 7

SysML-Modelica Integration
Preliminary Draft v0.3, 2009-02-10
Abstract

This is a draft of a mapping between SysML and Modelica. The goal of this document is threefold:

1) to define the high-level approach for the Modelica to SysML mapping,

2) to provide a detailed discussion of all the relevant language features and corresponding mappings, and

3) to illustrate these mappings with examples.

In this first draft, the focus has been on the language features that are most common and together cover the majority of the Modelica models in the standard library.

	Version
	Date
	Changes
	Person

	0.0
	1-14-2009
	Initial version based on Modelica abstract syntax document provided by Peter Fritzson; the suggested constructs and mappings from Linkoping meeting with Peter Fritzson, Chris Paredis and Wladimir Schamai
	Chris Paredis

	0.1
	1-27-2009
	Significantly expanded Chapter 1 and 2
	Chris Paredis & Wladimir Schamai

	0.2
	2-1-2009
	A complete revisions of Chapters 1 and 2 based on further discussions of January 28
	Chris Paredis & Wladimir Schamai

	0.3
	2-10-2009
	Incorporated corrections suggested by Sandy Friedenthal
	Chris Paredis

Table of Contents
3Table of Contents

4Chapter 1
Overview

41.1
Motivation and Objectives

41.2
Integration Approach

51.3
Which SysML Diagram is Best Suited for Modelica?

8Chapter 2
Representing Modelica Using SysML

82.1
Classes, Predefined Types, and Declarations

162.2
Inheritance, Modification, and Redeclaration

172.3
Equations

172.4
Connectors and Connections

182.5
Arrays

182.6
Statements and Algorithm Sections

182.7
Functions

182.8
Packages

19Chapter 3
Examples

193.1
The Modelica Standard Library

193.2
Oscillating Mass Connected to a Spring

243.3
Car Suspension Design

25Chapter 4
Issues

254.1
Units and Dimensions

254.2
Definition of Classes inside Classes

254.3
Arrays

26Chapter 5
Modelica Profile

29Chapter 6
References

30Chapter 7
Contributors

31Appendix A
Glossary

36Appendix B
Modelica Concrete Syntax

43Appendix C
Modelica Abstract Syntax

Chapter 1 Overview

1.1 Motivation and Objectives

OMG SysMLTM is a general-purpose systems modeling language that enables systems engineers to create and manage models of engineered systems using well-defined, graphical constructs. SysML reuses a subset of UML 2.1 constructs and extends them by adding new modeling elements and two new diagram types. Through these extensions, SysML is capable of representing the specification, analysis, design, verification and validation of any engineered system. The logical behavior of systems is adequately captured in SysML through a combination of activity diagrams, state machine diagrams, and/or sequence diagrams...With the recent adoption of the Foundational Subset of UML specification, SysML activity diagrams can be executed to support discrete event simulation in a standard way. In addition, SysML includes parametrics to capture constraint based behavior to support execution of constraint based behavior such as continuous time dynamics in terms of energy flow. However, the the syntax and semantics of such behavioral descriptions in parametrics have been left open to integrate with other simulation and analysis modeling capabilities.
The goal of this document is to provide such precise syntax and semantics by leveraging the Modelica language. By integrating SysML and Modelica, SysML's strength in descriptive modeling could be combined with Modelica's formal executable modeling for analyses and trade studies. Modelica is an object-oriented language for describing differential algebraic equation (DAE) systems combined with discrete events. Such models are ideally suited for representing the exchange of energy, signals, or other continuous interactions between system components. It is similar in structure to SysML in the sense that Modelica models consist of compositions of sub-models connected by ports that represent energy flow (undirected) or signal flow (directed). The models are acausal, equation-based, and declarative. The Modelica Language is defined and maintained by the Modelica Association (www.modelica.org) which publishes a formal specification [Modelica Association 2008] but also provides an extensive Modelica Standard Library that includes a broad foundation of essential models covering domains ranging from (analog and digital) electrical systems, mechanical motion and thermal systems, to block diagrams for control. Finally, it is worth noting that there are several efforts within the Modelica community to develop open-source solvers, such as in the OpenModelica project (www.openmodelica.org).
In conclusion, SysML and Modelica are two complementary languages supported by two active communities. By integrating SysML and Modelica, we combine the very expressive, formal language for differential algebraic equations and discrete events of Modelica with the very expressive SysML constructs for requirements, structural decomposition, logical behavior and corresponding cross-cutting constructs. In addition, the two communities are expected to benefit from the exchange of multi-domain model libraries and the potential for improved and expanded commercial and open-source tool support.
1.2 Integration Approach

The approach for the integration between Modelica and SysML is to create a SysML4Modelica profile which introduces all the Modelica language constructs into the SysML language in a way that supports round-trip transformation (from Modelica to SysML and back). One could also envision the introduction of SysML constructs into the Modelica Language; however, this is outside the scope of this effort, although it may be pursued in the future.
To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica Language specification and identify for each Modelica language construct an equivalent construct in SysML. If an equivalent construct does not exist, stereotypes are created to extend the SysML language. The following naming convention is used:

«ModelicaConstruct» where Construct is the name of Modelica language construct as defined in the Modelica abstract syntax definition (Appendix C).

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a SysML stereotype in order to distinguish the construct from the ordinary SysML construct when supporting round-trip transformation. In addition, the concrete syntax of Modelica often provides alternative representations to express the exact same semantics. For example, one could write:

connector Flange
 import SI = Modelica.SIunits;
 SI.Position s
;

 flow SI.Force f;

end Flange_a;
or equivalently:

connector Flange

 Modelica.SIunits.Position s;

 flow SI.Force f;

end Flange_a;
In such cases, we will avoid duplicating this redundancy in SysML4Modelica without loss of expressivity. For mapping purposes, one of the redundant representations will be identified as the primary (most explicit) representation and SysML4Modelica constructs will preferably be mapped onto this primary representation.

[Chris Paredis]: There is at least one case, in which redundancy may also exist on the SysML4Modelica side of the mapping. Specifically, connections between Modelica connectors are defined in the equation section of a model using a "connect" clause. In SysML4Modelica, such a connect statement would logically be mapped to a SysML connector (i.e., the edge linking two ports). However, if we also allow for equation sections of Modelica models to be included in SysML4Modelica as unparsed text, then a similar connect-statement could be specified there instead. In fact, the use of such connect statements is necessary when connecting a parametrically defined number of sub-components — for instance, using a Modelica for-loop. In that case, the connections cannot be established explicitly because it is unknown at the time of definition how many such connectors will exist in a usage.

Initially, this document provides a textual description of the mapping between Modelica and SysML4Modelica. However, it is the intent to describe this mapping also formally by defining a Triple Graph Grammar linking the Modelica and SysML meta-models. Such a formal definition of the mapping has the additional advantage that meta-CASE tools (such as MOFLON) can be used to generate executable transformations between SysML and Modelica modeling tools (assuming they support some standardized interface such as JMI).
1.3 Which SysML Diagram is Best Suited for Modelica?

Before focusing on the detailed modeling constructs, a high-level decision needs to be made regarding the choice of SysML Diagram in which to represent Modelica models
. Although Modelica is a textual language, it also supports a graphical view through its annotation mechanism. This graphical view illustrates clearly the strong similarity that exists between SysML and Modelica. Both languages support the decomposition of systems (or behavioral models of systems) into subsystems or components and the interactions between them. For instance, the Modelica model of a motor controller shown in Figure 1 contains subcomponents (such as motor, gearbox, and controller) and the interactions between them are illustrated by edges connecting the interface locations (called connectors in Modelica) of the components. Such hierarchical compositions of Modelica models and the connections between them constitute the primary modeling approach in Modelica. Before considering the details of the language, it is thus important to consider carefully how these primary modeling constructs map to SysML.

	[image: image1.emf]motor

gearbox

ratio=100

load

J=0.5*m*r*r

phiload

-

positione...

controller

PID

Ti=Ti

Step1

startTime=0

	Figure 1: A Modelica model of a motor controller consisting of component models and the connections between them. The connections include both causal signal connections (e.g., in and out of controller) and acausal energy connections (e.g., rotational mechanical energy connections of the gearbox).

As illustrated in Figure 2, in SysML there are three types of diagrams that have a structure that is similar to the hierarchical, connector-based composition of Modelica models: the Internal Block Diagram, the Parametric Diagram, and the Activity Diagram. All three diagrams support some sort of "ports", some sort of composition of "port-based" objects through "port-connections", and hierarchical encapsulation through "port-delegation". The main question is thus: which of these diagrams and associated constructs have the semantics that match the Modelica semantics best? A short discussion of each follows.
	Diagram
	Modelica
	Internal Block
	Parametric
	Activity

	Definition
	Model
	Block
	Constraint Block
	Activity

	Usage
	Component
	Part Property
	Constraint Property
	Action

	Port
	Connector
	Flow Port
	Parameter
	Object Node

	Edge
	Connection
	Connector
	Binding Connector
	Object Flow

	Figure 2:
A comparison of graphical constructs in Modelica and three types of SysML diagrams

1.3.1 Modelica

In Modelica, ports are called connectors and the edges between ports are called connections. The ports (connectors) can include four types of quantities: inputs, outputs, flows and non-flows. Inputs and output are used when the direction of the data-flow is known and fixed, as for instance in signals flowing in a control system. Flow and non-flow quantities are used to describe energy flow (they are also sometimes referred to as through and across variables, respectively). When connecting two Modelica connectors with a connection, the semantics for inputs and outputs are causal binding: the input is assigned the value of the output. Input and output connecters must therefore be used in conjugate pairs, and only one output can be connected to each input. For flow and non-flow variables, the connection semantics correspond to Kirchhoff's Laws, namely, the flow variables add up to zero and non-flow variables are set equal (in an equation-based, acausal fashion). When more than one connection is made to a connector containing a flow variable, then an ideal, loss-less energy exchange is assumed by imposing that the flow variables of all connected connectors add up to zero. To impose the correct modeling of energy exchange, Modelica requires that the number of flow and non-flow quantities in
 a connector be equal.
1.3.2 Internal Block Diagrams

The primary purpose of Internal Block Diagrams is to express the structural decomposition of systems. However, IBDs have quite flexible semantics and are often used to establish logical compositions, for instance, as in analysis context diagrams
.
The "ports" in IBDs are called Ports and the connections between ports are called Connectors. There are three kinds of ports: atomic and non-atomic Flow Ports and Standard Ports. The Standard Ports are particularly geared towards service-based interactions by representing the interfaces (e.g., software methods) that are provided or required by a particular block. Such service-based interactions are not appropriate for modeling the connections found in Modelica. Flow Ports on the other hand do provide semantics that reflect Modelica connectors more closely. A Flow Port describes an interaction point for Items flowing in and out of a block. For Modelica-type interactions, the "items" could be either signals (for input and output quantities) or energy (for flow and non-flow quantities). This seems like an appropriate mapping.

