 59

SysML-Modelica Transformation Specification
Draft v0.11, 2009-09-17
Abstract

This is a draft of a mapping between SysML and Modelica. The goal of this document is threefold:

1) to define the high-level approach for the Modelica to SysML mapping,

2) to provide a detailed discussion of all the relevant Modelica language features and corresponding mappings, and

3) to illustrate these mappings with examples.

In this first draft, the focus has been on the Modelica language features that are most common and together cover the majority of the Modelica models in the standard library.

Version History	Version
	Date
	Changes
	Person

	0.0
	1-14-2009
	Initial version based on Modelica abstract syntax document provided by Peter Fritzson; the suggested constructs and mappings from Linköping meeting with Peter Fritzson, Chris Paredis and Wladimir Schamai
	Chris Paredis

	0.1
	1-27-2009
	Significantly expanded Chapter 1 and 2
	Chris Paredis & Wladimir Schamai

	0.2
	2-1-2009
	A complete revisions of Chapters 1 and 2 based on further discussions of January 28
	Chris Paredis & Wladimir Schamai

	0.3
	2-10-2009
	Incorporated corrections suggested by Sandy Friedenthal
	Chris Paredis

	0.4
	4-01-2009
	Incorporated discussion on functions and blocks
	Chris Paredis

	0.5
	4-22-2009
	Included discussion from 4-1-2009 meeting and the comments provided by Sandy Friedenthal
	Chris Paredis

	0.6
	5-04-2009
	Included discussion from 4-22-09 meeting and revisited section 2.2 to be discussed in the 5-04 meeting
	Chris Paredis

	0.7
	5-04-2009
	Included discussion from 5-04-09 meeting;

Major revision of Chapter 1, including new section 1.4;

Divided up the section on «modelicaPart» into three distinct cases mapping to parts, ports, and value properties
	Chris Paredis

	0.8
	6-25-2009
	Significant revisions and comments on Section 1.
	Sandy Friedenthal

	0.9
	8-16-2009
	Included discussion from 6-25-09 meeting in San Jose;

Included discussion from 8-12-09 teleconference.
	Chris Paredis

	0.10
	8-28-2009
	Included feedback from Sandy Friedenthal and Nicolas Rouquette, and discussion from 6-27/28-09 meeting in Atlanta
	Chris Paredis, Sandy Friedenthal, Nicolas Rouquette

	0,11
	9-15-2009
	Further restructuring of document to conform to transformation specification format
	Chris Paredis

Remaining Issues· Reconsider SysML4Modelica (not consistent with UML4SysML

· Modifications and Redeclarations: Nicolas
· Arrays: Roger

· Articulate a systematic approach for defining the mapping.
· Start with using the Modelica syntax as a String

· Identify the concepts that need to be reflected in the SysML analytical model

· Consider whether the construct carries compiler directives (e.g., constant or parameter) or mathematical semantics (e.g., array size)

· Consider whether it should be visualized on the SysML side.

· Consider the impact on the transformation

· Replace all the emf figures with jpg figures (emf makes MSWord go unstable and unreadable to Mac
· Include discussion of built-in "time" variable and built-in functions.
· Consider including «external» to refer to a skeleton definition of a class which is defined in-full in a Modelica library
· Include a discussion of import clause

· Include reference to MDA foundation model -- => make sure terminology is consistent.

Table of Contents
2Version History

3Remaining Issues

4Table of Contents

7Part I - Introduction

71
Scope

72
Normative References

83
Additional Information

83.1
Relationships to Other Standards

83.2
How to Read this Specification

83.3
Acknowledgments

84
Integration Approach

94.1
Which SysML Diagram is Best Suited for Modelica?

104.1.1
Modelica

114.1.2
SysML Internal Block Diagrams

114.1.3
SysML Parametric Diagrams

124.1.4
SysML Activity Diagrams

124.1.5
Selected Diagram: SysML Internal Block Diagram

134.2
Illustrative Example

19Part II – SysML4Modelica Profile

195
Class Definition

195.1
Overview

205.2
«modelicaClass»

