web. 

There are ongoing discussions on this in the ODM Revision Task Force. 
The semantic enterprise has to encompass both of these philosophies. 

For example when I want to import some external ontology and use it within an EA or MD model in ODM - how to construct set of internal model entities to use for this. 

Further Notes on Adaptive
Choice to be made:

· Import OWL into Adaptive

· Import EA-generated XMI

· Naive UML import would end up with 2 things for each construct (UML element and stereotype)

· Could do it in such a way that we don't end up with 2 of everything

· This would indistinguishable form (1)

This becomes a logistical question. Practically, we already have (1) but not (2).

Issues around exchange of ODM fall within the ODM standards effort. 

Current focus on the packaging issue (see notes from Shared Semantics). Focus on OWL versus MOF. 

The question is what needs to be defined in the FIBO standard (as specific implementation of ODM) versus what's defined in ODM itself?
Logistics of the Standard

We depend on a subset of ODM. We also depend on the use of the Adaptive Repository. We should do some round trip tests?

If some are providing input in EA, don't we need to be able to export back to the UML. We should canvass EDMC members about what tools they want FIBO content in. 

To regenerate EA from the "clean" Adaptive content, we would need a custom exporter as well. 

Having the verbose option where we have base class and stereotype would be round trippable but would be horrible within the Adaptive repository. This becomes much easier if FIBO has one base class per OWL construct.

If there is a rule then we could support things with more than one base class. At present only Object property has two base classes but this is negotiable. OWL Imports present a special problem for round tripping because they may or may not be implicit (see earlier conversation). Decisions to be made. There is no dependency on ODM. 

In ODM 1.0 owlImports uses UML Package Import. This may change in 1.1, to Package Merge. 

The issue under discussion is the scoping and containment issue. This relates to how we deal with packaging. 












Figure 1: Model Environments and Transformation Requirements

Use Cases

Create new financial products locally using the FIBO as a basis. 

2 use cases within UML:

· Use a UML tool for Model Driven Development with hand made Logical Data Model constructs

· Use UML as above but with proprietary LDM building blocks (e.g. Fincore)

IMM is standardizing XML schema generation. 

Subtleties

Round tripping to put the same thing back versus exporting for usage but not editing. 

Round Tripping issues

Colors are proprietary i.e. different XMI represents these differently. 

Also ODM of course does not include archetypes. 

We hope it will be possible to import XMI which has both the base class and the stereotype. We hope
ItemType in Adaptive corresponds to Archetype. So the requirement would be that the import changes archetypes into ItemType. The exporter changes these back to Stereotype. 

Logistical question
Changes to base classes - via EA or as part of Adaptive import. 
Packaging Issues

Package nesting is a UML feature, but OWL does not have this concept. 
This means that one ontology does not require to be nested under or within one other ontology, as the UML packages would be. 

Other considerations: 

Referencing a concept from another ontology - we do not necessarily want to imply an OWL Import just because one object property has that as a range. 

Importing has major consequences as it brings in everything from the other ontology i.e. all the axioms. So we only really need to refer to the other thing. By referring to that other thing, we are referring to its axioms but not everything else that's in that ontology. 

How does this work? If you refer to Apartment, and that has a fact "situated in" Building. We might not need other axioms beyond that, e.g. Building situated in Street. 

Does not bring in all the classes for which that property is a domain. 

Conclusion:

We do not want to import all the material in a given ontology. 




































Import





MagicDraw





EA





OWL Editor





Edit





MagicDraw





EA





ADAPTIVE





Export





Import





Diagrams





Tables / XL





Export





OWL





View





Locally extended content