However, there are some important differences that need to be considered. SysML Flow Ports must specify the directionality of the flow: in, out or inout. At first it may seem that this corresponds well with Modelica's notion of input, output and energy flow, respectively. However, there may be an inconsistency between the direction of flow (i.e., as determined by the sign of the flow variable) and the causality of the flow. For instance, in Modelica it is possible to model the flow of fluid using a pair of flow and non-flow quantities, but restricting the sign of the flow quantity to be positive (to restrict the flow to be in one direction but not the other). The causality direction (i.e., whether a variable is dependent or independent) is determined completely independently of the direction of flow.
In addition, Flow Ports differ from Modelica Connectors in that the direction of flow is defined for the port property (i.e., the usage) while in Modelica the input-output-flow characterization must be specified in the connector definition
— instantiation of connectors does not require or allow for the specification of input or outputs.

A final difference lies in the fact that SysML flow ports are typed to a block specifying what can flow through the port; what actually flows must be defined by associating an Item Flow to a SysML Connector (the connection between the ports). In Modelica, no such differentiation between what can flow and what actually flows is made. This makes sense because Modelica describes the behavior of what actually happens (what flows) rather than a specification of an interface (what can flow).
In conclusion, although IBDs seem to have similar constructs to Modelica, the semantics are substantially different so that new constructs will have to be introduced to capture the Modelica semantics of Connectors and Connections.
1.3.3 Parametric Diagrams

The purpose of Parametric Diagrams is to express mathematical relationships between parameters. In Parametric Diagrams, the "ports" are called Constraint Parameters and the "connections" are called Binding Connectors. Inside a Constraint Block, mathematical relationships are thus defined constraining its Constraint Parameters. A Constraint Property is a usage of a Constraint Block in the parametric diagram. Its Constraint Parameters are then bound to other Constraint Parameters or to Properties of Blocks. When using a Constraint Property in a Parametric Diagram, the semantics of a Binding Connector indicate a mathematical equality between the (Block) Properties or Constraint Parameters being connected. This mathematical equality is an acausal relationship.
Although the Binding Connectors in Parametric Diagrams share the acausal nature of energy-connections in Modelica, they are missing the notions of a Modelica Flow variable and of causal inputs and outputs.
The equivalent of a Binding Connector does not actually exist in Modelica
; the closest match would be that of a non-flow quantity in a Modelica Connector, but such non-flow quantities cannot exist without a corresponding flow quantity (a new constraint in Modelica 3.0), and they can definitely not be connected directly — only connectors can be connected to each other in Modelica.

Therefore, in order to capture the Modelica semantics in Parametric Diagrams, one would have to introduce a new modeling element that is equivalent to a Modelica Connector, and introduce a new type of connection that reflects the semantics of Kirchhoff's laws.

In conclusion, the intent of Parametric Diagrams is similar to the intent of Modelica Models, and they therefore deserve considerable consideration. However, the types of connections that exist in Modelica do not exist in Parametric Diagrams and vice versa.

1.3.4 Activity Diagrams

The purpose of an Activity Diagram in SysML is specify the transformation of intputs to outputs through a controlled sequence of actions. An Activity decomposes into Actions. In activity diagrams, the ports thus correspond to Pins. These Pins are the (buffered) inputs and outputs of Actions. The connections between Pins correspond to Object Flows. These flows typically represent the transfer of one or more objects at a discrete moment in time, although it is possible to specify a streaming flow that could be continuous, i.e., the time between tokens (or "objects") is zero. It is this latter case that needs to be described in terms of differential equations and is also closest to the semantics of Modelica's flows. However, the strict notion of flows from output to inputs in Activity diagrams, is not imposed in Modelica (Note: this flow direction would correspond to a constraint on the sign of a flow variable, but has nothing to do with mathematical causality).
In conclusion, only the special case of continuously streaming object flows seems to match the Modelica semantics of energy flow, and even for that case, the semantics are quite different. Among the three SysML diagrams considered, Activity Diagrams therefore seems to be the least appropriate for a mapping from Modelica.
1.3.5 Selected Diagram: Internal Block Diagram

[Chris Paredis]: At the meeting in Linköping between Peter Fritzson, Chris Paredis and Wladimir Schamai, we came to the conclusion that all three diagram types would require extensions (i.e., stereotypes) in order to express the Modelica semantics. However, we considered that Flow Ports in IBDs would be a good way to represent Modelica's energy flow. This combined with the fact that the semantics of Internal Block Diagrams are quite flexible, led us to conclude that IBDs would be the best choice. In addition, we felt that it would be good to distinguish clearly between the parametric constraints typically imposed between structural elements (e.g., as in parametric CAD) and the mathematical equations describing the physical behavior of components.
This spoke in favor of not using Parametric Diagrams. The rest of this document (Chapters 2-5) is therefore based on the IBD choice.

However, while writing Chapter 1, it has become clear that the semantics of flow ports do not match the semantics of energy flow in Modelica quite as well as we thought. The main stumbling block is the fact that one must assign to flow ports a direction of flow, and that this direction of flow is defined at the usage level. Given this mismatch, I now believe that it would be worthwhile considering Parametric Diagrams anyway. If one were to include a new tag for Constraint Parameters that would identify them as either being input, output, flow or a regular parameters (includes the Modelica non-flow case), then one could capture the semantics of Modelica quite nicely. The semantics of binding connectors would then have to be expanded similarly to indicate causal assignment for the case of input-output pairs and of Kirchhoff's Current Law for flow variables (i.e., conservation of flow quantities).

Regardless, much of the discussion in Chapters 2-5 of this document would require only minor changes if one would use Parametric Diagrams rather than Internal Block Diagrams, so that this material is still worth further discussion at this point.

Conclusion: our first point of discussion should be to resolve whether to use Parametrics or IBDs.
Chapter 2 Representing Modelica Using SysML

This chapter describes the mapping of Modelica constructs to SysML. This mapping is the foundation for the SysML4Modelica profile. It is organized according to the chapters of the Modelica 3.0 specification, skipping those chapters that are irrelevant to the SysML-Modelica mapping. When necessary, new stereotypes (extensions of SysML) and associated tags are introduced.
2.1 Classes, Predefined Types, and Declarations

The class concept is the basic structural unit in Modelica. Classes provide the structure for objects and contain equations, which ultimately are the basis for the executable simulation code. The most general class is “model”. Specialized classes such as “record”, “type”, “block”, “package”, “function” and “connector” have most of the properties of a “model” but with restrictions, which need to be preserved in SysML to support round-trip mapping.

The following production rule defines the different specialized classes:

class_definition :

 [encapsulated]

 [partial]

 (class | model | record | block | [expandable] connector | type |

 package | function)

 class_specifier

The following table
lists the SysML stereotypes for representing the specialized Modelica classes. Using this approach the modeler only needs to apply the respective stereotype to indicate all the semantics and restrictions of the associated Modelica class.

	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	SysML::Blocks::Block
	«ModelicaModel»,

«ModelicaBlock»,
«ModelicaFunction»
	

	SysML::Blocks::ValueType
	«ModelicaRecord»,
«ModelicaConnector»

	No behavior, i.e. no “operations” are allowed, the compartment “unit” is not used.

	UML4SysML::Package
	«ModelicaPackage»
	

«ModelicaModel» and «ModelicaBlock» are mapped to SysML Block and imply all semantics and restrictions associated with these constructs. Same is valid for «ModelicaRecord», «ModelicaType» mapped to the SysML ValueType with the additional constraint that, in contrast to SysML, these cannot have operations. «ModelicaPackage» can be mapped to Package without any constraints.

ModelicaConnector is mapped to the ValueType since it can only have variables. Moreover, it can be expandable; this is captured by the additional tag as listed below.
SysML4Modelica Stereotype «ModelicaConnector»

	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment

	isExpandable
	Boolean
	[0..1], false
	

2.1.1 Additional Class: ModelicaExperiment
«ModelicaExperiment»
(mapped to SysML Block) is not a Modelica language construct. However, it is introduced in order to distinguish between the model and its simulation. The following tags are associated with this stereotype:
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	SysML::Blocks::Block
	«ModelicaExperiment»
	

SysML4Modelica Stereotype «ModelicaExperiment»
	Tag Name
	Tag Value Type
	Initial Value
	Comment

	startTime
	Real
	0.0
	Simulation start time

	stopTime
	Real
	1.0
	Simulation stop time

	model
	«ModelicaModel», «ModelicaBlock»
	
	Reference to the model to be simulated

Discussion and Comments:

· [Chris Paredis]: We need to revisit the «ModelicaPackage» sometime in the future to account for Modelica's use of redeclarable packages defined in the scope of a model. ->for later discussions
· [Chris Paredis]: The Modelica language includes a lot of constraints on which constructs can be used with/inside other constructs. It seems that for the purposes of this mapping, it is not important (at least initially) to capture these constraints in SysML4Modelica. If these constraints are violated, then this will be flagged by the Modelica solver at compilation time. ->for later discussions
2.1.2 Predefined Types
The following primitive types are available in the Modelica language: Real Type, Integer Type, Boolean Type, String Type, Enumeration Types,
StateSelect, ExternalObject, Graphical Annotation Types. Each of the Modelica predefined types has attributes and default values that are represented as Tags of respective stereotypes as listed below.

	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	Predefined Type
	Constraints

	SysML::Blocks::ValueType
	ModelicaReal
	

	SysML::Blocks::ValueType
	ModelicaInteger
	

	SysML::Blocks::ValueType
	ModelicaBoolean
	

	SysML::Blocks::ValueType
	ModelicaString
	

	UML4SysML::Enumeration
	ModelicaEnumeration
	

	SysML::Blocks::ValueType
	ModelicaStateSelect
	

	SysML::Blocks::Block
	ModelicaExternalObject
	This is an abstract type

	SysML::Blocks::ValueType
	ModelicaAnnotation
	

The following tables list the tag values associated with the new stereotypes. All of the tags listed below are optional and can only be defined once, i.e. their multiplicity is [0..1]. Empty “Initial Value” field implies an empty string (null).
SysML4Modelica Predefined Type ModelicaReal
	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment

	quantity
	String
	[0..1],
	

	unit
	String
	[0..1],
	Unit used in equations

	displayUnit
	String
	[0..1],
	Default display unit

	min
	ModelicaExpression

	[0..1], -Inf
	Inf denotes a large value. The result must be of type Real.

	max
	ModelicaExpression

	[0..1], +Inf;
	Inf denotes a large value. The result must be of type Real.

	fixed
	ModelicaExpression

	[0..1], true, // default for parameter/constant;

false; // default for other variables
	The result must be of type Boolean.

	nominal
	ModelicaExpression
	[0..1],
	Nominal value. The result must be of type Real.

	stateSelect
	ModelicaExpression

	[0..1], StateSelect.default
	The result must be one the literals of the ModelicaStateSelect enumeration.