225.3
«modelicaModel»

245.4
«modelicaRecord»

255.5
«modelicaBlock»

275.6
«modelicaConnector»

285.7
«modelicaType»

295.8
«modelicaPackage»

295.9
«modelicaFunction»

305.10
Short Class Definitions

315.11
«modelicaNestedClassRelation»

315.12
«modelicaExtends»

326
Predefined Types

326.1
Overview

336.2
ModelicaReal

346.3
ModelicaInteger

346.4
ModelicaBoolean

356.5
ModelicaString

356.6
ModelicaEnumeration

356.7
ModelicaStateSelect

356.8
«modelicaExternal»

356.9
«modelicaAnnotation»

356.10
Additional Predefined Types

367
Component Declarations

367.1
Overview

367.2
«modelicaComponent»

387.3
«modelicaPart»

397.4
«modelicaPort»

407.5
«modelicaValueProperty»

428
Equation and Algorithm Sections

428.1
Overview

428.2
«modelicaEquation»

438.3
«modelicaInitialEquation»

438.4
«modelicaAlgorithm»

448.5
«modelicaInitialAlgorithm»

448.6
«modelicaConnection»

459
Related non-Modelica Constructs

459.1
«modelicaSimulation»

47Part III – Modelica Meta-Model

4710
Class Definition

4711
Predefined Types

4712
Component Declarations

4713
Equation and Algorithm Sections

48Part IV – Correspondence

4814
Correspondence Definition

49Part V – Annexes

49A
References

50B
Glossary

53C
Modelica Concrete Syntax

Part I - Introduction

1 Scope

OMG SysMLTM is a general-purpose systems modeling language that enables systems engineers to create and manage models of engineered systems using well-defined, graphical constructs. SysML reuses a subset of UML 2 constructs and extends them by adding new modeling elements and two new diagram types. Through these extensions, SysML is capable of representing the specification, analysis, design, verification and validation of engineered systems. The logical behavior of systems is captured in SysML through a combination of activity diagrams, state machine diagrams, and/or sequence diagrams. With the recent adoption of the Foundational Subset of UML specification, SysML activity diagrams can be executed to support discrete event simulation in a standard way. In addition, SysML includes parametric diagrams to support execution of constraint-based behavior, such as continuous-time dynamics in terms of energy flow. However, the syntax and semantics of such behavioral descriptions in parametrics have been left open to integrate with other simulation and analysis modeling capabilities. Additional information on SysML can be found at http://www.omgsysml.org.
The goal of this document is to provide a mapping from Modelica to SysML to leverage the benefits from both languages. By integrating SysML and Modelica, SysML's strength in descriptive modeling could be combined with Modelica's formal executable modeling for analyses and trade studies. Modelica is an object-oriented language for describing differential algebraic equation (DAE) systems combined with discrete events. Such models are ideally suited for representing the flow of energy, materials, signals, or other continuous interactions between system components. It is similar in structure to SysML in the sense that Modelica models consist of compositions of sub-models connected by ports that represent energy flow (undirected) or signal flow (directed). The models are acausal, equation-based, and declarative. The Modelica Language is defined and maintained by the Modelica Association (www.modelica.org), which publishes a formal specification [Modelica Association, 2008] but also provides an extensive Modelica Standard Library that includes a broad foundation of essential models covering domains ranging from (analog and digital) electrical systems, mechanical motion and thermal systems, to block diagrams for control. Finally, it is worth noting that there are several efforts within the Modelica community to develop open-source solvers, such as in the OpenModelica project (www.openmodelica.org).

In conclusion, SysML and Modelica are two complementary languages supported by two active communities. By integrating SysML and Modelica, we combine the very expressive, formal language for differential algebraic equations and discrete events of Modelica with the very expressive SysML constructs for requirements, structural decomposition, logical behavior and corresponding cross-cutting constructs. In addition, the two communities are expected to benefit from the exchange of multi-domain model libraries and the potential for improved and expanded commercial and open-source tool support.
2 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications.