SysML4Modelica Predefined Type ModelicaInteger
	Tag Name
	Tag Value Type
	Initial Value
	Comment

	quantity
	String
	
	

	min
	ModelicaExpression

	-Inf
	Inf denotes a large value. The result must be of type Integer.

	max
	ModelicaExpression

	+Inf;
	Inf denotes a large value. The result must be of type Integer.

	fixed
	ModelicaExpression

	true, // default for parameter/constant;

false; // default for other variables
	The result must be of type Boolean.

	start
	ModelicaExpression

	0
	Initial value. The result must be of type Integer.

SysML4Modelica Predefined Type ModelicaBoolean
	Tag Name
	Tag Value Type
	Initial Value
	Comment (from Modelica specification)

	quantity
	String
	
	

	start
	ModelicaExpression
	false;
	Initial value. The result must be of type Integer.

SysML4Modelica Predefined Type ModelicaStateSelect
	Tag Name
	Tag Value Type
	Comment (from Modelica specification)

	never
	Enumeration literal
	Do not use as state at all.

	avoid
	Enumeration literal
	Use as state, if it cannot be avoided (but only if variable appears differentiated and no other potential state with attribute default, prefer, or always can be selected)

	default
	Enumeration literal
	Use as state if appropriate, but only if variable appears differentiated.

	prefer
	Enumeration literal
	Prefer it as state over those having the default value (also variables can be selected, which do not appear differentiated).

	always
	Enumeration literal
	Do use it as a state

2.1.2.1 Additional Predefined Types
The following predefined types are not defined in Modelica. The reason for including them is to capture Modelica semantics that would be omitted otherwise. These are used as types for tags where appropriate.
NOTE: It seems like some of the omitted semantics would actually be useful when referring to Modelica models within a SysML model. For instance, when assigning an initial value to a variable, it would often be useful to do so as a function of a quantity defined elsewhere in the SysML model (maybe as a structural property). By representing expressions as text, the semantics of the name of the quantity are lost, making references to other SysML quantities cumbersome to maintain and error prone. SUGGESTION: We need to consider constructs besides a simple string to capture both ModelicaExpression and ModelicaModification.

ModelicaExpression (sub-type of string) grammar:
expression :

 simple_expression

 | if expression then expression { elseif expression then expression }

 else expression

simple_expression :

 logical_expression [":" logical_expression [":" logical_expression]]

logical_expression :

 logical_term { or logical_term }

logical_term :

 logical_factor { and logical_factor }

logical_factor :

 [not] relation

relation :

 arithmetic_expression [rel_op arithmetic_expression]

rel_op :

 "<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic_expression :

 [add_op] term { add_op term }

add_op :

 "+" | "-"

term :

 factor { mul_op factor }

mul_op :

 "*" | "/"

factor :

 primary ["^" primary]

primary :

 UNSIGNED_NUMBER

 | STRING

 | false
 | true
 | name function_call_args

 | component_reference

 | "(" output_expression_list ")"

 | "[" expression_list { ";" expression_list } "]"

 | "{" function_arguments "}"

 | end
name :

 IDENT ["." name]

component_reference :

 IDENT [array_subscripts] ["." component_reference]

function_call_args :

 "(" [function_arguments] ")"

function_arguments :

 expression ["," function_arguments | for for_indices]

 | named_arguments

named_arguments: named_argument ["," named_arguments]

named_argument: IDENT "=" expression

output_expression_list:

 [expression] { "," [expression] }

expression_list :

 expression { "," expression }

array_subscripts :

 "[" subscript { "," subscript } "]"

subscript :

 ":" | expression

comment :

 string_comment [annotation]

string_comment :

 [STRING { "+" STRING }]

annotation :

 annotation class_modification

ModelicaModifiation (sub-type of string) grammar:
modification :

 class_modification ["=" expression]

 | "=" expression

 | ":=" expression

class_modification :

 "(" [argument_list] ")"

argument_list :

 argument { "," argument }

argument :

 element_modification_or_replaceable

 | element_redeclaration

element_modification_or_replaceable:

 [each] [final] (element_modification | element_replaceable)

element_modification :

 component_reference [modification] string_comment

element_redeclaration :

 redeclare [each] [final]

((class_definition | component_clause1) | element_replaceable)

element_replaceable:

 replaceable (class_definition | component_clause1)

 [constraining_clause]

component_clause1 :

 type_prefix type_specifier component_declaration1

component_declaration1 :

 declaration comment
2.1.3 Component Declarations
In the Modelica language, instances (or usages) of a class are referred to as “components”. In SysML these can be mapped to Block Properties, such as Value Property (usually representing system attributes) or Part Property (usually representing system parts).

The following production rules define Modelica Components:

component_clause:

 type_prefix type_specifier [array_subscripts] component_list

type_prefix :

 [flow]

 [discrete | parameter | constant] [input | output]

type_specifier :

 name

component_list :

 component_declaration { "," component_declaration }

component_declaration :

 declaration [conditional_attribute] comment

conditional_attribute:

 if expression

declaration :

 IDENT [array_subscripts] [modification]

In order to include all necessary aspects of a components declaration a new stereotype is introduced.

	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	UML4SysML::Property
	«ModelicaComponent»
	Can be applied to both value and part properties.

The following table lists all associated tags of the «ModelicaComponent» stereotype. Multiplicity [1] indicates a mandatory value and [0..1] indicates optional values. Empty “Initial Value” field implies an empty string (null).
SysML4Modelica Stereotype «ModelicaComponent»
	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment

	Accessibility
	ModelicaAccess = enumeration(public, protected)
	[0..1], public
	The initial value can be omitted in Modelica.

	Scope
	ModelicaScope = enumeration(inner, outer)
	[0..1],
	The initial value can be omitted in Modelica.

	Causality
	ModelicaCausality = enumeration(none, input, output)
	[1], none
	The initial value can be omitted in Modelica.

	Variability
	ModelicaVariability = enumeration(constant, parameter, discrete, continuous)
	[1], continuous
	The initial value can be omitted in Modelica.

	flowFlag
	ModelicaFlowFlag = enumeration(flow, non-flow)
	[1], non-flow
	The initial value can be omitted in Modelica.

This tag can only be applied to variables of type ModelicaReal!

	Modification
	String
	[0..*],
	Modification refers to the short-hand notation used in Modelica for modify or redeclare values and types in usages and specialisations. . The parenthesis “(” and “)” are omitted.

	isFinal
	Boolean
	[0..1], false
	final prefix

	redeclaration
	ModelicaRedeclaration = enumeration (replaceable, redeclare)
	[0..1],
	replaceable or redeclare prefixes

	conditionalExpression
	ModelicaExpression

	[0..1],
	The result must be of type Boolean. This string contains the expression. The keyword “if” is omitted.

	declarationEquation
	ModelicaExpression

	[0..1],
	The result must be of the same type as the ModelicaComponent itself. Declaration Equation refers to the shorthand notation in Modelica. In this case the value of the tag is the right-hand-expression of the equations. The “=” sign is omitted, i.e. is implicit.

	arraySize
	ModelicaExpression

	[0..*],
	There is one tag value per dimension of the array. The value of the tag is an expression that should evaluate to an Integer. Alternatively, ":" could be used as a wildcard.

TODO: - only include BNF grammar
2.1.4 Class Declarations
Class declaration in Modelica is defined by the following grammar:

class_definition :

 [encapsulated]

 [partial]

 (class | model | record | block | [expandable] connector | type |

 package | function)

 class_specifier

class_specifier :

 IDENT string_comment composition end IDENT

 | IDENT "=" base_prefix name [array_subscripts]

 [class_modification] comment

 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment

 | IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

 | extends IDENT [class_modification] string_comment composition

 end IDENT

base_prefix :

type_prefix

enum_list : enumeration_literal { "," enumeration_literal}

enumeration_literal : IDENT comment

composition :

 element_list

 { public element_list |

 protected element_list |

 equation_section |

 algorithm_section

 }

 [external [language_specification]

 [external_function_call] [annotation ";"]

 [annotation ";"]]

language_specification :

 STRING

external_function_call :

 [component_reference "="]

 IDENT "(" [expression_list] ")"

element_list :

 { element ";" | annotation ";" }

element :

 import_clause |

 extends_clause |

 [redeclare]

 [final]

 [inner] [outer]

 ((class_definition | component_clause) |

 replaceable (class_definition | component_clause)

 [constraining_clause comment])

import_clause :

 import (IDENT "=" name | name ["." "*"]) comment

The following tables list the tags required for class declaration in Modelica.

SysML4Modelica Stereotypes «ModelicaModel», «ModelicaBlock», «ModelicaRecord», «ModelicaType», «ModelicaPackage»
	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment

	isEncapsulated
	BooleanType
	[0..1], false
	Same as isEncapsulated in UML. This is actually not a new tag.

	isPartial
	BooleanType
	[0..1], false
	Corresponds to isAbstract in UML. This tag can omitted if isAbstract is used.

2.1.4.1 Short Class Definitions
Modelica provides a short-hand notation for definition of classes. It is a short-hand notation for an inheritance construct. However, this is the only way for defining ModelicaTypes. Therefore, the tag shortClassDefinition is included into the stereotype. TBD (Peter) is this correct?
SysML4Modelica Stereotype «ModelicaType»
	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment (from Modelica specification)

	shortClassDefinition
	StringType
	[0..1],
	This is the short-hand class declaration. Except for ModelicaType the same can be expressed using inheritance construct.

[Chris Paredis] : This is semantically a very weak way of covering the short-hand definitions. Many of these shorthand definitions are redundant, in which case we should map them to the non-short-hand versions in SysML; Others (such as "der" cannot be expressed in non-short-hand — for those we should create additional constructs in SysML.
2.1.4.2 Local Class Definitions – Nested Classes
Modelica allows definitions nested classes definition.
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	UML4SysML::Class::nestedClassifier
	«ModelicaNestedClassRelation»
	

2.2 Inheritance, Modification, and Redeclaration
The extends clause of Modelica is mapped to SysML Generalization. Both concepts have same semantics.

Modelica extends syntax (p.61):

extends_clause :

 extends name [class_modification] [annotation]

constraining_clause :

 extends name [class_modification]
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	UML4SysML::Generalization
	«ModelicaExtendsRelation»
	

	UML4SysML::Generalization

	«ModelicaTypeRelation»
	Can only be used between two subclasses of ValueTypes

An inherited class can be modified.
This is reflected by the additional tag “modification”.

SysML4Modelica Stereotype «ModelicaExtendsRelation»
	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment (from Modelica specification)

	modification
	ModelicaModification

	[0..*],
	Each comma-separated entry of a Modelica modification construct is represented by a separate tag value. Comma is omitted.

SysML4Modelica Stereotype « ModelicaTypeRelation »
	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment (from Modelica specification)

	arraySize
	ModelicaExpression
	[0..*]
	

	modification
	ModelicaModification

	[0..*],
	Each comma-separated entry of a Modelica modification construct is represented by a separate tag value. Comma is omitted.

TODO: BNF for Modelica modification grammar
2.3 Equations
Equations and Algorithm are the main Modelica constructs for defining behavior of classes. These constructs are mapped to UML Constraint. For later discussions: Why not mapping them to ConstraintBlocks/Properties
?

	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	UML4SysML::Constraint
	«ModelicaInitialEquation»
	Represents initial equation section

	UML4SysML::Constraint
	«ModelicaEquation»
	Represents equation section

	UML4SysML::Constraint
	«ModelicaInitialAlgorithm»
	Represents initial algorithm section

	UML4SysML::Constraint
	«ModelicaAlgorithm»
	Represents algorithm section

Each of the stereotypes includes the tag “specification” which contains the actual equation or algorithm section. The equation itself is captured in the Constraint Specification field.
2.4 Connectors and Connections
In Modelica the causality of the connector is defined in the type while the flow direction of a FlowPort is associated with a usage. Thus Modelica connector cannot be mapped to FlowPort.
Alternatives:

1. (preferred solution) discard the direction attribute of an atomic FlowPorts, and FlowPort to an instance of a Modelica Connector in a Modelica Model/Block.
2. Connector Modelica is conceptually an interaction point, same is a Port in UML -> Define a new SysML construct form UML Ports, call it ???
Based on alternative 1: «ModelicaConnector» is a type for an atomic FlowPort. FlowPort name is the name of the instance of a connector in a «ModelicaModel» or «ModelicaBlock».

Modelica connection is mapped to SysML connector. No new stereotype provided the FlowPorts are typed by FlowSpecification having «ModelicaConnector» applied to it.

	UML4SysML:: Connector
	Connection clause

2.5 Arrays
The representation of arrays is included into the stereotypes «ModelicaComponent» and «ModelicaType».
2.6 Statements and Algorithm Sections
The representation of statements and algorithm is provided by the stereotypes «ModelicaInitialEquation», «ModelicaEquation», «ModelicaInitialAlgorithm», «ModelicaAlgorithm».
2.7 Functions

The representation of function is provided by the «ModelicaFunction» stereotype.
2.8 Packages

The representation of packages is included into the «ModelicaPackage» stereotype.
Chapter 3 Examples
NOTE: may be slightly out of synch with Chapter 2 after we changed our mind on a few constructs… To be updated.
3.1 The Modelica Standard Library

[image: image2.emf]ModelicaStandardLibrary MSL Package Structure [Package] pkg [] ModelicaStandardLibrary Electrical Analog Digital Machines MultiPhase Mechanics Translational Rotational MultiBody Blocks Math Constants SIunits

[image: image3.emf][Package] SIunits SIunits bdd [] <<ValueType>> TranslationalSpringConstant <<ValueType>> Position <<ValueType>> Distance <<ValueType>> Acceleration <<ValueType>> ModelicaReal <<ValueType>> Force <<ValueType>> Velocity <<ValueType>> Length <<ValueType>> Mass

3.2 Oscillating Mass Connected to a Spring

This example is taken from page 156, section 5.4.4 of Peter Fritzson’s book. It consists of a mass connected by a spring to a fixed reference.

3.2.1 Relvant models from the Modelica Standard Library

3.2.1.1 Modelica.Mechanics.Translational.Components.Mass

model Mass "Sliding mass with inertia"
 parameter SI.Mass m(min=0, start=1) "mass of the sliding mass";
 parameter StateSelect stateSelect=StateSelect.default
 "Priority to use s and v as states";
 extends Translational.Interfaces.PartialRigid(L=0,s(start=0, stateSelect=stateSelect));
 SI.Velocity v(start=0, stateSelect=stateSelect)
 "absolute velocity of component";
 SI.Acceleration a(start=0) "absolute acceleration of component";
equation
 v = der(s);
 a = der(v);
 m*a = flange_a.f + flange_b.f;
end Mass;

[image: image4.emf]ModelOverview Components [Package] bdd [] <<block>> <<ModelicaModel>> ModelicaStandardLibrary::Mechanics::Translational::Interfaces:: PartialRigid <<block>> <<ModelicaModel>> ModelicaStandardLibrary::Mechanics::Translational::Interfaces:: PartialCompliant <<block>> <<ModelicaModel>> Fixed {flange.s = s0;} values s0 : Length <<FlowPort>>flange : Flange{isAtomic, direction = inout} {v = der(s); a = der(v); m*a = flange_a.f + flange_b.f;} <<block>> <<ModelicaModel>> Mass values m : Mass a : Acceleration v : Velocity stateSelect : ModelicaStateSelect <<block>> <<ModelicaModel>> Spring values c : TranslationalSpringConstant s_rel0 : Distance Modelica.Mechanics.Translational.Components One could have used a regular extends relationship here because no modification of the parent type is required <<ModelicaExtendsRelation>> { ModelicaModification = "L=0" , "s(start=0, stateSelect=stateSelect)"} <<ModelicaExtendsRelation>>

3.2.1.2 Modelica.Mechanics.Translational.Components.Spring

model Spring "Linear 1D translational spring"

 extends Translational.Interfaces.PartialCompliant;

 parameter SI.TranslationalSpringConstant c(final min=0, start = 1)

 "spring constant ";

 parameter SI.Distance s_rel0=0 "unstretched spring length";

equation

 f = c*(s_rel - s_rel0);

end Spring;

3.2.1.3 Modelica.Mechanics.Translational.Components.Fixed

model Fixed "Fixed flange"
 parameter SI.Position s0=0 "fixed offset position of housing";
 Interfaces.Flange_b flange;
equation
 flange.s = s0;
end Fixed;

3.2.1.4 Modelica.Mechanics.Translational.Interfaces.PartialRigid

partial model PartialRigid
 "Rigid connection of two translational 1D flanges "
 SI.Position s
 "Absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2)";
 parameter SI.Length L(start=0)
 "Length of component, from left flange to right flange (= flange_b.s - flange_a.s)";
 Flange_a flange_a "Left flange of translational component";
 Flange_b flange_b "Right flange of translational component";
equation
 flange_a.s = s - L/2;
 flange_b.s = s + L/2;
end PartialRigid;

[image: image5.emf]ModelOverview [Package] Interfaces bdd [] <<block>> <<ModelicaModel>> PartialRigid {flange_a.s = s - L/2;
 flange_b.s = s + L/2;} values s : Position L : Length <<FlowPort>>flange_a : Flange{isAtomic, direction = inout} <<FlowPort>>flange_b : Flange{isAtomic, direction = inout} <<block>> <<ModelicaModel>> PartialCompliant {s_rel = flange_b.s - flange_a.s;
 flange_b.f = f;
 flange_a.f = -f;} values s_rel : Distance f : Force <<FlowPort>>flange_a : Flange{isAtomic, direction = inout} <<FlowPort>>flange_b : Flange{isAtomic, direction = inout} <<block>> <<ModelicaConnector>> Flange values s : Position f : Force Modelica.Mechanics.Translational.Interfaces In Modelica we have two different types (Flange_a and Flange_b) but they are identical except for the icon. In Modelica this is an important visual cue to recognize the direction of the coordinate system. This same information can be expressed through the name of the usage. Length L has been modified, but the tagged values of the property do not show up in the diagram How can one make the <<ModelicaFlow>> stereotype show up here?

3.2.1.5 Modelica.Mechanics.Translational.Interfaces.PartialCompliant

partial model PartialCompliant

 "Compliant connection of two translational 1D flanges"

 Flange_a flange_a "Left flange of compliant 1-dim. translational component";

 Flange_b flange_b "Right flange of compliant 1-dim. translational component";

 SI.Distance s_rel(start=0) "relative distance (= flange_b.s - flange_a.s)";

 SI.Force f "force between flanges (positive in direction of flange axis R)";

equation

 s_rel = flange_b.s - flange_a.s;

 flange_b.f = f;

 flange_a.f = -f;

end PartialCompliant;

3.2.1.6 Modelica.Mechanics.Translational.Interfaces.Flange_a and Flange_b
connector Flange_a
 "(left) 1D translational flange (flange axis directed INTO cut plane, e. g. from left to right)"
 SI.Position s "absolute position of flange";
 flow SI.Force f "cut force directed into flange";
end Flange_a;
connector Flange_b
 "right 1D translational flange (flange axis directed OUT OF cut plane)"
 SI.Position s "absolute position of flange";
 flow SI.Force f "cut force directed into flange";
end Flange_b;
3.2.2 Top-Level Mass-Spring-Fixed Model

model Oscillator

 Modelica.Mechanics.Translational.Components.Mass mass1(

 L=1,m=1,s(start=-0.5));

 Modelica.Mechanics.Translational.Components.Spring spring1(

 c=10000, s_rel0=2);

 Modelica.Mechanics.Translational.Components.Fixed fixed1(s0=1);

equation

 connect(spring1.flange_b, fixed1.flange);

 connect(mass1.flange_b, spring1.flange_a);

end Oscillator;

[image: image12.emf]mass

1

m

=

1

spring

1

fixed1

[image: image6.emf]Oscillator Oscillator [Block] ibd [] <<block>> <<ModelicaModel>> spring1 : Spring flange_a : Flange flange_b : Flange <<block>> <<ModelicaModel>> fixed1 : Fixed flange : Flange <<block>> <<ModelicaModel>> mass1 : Mass flange_a : Flange flange_b : Flange

3.3 Car Suspension Design

This example is taken from a paper by Tommy Johnson, Chris Paredis and Roger Burkhart… to be completed.

Add also requirements, ModelicaExperiment and parametric diagrams binding the Modelica parameter values to the values of the structural properties of the car.

Chapter 4 Issues

4.1 Units and Dimensions

Modelica has its own definition of units and dimensions as defined in the Modelica Standard Library package Modelica.SIunits. Ideally, the SysML and Modelica units and dimensions should be aligned so that there is no duplication and confusion between the two. For the time being, we have opted to use the Modelica units inside Modelica models in order to guarantee consistency with the Modelica Standard Library.

4.2 Definition of Classes inside Classes

Modelica allows for classes (packages, models, fuctions, …) to be defined within another class.

One could overcome this problem by associating a package with local definitions associated with each ModelicaClass in SysML. However, this still does not address the issue of redeclaration of such packages.

4.3 Arrays

We need better support for arrays in SysML…

Chapter 5 Modelica Profile

This chapter contains a summary of all the SysML extensions introduced in Chapter 2.

[image: image7.emf]Package Structure Modelica Profile [Profile] pkg [] <<profile>> Modelica Profile Basic Types Classes Component Other

[image: image8.emf]Modelica Component Stereotypes Component [Package] pkg [] <<stereotype>> ModelicaComponent [Class, Property] +Direction : ModelicaCausality [1] = inout +Variability : ModelicaVariability [1] = continuous +FlowFlag : ModelicaFlowFlag [1] = nonflow +ModelicaModification : String [0..*] +DeclarationEquation : String [0..1] +ArraySize : String [0..*] <<enumeration>> ModelicaFlowFlag nonflow flow <<enumeration>> ModelicaStateSelect always default prefer never avoid continuous parameter constant discrete <<enumeration>> ModelicaVariability <<enumeration>> ModelicaCausality output inout input The ModelicaModification refers to the short-hand form used in Modelica to modify values and types in usages and specializations FlowFlag = flow can only be applied for Variables of type Real DeclarationEquatio n tag contains the RHS expression for the assignment equation; note: the euqal sign should not be included in the string These same tags may need to be added to Modelica definitions (rather than just attributes) we still need to capture the "final" qualifier

[image: image9.emf]Modelica Class Stereotypes [Package] Classes pkg [] <<stereotype>> ModelicaExtendsRelation [Generalization] +ModelicaModification : String [0..*] <<stereotype>> ModelicaExperiment [Class] +startTime : Real +stopTime : Real +model : ModelicaModel <<stereotype>> ModelicaClassConcept [Class] <<stereotype>> Block [Class] -isEncapsulated : Boolean <<stereotype>> ModelicaType [Class] +ArraySize : String [0..*] <<stereotype>> ModelicaConnector [Class] <<stereotype>> ModelicaFunction [Class] <<stereotype>> ModelicaPackage [Class] <<stereotype>> ModelicaRecord [Class] <<stereotype>> ModelicaModel [Class] <<stereotype>> ModelicaBlock [Class] maps to SysML package import is supported in both languages, but is there purely for convenience in Modelica Class generalization ("extend" in Modelica) requires a stereotype to account for the local modification of the type that is being extended

[image: image10.emf]Modelica Types Basic Types [Package] pkg [] <<ValueType>> ModelicaReal start : Real = 0 quantity : String unit : String displayUnit : String min : Real = -Inf max : Real = +Inf fixed : Boolean nominal : Real stateSelect : ModelicaStateSelect = default <<ValueType>> Real we have left off the value attribute because that is automatically included by specializing Real We still need to create similar definitions for Integer, Boolean, and String

[image: image11.emf]Other Related Constructs [Package] Other pkg [] <<stereotype>> ModelicaExperiment [Class] +startTime : Real +stopTime : Real +model : ModelicaModel Although this is not a Modelica language construct, it is included here to distinguish clearly between a Modelica model and its use in a (simulation) experiment.

Chapter 6 References

Akhvlediani, D. (2006). Design and implementation of a UML profile for Modelica/SysML. M.S. Thesis. Department of Computer Science. Linköping University, Linköping, Sweden. LITH-IDA-EX--06/061—SE.

Fritzson, P. (2004). Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. New York, NY, Wiley-IEEE Press.

Johnson, T. A. (2008). Integrating Models and Simulations of Continuous Dynamic System Behavior into SysML. M.S. Thesis. G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. Atlanta, GA.

Johnson, T. A., C. J. J. Paredis and R. M. Burkhart (2008). "Integrating Models and Simulations of Continuous Dynamics into SysML." 6th International Modelica Conference, Bielefeld, Germany, March 3-4, Modelica Association, 135-145.

Modelica Association, (2008) Modelica Specification: http://www.modelica.org/documents/ModelicaSpec30.pdf

Pop, A., and Akhvlediani, D., and Fritzson, P. (2007). "Towards Unified Systems Modeling with the ModelicaML UML Profile." International Workshop on Equation-Based Object-Oriented Languages and Tools. Berlin, Germany, Linköping University Electronic Press.
Peak, R., McGinnis, L., Paredis, C. (2008) "Integrating System Design with Simulation and Analysis Using SysML – Phase 1 Final Report," (available from russell.peak@gatech.edu)

Chapter 7 Contributors

The following people have contributed significantly to this document either directly or indirectly through discussions and feedback:

Roger Burkhart

Sandy Friedenthal

Peter Fritzson

Thomas Johnson

Chris Paredis

Russell Peak

Wladimir Schamai

Appendix A

Glossary

algorithm section: part of a class definition consisting of the keyword algorithm followed by a sequence of statements. Like an equation, an algorithm section relates variables, i.e. constrains the values that these variables can take simultaneously. In contrast to an equation section, an algorithm section distinguishes inputs from outputs: An algorithm section specifies how to compute output variables as a function of given input variables. A Modelica processor may actually invert an algorithm section, i.e. compute inputs from given outputs, e.g by search (generate and test), or by deriving an inverse algorithm symbolically.

array or array variable: a component whose components are array elements. For an array, the ordering of its components matters: The kth element in the sequence of components of an array x is the array element with index k, denoted x[k]. All elements of an array have the same type. An array element may again be an array, i.e. arrays can be nested. An array element is hence referenced using n indices in general, where n is the number of dimensions of the array. Special cases are matrix (n=2) and vector (n=1). Integer indices start with 1, not zero.

array element: a component contained in an array. An array element has no identifier. Instead they are referenced by array access expressions called indices that use enumeration values or positive integer index values.

assignment: a statement of the form x := expr. The expression expr must not have higher variablity than x.

attribute: a component contained in a scalar component, such as min, max, and unit. All attributes are predefined and attribute values can only be defined using a modification, such as in Real x(unit="kg"). Attributes cannot be accessed using dot notation, and are not constrained by equations and algorithm sections. E.g. in Real x(unit="kg") = y; only the values of x and y are declared to be equal, but not their unit attributes, nor any other attribute of x and y.

base class or base: class A is called a base class of B, if class B extends class A. This relation is specified by an extends clause in B or in one of B's base classes. A class inherits all elements from its base classes, and may modify all non-final public elements inherited from base classes.

binding equation: Either a declaration equation or an element modification for the value of the variable. A component with a binding equation has its value bound to some expression.

class restriction: property of a class: one of: model, connector, package, record, block, function, type. The class restriction of a class represents an assertion regarding the content of the class and restricts its use in other classes. For example, a class having the package class restriction must only contain classes and constants.

class: a description that generates an object called instance. The description consists of a class definition, an optional qualified modification (called modification environment) that modifies the class definition, an optional list of qualified dimension expressions if the class is an array class, and a enclosing class for all classes except the root class.

class definition: a node in the class tree. It has a name, an enclosing class, and may contain elements.

class tree: tree of class definitions rooted at the unnamed root package. In this tree, the children of a class definition cd are exactly those elements of the cd which themselves are class definitions. In particular, a class definition inherited to cd is not a child of cd.

component or variable: an instance generated by a component declaration. Special cases of components are scalar, array, and attribute.

component declaration: an element of a class definition that generates a component. A component declaration specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order to generate the component and (3) an optional Boolean parameter expression. Generation of the component is suppressed if this parameter expression evaluates to false. A component declaration may be overidden by an element redeclaration.

component reference: An expression containing a sequence of idents and indices. A component reference is equivalent to the referenced object, which must be a component or function. A component reference is resolved (evaluated) in the scope of a class (or expression for the case of a local iterator variable). A scope defines a set of visible components and classes. Example reference: Ele.Resistor.u[21].r
declaration assignment: assignment of the form x := expression defined by a component declaration. This is similar to a declaration equation. In contrast to a declaration equation, a declaration assignment is allowed only when declaring a component contained in a function.

declaration equation: Equation of the form x = expression defined by a component declaration. The expression must not have higher variability than the declared component x. Unlike other equations, a declaration equation can be overriden (replaced or removed) by an element modification.

derived class or subclass, extended class: class B is called derived from A, if B extends A

element: part of a class definition, generates an instance, one of class definition, component declaration or extends clause. Component declaration and class definition are called named elements. An element is either inherited from a base or local.

environment: a qualified modification used to define a class. The environment of a class defines how to modify the corresponding class definition when instantiating the class.

equation: part of a class definition. An equation relates scalar variables, i.e. constrains the values that these variables can take simultaneously. When n-1 variables of an equation containing n variables are known, the value of the nth variable can be inferered (solved for). In contrast to an algorithm section, an equation does not define, for which of its variable it is to be solved. Special cases are: initial equation, instantaneous equation, declaration equation.

event: something that occurs instantaneously at a specific time or when a specific condition occurs. Events are for example defined by the condition occuring in a when clause, if clause, or if expression.

extends clause: an unnamed element of a class definition that uses a name and an optional unqualified modification to specify a base of the class defined using the class defintion.

expression: a term built from components or component references (refering to functions or components) and literals. Each expression has a type and a variability.

function: a class of class restriction function, or a component generated by a class of class restriction function

global package: a predefined unnamed package without enclosing class that contains the predefined elements Real, Integer, Boolean, String, and time.

flattening: the computation that creates a flattened class of a given class.

instantaneous: An equation or statement is instantaneous if it holds only at events, i.e. at single points in time. The equations and statements of a when-clause are instantaneous.

identifier or id or ident: an atomic (not composed) name. Example: Resistor
index or subscript: An expression, typically of Integer type or the colon symbol (:), used to reference a component (or a range of components) of an array.

instance: the object generated by a class. An instance contains zero or more components. An instance may also be associated with qualified equations and algorithms. An instance has a type. Basically, two instances have same type, if their public components and classes have pairwise equal idents and types. More specific type equivalence definitions are given e.g. for functions.

instance tree: a tree where each tree node is an instance and the children are given by the components of the instance.

literal: a real, integer, boolean, enumeration, or string literal. Used to build expressions.

local: an element of a class definition is called local if it is not inherited (modified or not) from another class definition.

matrix: an array with dimension 2.

modification: part of an element. Modifies the instance generated by that element. A modification contains element modifications and element redeclarations.

element modification: part of a modification, overrides declaration equations in the instance generated by the modified element. Example: vcc(unit="Volt")=1000.

element redeclaration: part of a modification, replaces one of the named elements possibly used to build the instance generated by the element that contains the redeclaration. Example: redeclare class Voltage = Real(unit="Volt") replaces class Voltage.

name: Sequence of one or more identifiers. Used to reference a class. A class name is resolved in the scope of a class, which defines a set of visible classes. Example name: "Ele.Resistor".

prefix: boolean property of an element of a class definition, e.g. final, public, flow.

predefined type: one of the types Real, Boolean, Integer, String. The component declarations of the predefined types define attributes, such as min, max, and unit.

primitive type: one of the built-in types RealType, BooleanType, IntegerType, StringType, EnumType. The primitive types are used to define attributes and value of predefined types and enumeration types.

qualified: An expression, modification, equation, or algorithm is called qualified if it does not contain a component reference. Qualification is part of flattening. To qualify an object that contains a component reference, the reference is resolved (looked up) in the scope of the class that contains the reference, and replaced by the resulting component or function.

root package: root of the class tree, an unnamed package that contains all top-level class definitions, i.e. class definitions (typically of class restriction package) found in the directories listed in the MODELICAPATH. The ordering of the directories in MODELICAPATH matters. The class definition found first hides all other class definitions with the same name found later.

scalar or scalar variable: a component of predefined type or enumeration type.

subtype or compatible with: relation between types. A is a subtype of (compatible with) B
supertype: relation between types. The inverse of subtype. A is a subtype of B means that B is a supertype of A.

transitively nonreplaceable: a class reference is considered transitively non-replaceable if there are no replaceable elements in the referenced class, or any of its base classes or constraining types transitively at any level.

type or interface: property of an instance or expression.

variable: synonym for component.

variability: property of an expression: one of

•
continuous: a real-valued expression that may change its value at any point in time

•
discrete: may change its value only at events during simulation

•
parameter: may change its value only between two simulation runs of the executable

•
constant: may change its value only when rebuilding the executable

Assignments x := expr and binding equations x = expr must satisfy a variablity constraint: The expression must not have a higher variability than component x.

vector: an array with dimension 1.

Appendix B

Modelica Concrete Syntax

B.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[] optional

{ } repeat zero or more times

| or

The following lexical units are defined:

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" (Q-CHAR | S-ESCAPE) { Q-CHAR | S-ESCAPE } "’"

NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z"

STRING = """ { S-CHAR | S-ESCAPE } """

S-CHAR = any member of the source character set except double-quote """, and backslash "\"

Q-CHAR = any member of the source character set except single-quote "’", and backslash "\"

S-ESCAPE = "\’" | "\"" | "\?" | "\\" |

 "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

UNSIGNED_INTEGER = DIGIT { DIGIT }

UNSIGNED_NUMBER = UNSIGNED_INTEGER ["." [UNSIGNED_INTEGER]]

[("e" | "E") ["+" | "-"] UNSIGNED_INTEGER]

[The single quotes are part of an identifier. E.g. ’x’ and x are different IDENTs].

Note: string constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the "+" operator in Modelica.

Modelica uses the same comment syntax as C++ and Java, and also has structured comments in the form of annotations and string comments. Inside a comment, the sequence <HTML> </HTML> indicates HTML code which may be used by tools to facilitate model documentation.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used as identifiers, with the exception of initial which is a keyword in section headings, but it is also possible to call the function initial().

B.2 Grammar

B.2.1 Stored Definition – Within

stored_definition:

 [within [name] ";"]

 { [final] class_definition ";" }

B.2.2 Class Definition

class_definition :

 [encapsulated]

 [partial]

 (class | model | record | block | [expandable] connector | type |

 package | function)

 class_specifier

class_specifier :

 IDENT string_comment composition end IDENT

 | IDENT "=" base_prefix name [array_subscripts]

 [class_modification] comment

 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment

 | IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

 | extends IDENT [class_modification] string_comment composition

 end IDENT

base_prefix :

type_prefix

enum_list : enumeration_literal { "," enumeration_literal}

enumeration_literal : IDENT comment

composition :

 element_list

 { public element_list |

 protected element_list |

 equation_section |

 algorithm_section

 }

 [external [language_specification]

 [external_function_call] [annotation ";"]

 [annotation ";"]]

language_specification :

 STRING

external_function_call :

 [component_reference "="]

 IDENT "(" [expression_list] ")"

element_list :

 { element ";" | annotation ";" }

element :

 import_clause |

 extends_clause |

 [redeclare]

 [final]

 [inner] [outer]

 ((class_definition | component_clause) |

 replaceable (class_definition | component_clause)

 [constraining_clause comment])

import_clause :

 import (IDENT "=" name | name ["." "*"]) comment

B.2.3 Extends

extends_clause :

 extends name [class_modification] [annotation]

constraining_clause :

 extends name [class_modification]

B.2.4 Component Clause

component_clause:

 type_prefix type_specifier [array_subscripts] component_list

type_prefix :

 [flow]

 [discrete | parameter | constant] [input | output]

type_specifier :

 name

component_list :

 component_declaration { "," component_declaration }

component_declaration :

 declaration [conditional_attribute] comment

conditional_attribute:

 if expression

declaration :

 IDENT [array_subscripts] [modification]

B.2.5 Modification

modification :

 class_modification ["=" expression]

 | "=" expression

 | ":=" expression

class_modification :

 "(" [argument_list] ")"

argument_list :

 argument { "," argument }

argument :

 element_modification_or_replaceable

 | element_redeclaration

element_modification_or_replaceable:

 [each] [final] (element_modification | element_replaceable)

element_modification :

 component_reference [modification] string_comment

element_redeclaration :

 redeclare [each] [final]

((class_definition | component_clause1) | element_replaceable)

element_replaceable:

 replaceable (class_definition | component_clause1)

 [constraining_clause]

component_clause1 :

 type_prefix type_specifier component_declaration1

component_declaration1 :

 declaration comment

B.2.6 Equations

equation_section :

 [initial] equation { equation ";" | annotation ";" }

algorithm_section :

 [initial] algorithm { statement ";" | annotation ";" }

equation :

 (simple_expression "=" expression

 | if_equation

 | for_equation

 | connect_clause

 | when_equation

 | IDENT function_call_args)

 comment

statement :

 (component_reference (":=" expression | function_call_args)

 | "(" output_expression_list ")" ":=" component_reference function_call_args

 | break
 | return
 | if_statement

 | for_statement

 | while_statement

 | when_statement)

 comment

if_equation :

 if expression then
 { equation ";" }

 { elseif expression then
 { equation ";" }

 }

 [else
 { equation ";" }

]

 end if
if_statement :

 if expression then
 { statement ";" }

 { elseif expression then
 { statement ";" }

 }

 [else
 { statement ";" }

]

 end if
for_equation :

 for for_indices loop
 { equation ";" }

 end for
for_statement :

 for for_indices loop
 { statement ";" }

 end for
for_indices :

 for_index {"," for_index}

for_index:

 IDENT [in expression]

while_statement :

 while expression loop
 { statement ";" }

 end while
when_equation :

 when expression then
 { equation ";" }

 { elsewhen expression then
 { equation ";" } }

 end when
when_statement :

 when expression then
 { statement ";" }

 { elsewhen expression then
 { statement ";" } }

 end when
connect_clause :

 connect "(" component_reference "," component_reference ")"

B.2.7 Expressions

expression :

 simple_expression

 | if expression then expression { elseif expression then expression }

 else expression

simple_expression :

 logical_expression [":" logical_expression [":" logical_expression]]

logical_expression :

 logical_term { or logical_term }

logical_term :

 logical_factor { and logical_factor }

logical_factor :

 [not] relation

relation :

 arithmetic_expression [rel_op arithmetic_expression]

rel_op :

 "<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic_expression :

 [add_op] term { add_op term }

add_op :

 "+" | "-"

term :

 factor { mul_op factor }

mul_op :

 "*" | "/"

factor :

 primary ["^" primary]

primary :

 UNSIGNED_NUMBER

 | STRING

 | false
 | true
 | name function_call_args

 | component_reference

 | "(" output_expression_list ")"

 | "[" expression_list { ";" expression_list } "]"

 | "{" function_arguments "}"

 | end
name :

 IDENT ["." name]

component_reference :

 IDENT [array_subscripts] ["." component_reference]

function_call_args :

 "(" [function_arguments] ")"

function_arguments :

 expression ["," function_arguments | for for_indices]

 | named_arguments

named_arguments: named_argument ["," named_arguments]

named_argument: IDENT "=" expression

output_expression_list:

 [expression] { "," [expression] }

expression_list :

 expression { "," expression }

array_subscripts :

 "[" subscript { "," subscript } "]"

subscript :

 ":" | expression

comment :

 string_comment [annotation]

string_comment :

 [STRING { "+" STRING }]

annotation :

 annotation class_modification

Appendix C

Modelica Abstract Syntax

The abstract syntax (AST) of Modelica is not standardized. The following is one possible definition, defined in an extended subset of Modelica (also known as MetaModelica) and used in the OpenModelica specification/implementation of Modelica which originated as a Structural Operational Semantics/Natural Semantics specification, the first version from 1998. The abstract syntax has been designed with several goals in mind:

· Complete representation of all Modelica language constructs.

· Reconstruction of the source code from the AST.

· Use for semantic specification, type checking, and compilation.

Syntax type classes are defined using the uniontype construct. A union type is the union of all the record types it contains. Recursive references to a union type are allowed. Components with optional values are declared at instances of the Option<...> parameterized type constructor. In a few cases the tuple<type1,type2,...> type constructor is used. A tuple type can be described as an anonymous record type, where the record type name and the field names are not defined.

This particular definition uses lists to represent sequences of items. However, this is not necessary. Arrays could be used instead. For example, list<Class> classes; within the PROGRAM record in Section C.2 below could in principle be replaced by Class[:] classes;.

C.1 Identifiers

Indentifiers, for example variable names:

 type Ident = String;

C.2 Program – the Top Level Construct

A program is simply a list of class definitions declared at top level in the source file, combined with a within clause that indicates the hierarchical position of the program.

uniontype Program

 record PROGRAM

 list<Class> classes;

 Within withinClause;

 end PROGRAM;

end Program;

C.3 Within Clause

uniontype Within

 record WITHIN

 Path path;

 end WITHIN;

 record TOP end TOP;

end Within;

C.4 Classes

A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared class restriction, and the body of the declaration.

uniontype Class

 record CLASS

 Ident name;

 Boolean isPartial "true if partial";

 Boolean isFinal "true if final";

 Boolean isEncapsulated "true if encapsulated" ;

 Restriction restriction;

 ClassDefinition body;

 Info info "Source code postion Information:

 FileName where the class is defined in &

 isReadOnly bool & start line no & start column no &

 end line no & end column no";

 end CLASS;

end Class;

C.5 ClassDefinition

The ClassDefinition type contains the definition part of a class declaration. The definition is either explicit, with a list of parts (public, protected, equation, and algorithm), or it is a definition derived from another class or an enumeration type.

 For a derived type, DERIVED(), the type contains the name of the derived class and an optional array dimension and a list of modifications.

uniontype ClassDefinition

 record PARTS

 list<ClassPart> classParts;

 Option<String> comment;

 end PARTS;

 record DERIVED

 Path path;

 Option<ArrayDimensions> arrayDim;

 ElementAttributes attributes;

 list<ElementArgument> arguments;

 Option<Comment> comment;

 end DERIVED;

 record ENUMERATION

 EnumDefinition enumLiterals;

 Option<Comment> comment;

 end ENUMERATION;

 record OVERLOAD

 list<Path> functionNames;

 Option<Comment> comment;

 end OVERLOAD;

 record CLASS_EXTENDS

 Ident name "class to extend";

 list<ElementArgument> arguments;

 Option<String> comment;

 list<ClassPart> parts;

 end CLASS_EXTENDS;

 record PDER

 Path functionName;

 list<Ident> vars;

 end PDER;

end ClassDefinition;

C.6 EnumDefinition

The definition of an enumeration type is either a list of literals or a colon, :, which defines the supertype of all enumerations.

uniontype EnumDefinition

 record ENUMLITERALS

 list<EnumLiteral> enumLiterals;

 end ENUMLITERALS;

 record ENUM_COLON

 end ENUM_COLON;

end EnumDefinition;

C.7 EnumLiteral

An enumeration type contains a list of EnumLiteral, which is a name in an enumeration and an optional comment.

uniontype EnumLiteral

 record ENUMLITERAL

 Ident literal;

 Option<Comment> comment;

 end ENUMLITERAL;

end EnumLiteral;

C.8 ClassPart

A class definition contains several parts. There are public and protected component declarations, type definitions and extends-clauses, collectively called elements. There are also equation sections and algorithm sections. The EXTERNAL part is used only by functions which can be declared as external C or FORTRAN functions.

uniontype ClassPart

 record PUBLIC

 list<ElementItem> contents;

 end PUBLIC;

 record PROTECTED

 list<ElementItem> contents;

 end PROTECTED;

 record EQUATIONS

 list<EquationItem> contents;

 end EQUATIONS;

 record INITIALEQUATIONS

 list<EquationItem> contents;

 end INITIALEQUATIONS;

 record ALGORITHMS

 list<AlgorithmItem> contents;

 end ALGORITHMS;

 record INITIALALGORITHMS

 list<AlgorithmItem> contents;

 end INITIALALGORITHMS;

 record EXTERNAL

 ExternalDeclaration externalDecl;

 Option<Annotation> annotationNode;

 end EXTERNAL;

end ClassPart;

C.9 ElementItem

An element item is either an element or an annotation.

uniontype ElementItem

 record ELEMENTITEM

 Element element;

 end ELEMENTITEM;

 record ANNOTATIONITEM

 Annotation annotationNode;

 end ANNOTATIONITEM;

end ElementItem;

C.10 Element

The basic element type in Modelica.

uniontype Element

 record ELEMENT

 Boolean isFinal;

 Option<RedeclareKeywords> redeclareKeywords "i.e., replaceable or redeclare";

 InnerOuter innerOuter "inner, outer or both";

 Ident name;

 ElementSpecification specification "Actual element specification" ;

 Info info "The File name the class is defined in & line & column no" ;

 Option<ConstrainingType> constrainingType

 "only valid for classdef and component";

 end ELEMENT;

 record TEXT

 Option<Ident> optName "Optional name of text, e.g. model with syntax error.

 Name needed to be able to browse incomplete models" ;

 String string;

 Info info;

 end TEXT;

end Element;

C.11 ConstrainingType

Constraining type (i.e., not inheritance), currently specified using the extends keyword.

uniontype ConstrainingType

 record CONSTRAININGTYPE

 ElementSpecification elementSpec "must be extends";

 Option<Comment> comment;

 end CONSTRAININGTYPE;

end ConstrainingType;

C.12 ElementSpecification

An element is something that occurs in a public or protected section in a class definition. There is one constructor in the ElementSpecification type for each possible element type. There are class definitions (CLASSDEF), extends clauses (EXTENDS) and component declarations (COMPONENTS).

As an example, if the element extends TwoPin; appears in the source, it is represented in the AST as EXTENDS(IDENT("TwoPin"),{}).

uniontype ElementSpecification

 record CLASSDEF

 Boolean isReplaceable "true if replaceable";

 Class classNode;

 end CLASSDEF;

 record EXTENDS

 Path path;

 list<ElementArgument> elementArgument;

 end EXTENDS;

 record IMPORT

 Import importNode;

 Option<Comment> comment;

 end IMPORT;

 record COMPONENTS

 ElementAttributes attributes;

 Path typeName;

 list<ComponentItem> components;

 end COMPONENTS;

end ElementSpecification;

C.13 InnerOuter

One of the keywords inner or outer or the combination inner outer can be given to reference an inner, outer or inner outer component. Thus there are four disjoint possibilities.

type InnerOuter = enumeration(

 INNER,

 OUTER,

 INNEROUTER,

 UNSPECIFIED

);

C.14 Import

Import clauses of different kinds.

uniontype Import

 record NAMED_IMPORT

 Ident name;

 Path path;

 end NAMED_IMPORT;

 record QUAL_IMPORT

 Path path;

 end QUAL_IMPORT;

 record UNQUAL_IMPORT

 Path path;

 end UNQUAL_IMPORT;

end Import;

C.15 ComponentItem

Collection of component and an optional comment.

uniontype ComponentItem

 record COMPONENTITEM

 Component component;

 Option<ComponentCondition> condition;

 Option<Comment> comment;

 end COMPONENTITEM;

end ComponentItem;

C.16 ComponentCondition

A ComponentItem can have a condition that must be fulfilled if the component should be instantiated.

type ComponentCondition = Exp;

C.17 Component

A component represents some kind of Modelica entity (object or variable). Note that several component declarations can be grouped together in one ElementSpecification by writing them in the same declaration in the source. However, this type contains the information specific to one component.

uniontype Component

 record COMPONENT

 Ident name "component name";

 ArrayDimensions arrayDim "Array dimensions, if any";

 Option<Modification> modification "Optional modification";

 end COMPONENT;

end Component;

C.18 EquationItem

uniontype EquationItem

 record EQUATIONITEM

 Equation equationNode;

 Option<Comment> comment;

 end EQUATIONITEM;

 record EQUATIONITEMANN

 Annotation annotationNode;

 end EQUATIONITEMANN;

end EquationItem;

C.19 AlgorithmItem

Information specific for an algorithmic item.

uniontype AlgorithmItem

 record ALGORITHMITEM

 AlgorithmStatement algorithmStatement;

 Option<Comment> comment;

 end ALGORITHMITEM;

 record ALGORITHMITEMANN

 Annotation annotationNode;

 end ALGORITHMITEMANN;

end AlgorithmItem;

C.20 Equation

Information on one (kind) of equation and different constructors for different kinds of equations.

uniontype Equation

 record EQ_IF

 Exp ifExp "Conditional expression";

 list<EquationItem> equationTrueItems "true branch";

 list<tuple<Exp, list<EquationItem»> elseIfBranches;

 list<EquationItem> equationElseItems "Standard 2-side eqn";

 end EQ_IF;

 record EQ_EQUALS

 Exp leftSide;

 Exp rightSide "rightSide Connect eqn" ;

 end EQ_EQUALS;

 record EQ_CONNECT

 ComponentReference connector1;

 ComponentReference connector2;

 end EQ_CONNECT;

 record EQ_FOR

 Ident forVariable;

 Exp forExp;

 list<EquationItem> forEquations;

 end EQ_FOR;

 record EQ_WHEN_E

 Exp whenExp;

 list<EquationItem> whenEquations;

 list<tuple<Exp, list<EquationItem»> elseWhenEquations;

 end EQ_WHEN_E;

 record EQ_NORETCALL

 Ident functionName;

 FunctionArguments functionArguments "function calls without return value";

 end EQ_NORETCALL;

end Equation;

C.21 AlgorithmStatement

The AlgorithmStatement type describes an algorithmic statement in an algorithm section. It does not describe a whole algorithm section..

uniontype AlgorithmStatement

 record ALG_ASSIGN

 ComponentReference assignComponent;

 Exp value;

 end ALG_ASSIGN;

 record ALG_TUPLE_ASSIGN

 Exp tupleNode;

 Exp value;

 end ALG_TUPLE_ASSIGN;

 record ALG_IF

 Exp ifExp;

 list<AlgorithmItem> trueBranch;

 list<tuple<Exp, list<AlgorithmItem»> elseIfAlgorithmBranch;

 list<AlgorithmItem> elseBranch;

 end ALG_IF;

 record ALG_FOR

 Ident forVariable;

 Exp forStmt;

 list<AlgorithmItem> forBody;

 end ALG_FOR;

 record ALG_WHILE

 Exp whileStmt;

 list<AlgorithmItem> whileBody;

 end ALG_WHILE;

 record ALG_WHEN_A

 Exp whenStmt;

 list<AlgorithmItem> whenBody;

 list<tuple<Exp, list<AlgorithmItem»> elseWhenAlgorithmBranch;

 end ALG_WHEN_A;

 record ALG_NORETCALL

 ComponentReference functionCall;

 FunctionArguments functionArguments

 "general function call without return value" ;

 end ALG_NORETCALL;

end AlgorithmStatement;

C.22 Modifications

Modifications are described by the Modification type. There are two forms of modifications: redeclarations and component modifications.

uniontype Modification

 record CLASSMOD

 list<ElementArgument> elementArgumentLst;

 Option<Exp> expOption;

 end CLASSMOD;

end Modification;

C.23 ElementArgument

Wrapper for things that modify elements, modifications and redeclarations.

uniontype ElementArgument

 record MODIFICATION

 Boolean finalItem;

 Each eachNode;

 ComponentReference componentReg;

 Option<Modification> modification;

 Option<String> comment;

 end MODIFICATION;

 record REDECLARATION

 Boolean finalItem;

 RedeclareKeywords redeclareKeywords "keywords redeclare, or replaceable";

 Each eachNode;

 ElementSpecification elementSpec;

 Option<ConstrainingType> constrainingType "class definition or declaration";

 end REDECLARATION;

end ElementArgument;

C.24 RedeclareKeywords

The keywords redeclare and replaceable can be given in three different combinations, each one by themselves or both combined.

type RedeclareKeywords = enumeration(

 REDECLARE,

 REPLACEABLE,

 REDECLARE_REPLACEABLE

);

C.25 Each

The Each attribute represented by the each keyword can be present in both MODIFICATION's and REDECLARATION's.

type Each = enumeration(

 EACH,
 NON_EACH

end Each;

C.26 ElementAttributes

This represents component attributes which are properties of components which are applied by type prefixes. As an example, declaring a component as input Real x; will give the attributes ATTR({},false, CONTINUOUS,INPUT).

uniontype ElementAttributes

 record ATTR

 Boolean isFlow; "true if flow"

 Variability variability "E.g. PARAMETER, CONSTANT etc." ;

 Direction direction;

 ArrayDimensions arrayDim;

 end ATTR;

end ElementAttributes;

C.27 Variability

Component/variable attribute variability:

type Variability = enumeration(

 CONTINUOUS // continuous-time
 DISCRETE, // discrete-time
 PARAMETER,

 CONSTANT;

);

C.28 Direction

Component/variable attribute Direction.

type Direction = enumeration(

 INPUT,

 OUTPUT,

 ACAUSAL

);

C.29 ArrayDimensions

Array dimensions are specified by the type ArrayDimensions. Components in Modelica can be scalar or arrays with one or more dimensions. This type is used to indicate the dimensionality of a component or a type definition.

type ArrayDimensions = list<Subscript>;

C.30 Exp

The Exp datatype is the container for representing a Modelica expression.

uniontype Exp

 record INTEGER

 Integer value;

 end INTEGER;

 record REAL

 Real value;

 end REAL;

 record CREF

 ComponentReference componentRef;

 end CREF;

 record STRING

 String value;

 end STRING;

 record BOOL

 Boolean value ;

 end BOOL;

 record BINARY "Binary operations, e.g. a*b, a+b, etc."

 Exp exp1;

 Operator op;

 Exp exp2;

 end BINARY;

 record UNARY "Unary operations, e.g. -(x)"

 Operator op;

 Exp exp;

 end UNARY;

 record LBINARY "Logical binary operations: and, or"

 Exp exp1;

 Operator op;

 Exp exp2;

 end LBINARY;

 record LUNARY "Logical unary operations: not"

 Operator op;

 Exp exp;

 end LUNARY;

 record RELATION "Relations, e.g. a >= 0"

 Exp exp1;

 Operator op;

 Exp exp2 ;

 end RELATION;

 record IFEXP "If expressions"

 Exp ifExp;

 Exp trueBranch;

 Exp elseBranch;

 list<tuple<Exp, Exp» elseIfBranch ;

 end IFEXP;

 record CALL "Function calls"

 ComponentReference functionRef;

 FunctionArguments functionArguments;

 end CALL;

 record ARRAY "Array construction using { } or array()"

 list<Exp> arrayExp;

 end ARRAY;

 record MATRIX "Matrix construction using []"

 list<list<Exp» matrix;

 end MATRIX;

 record RANGE "matrix Range expressions, e.g. 1:10 or 1:0.5:10"

 Exp start;

 Option<Exp> step;

 Exp stop;

 end RANGE;

 record TUPLE "Tuples used in function calls returning several values"

 list<Exp> expressions;

 end TUPLE;

 record END "Array access operator for last element, e.g. a[end]:=1;"
 end END;

end Exp;

C.31 FunctionArguments

The FunctionArguments type consists of a list of positional arguments followed by a list of named arguments.

uniontype FunctionArguments

 record FUNCTIONARGUMENTS

 list<Exp> args;

 list<NamedArg> argNames;

 end FUNCTIONARGUMENTS;

 record FOR_ITER_FARG

 Exp from;

 Ident var;

 Exp to;

 end FOR_ITER_FARG;

end FunctionArguments;

C.32 NamedArg

The NamedArg datatype consist of an Identifier for the argument and an expression giving the value of the argument.

uniontype NamedArg

 record NAMEDARG

 Ident argName "argName" ;

 Exp argValue "argValue" ;

 end NAMEDARG;

end NamedArg;

C.33 Operator

The Operator type can represent all the expression operators, binary or unary.

type Operator = enumeration(// All operators used in expressions

 ADD,

 SUB,

 MUL,

 DIV,

 POW,

 UPLUS,

 UMINUS,

 AND,

 OR,

 NOT,

 LESS,

 LESSEQ,

 GREATER,

 GREATEREQ,

 EQUAL,

 NEQUAL

);

C.34 Subscript

The Subscript data type is used both in array declarations and component references. This might seem strange, but it is inherited from the grammar. The COLONSUBSCRIPT constructor means that the dimension size is undefined when used in a declaration, and when it is used in a component reference it means a slice of the whole dimension.

uniontype Subscript

 record COLONSUBSCRIPT

 end COLONSUBSCRIPT;

 record SUBSCRIPT

 Exp subScript;

 end SUBSCRIPT;

end Subscript;

C.35 ComponentReference

A component reference is the fully or partially qualified name of a component. It is represented as a sequence of identifier-subscript pairs.

uniontype ComponentReference

 record CREF_QUAL "Component reference with fully qualified name"

 Ident name;

 list<Subscript> subScripts;

 ComponentReference componentReference;

 end CREF_QUAL;

 record CREF_IDENT "Component reference with name as an identifier"

 Ident name;

 list<Subscript> subscripts;

 end CREF_IDENT;

end ComponentReference;

C.36 Path

The type Path is used to store references to class names, or names inside class definitions.

uniontype Path

 record QUALIFIED

 Ident name;

 Path path;

 end QUALIFIED;

 record IDENT

 Ident name;

 end IDENT;

end Path;

C.37 Restriction

These items each correspond to a different kind of class declaration in Modelica, except the last four, which are used for the predefined types.

type Restriction = enumeration(

 R_CLASS,
 R_MODEL,
 R_RECORD,
 R_BLOCK,
 R_CONNECTOR,
 R_EXP_CONNECTOR,
 R_TYPE,
 R_PACKAGE,
 R_FUNCTION,
 R_ENUMERATION,
 R_PREDEFINED_INT,
 R_PREDEFINED_REAL,
 R_PREDEFINED_STRING,
 R_PREDEFINED_BOOL,
 R_PREDEFINED_ENUM,
);

C.38 Annotation

An Annotation is a class_modification.

uniontype Annotation

 record ANNOTATION

 list<ElementArgument> elementArgs;

 end ANNOTATION;

end Annotation;

C.39 Comment

uniontype Comment

 record COMMENT

 Option<Annotation> annotationNode;

 Option<String> comment;

 end COMMENT;

end Comment;

C.40 ExternalDeclaration

The type ExternalDeclaration is used to represent declaration of an external function wrapper.

uniontype ExternalDeclaration

 record EXTERNALDECL

 Option<Ident> funcName "The name of the external function";

 Option<String> lang "Language of the external function";

 Option<ComponentReference> outputValue "output parameter as return value";

 list<Exp> args "only positional arguments, i.e. expression list";

 Option<Annotation> annotationNode;

 end EXTERNALDECL;

end ExternalDeclaration;

�Sandy: yes, this is maps to namespace – we should make that explicit.

�How does this dot notation map to SysML. Is this namespace (e.g. double colon ::))?

�Are we constrained to a single choice?

�Activity Parameter Nodel should be replaced by object node, which encompasses activity parameter node and pins.

�This is a nit, but are these variables treated as properties “of” a connector, or “in” a connector.

�This section may very little reference to the mapping of parts/blocks to the corresponding element in Modelica (e.g. class).

�This is not a standard diagram so may be confusing. We should clarify what is meant for this example.

�??

�This could be extended to be consistent with the input and output concept.

�It appears at though this is implicit based on the definitions provide above “When connecting two Modelica connectors with a connection, the semantics for inputs and outputs are causal binding: the input is assigned the value of the output. Input and output connecters must therefore be used in conjugate pairs, and only one output can be connected to each input. For flow and non-flow variables, the connection semantics correspond to Kirchhoff's Laws, namely, the flow variables add up to zero and non-flow variables are set equal (in an equation-based, acausal fashion). “

�This maps to two different parameters (e.g. across and through parameters), each of which have an associated binding connector with other across and through variables.

�There would need to be a seprate constraint with binding connectors such as Kirckhoof laws to represents this type of connection. In other words, a Modelica Connection would map to a constraint property with binding connectors on either end that bind to the paramters (e.g. Modelica Connectors) on either end.

�Why?

�As I mentioned, I would like to revisit this discussion as part of the WG activity.

�Agreed. I have previously identifed an RTF issue to address the need for assigning direction to support a causal relationship. We need to determine whtehter the direction is assinged to the paramter or to the binding connector.

�Include mapping of Modelica Comment to SysML Comment

�Consider Moddelic Simulation vs Modelica Experiment.

�These all have counter parts in SysML along with Comlex.

�We could include the Modelica Expression Language directly into SysML for specifying constratint espressions.

�We need to be careful – the ModelicaTypeRelation is much broader than the Generalization relation in UML4SysML; for instance it allows the creation of arrays, etc.

�Look at redefintiion rules in SysML.

�The problem is that using constraint blocks imposes so much overhead beyond just typing in the Modelica expression – is it really worth it?

�Agree.

�Refer to example in powerpoint dated Feb 4, 2009 for tie into parametrics