· Unified Modeling Language: Superstructure, version 2.3. (http://doc.omg.org/formal/2007-02-05)

· Systems Modeling Language: Specification, version 1.2 (http://www.omg.org/spec/SysML/1.2)

· Modelica Specification, v.3.1 (http://www.modelica.org/index_html/documents/Modelica Spec31.pdf)

3 Additional Information

3.1 Relationships to Other Standards

[ToDo]
3.2 How to Read this Specification

[ToDo]
3.3 Acknowledgments

The following people have contributed significantly to this document either directly or indirectly through discussions and feedback:

· Roger Burkhart (Deere & Co)

· Hans-Peter De Koning (ESA)
· Sandy Friedenthal (Lockheed Martin)
· Peter Fritzson (Linköping University)
· Thomas Johnson (Georgia Tech)
· Chris Paredis (Georgia Tech)
· Russell Peak (InterCAx, Georgia Tech)

· Nicolas Rouquette (JPL)
· Wladimir Schamai (EADS, Linköping University)
4 Integration Approach

The approach for integrating Modelica and SysML is to create a SysML4Modelica profile which introduces all the Modelica language constructs. This will allow the Modelica concepts to be expressed in a profile of SysML that supports round-trip transformation from SysML to Modelica and back. The profile will include the subset of SysML and extensions
to that subset that are required to capture the relevant Modelica concepts and enable the mapping between the two languages. Some Modelica concepts may be viewed as not required for the mapping, such as certain concepts that are associated with pre-compilation and/or certain computational concepts that can be left to the Modelica language. One could also envision the introduction of additional SysML constructs into the Modelica Language; however, this is outside the scope of this effort, although it may be pursued in the future along with other potential approaches for integrating the two languages.
To develop the SysML4Modelica profile in a systematic fashion, we start from the Modelica Language Specification and identify for each Modelica language construct an equivalent construct in SysML. If an equivalent construct does not exist, stereotypes are created to extend the SysML language. The following naming convention is used to define the Modelica construct in the SysML4Modelica profile:

«modelicaConstruct» where Construct is the name of Modelica language construct as defined in the Modelica abstract syntax definition (Appendix C).

Even when an equivalent SysML construct exists, it is sometimes necessary to introduce a stereotype in order to distinguish the Modelica construct from the ordinary SysML construct when supporting round-trip transformation. In addition, the concrete syntax of Modelica often provides alternative representations to express the exact same semantics. For example, one could write
:

connector Flange
 import SI = Modelica.SIunits;
 SI.Position s;

 flow SI.Force f;

end Flange_a;
or equivalently:

connector Flange

 Modelica.SIunits.Position s;

 flow Modelica.SIunits.Force f;

end Flange_a;
In such cases, our intent is to avoid duplicating this redundancy in SysML4Modelica without loss of expressivity. For mapping purposes, one of the redundant representations is identified as the primary (most explicit) representation, and SysML4Modelica constructs are preferably mapped onto this primary representation.

Initially, this document provides a textual description of the mapping between Modelica and SysML4Modelica. However, it is the intent also to describe this mapping formally by defining a Triple Graph Grammar, linking the Modelica and SysML meta-models. Such a formal definition of the mapping has the additional advantage that meta-CASE tools (such as MOFLON) can be used to generate executable transformations between SysML and Modelica modeling tools (assuming they support some standardized interface such as JMI). An additional implementation of the mapping is being implemented as part of the OpenModelica project.
4.1 Which SysML Diagram is Best Suited for Modelica
?

Before focusing on the detailed modeling constructs, a high-level decision needs to be made regarding the choice of SysML Diagram(s) in which to represent Modelica models. Although Modelica is a textual language, it also supports a graphical view through its annotation mechanism. This graphical view illustrates clearly the strong similarity that exists between SysML and Modelica. Both languages support the decomposition of systems (or behavioral models of systems) into subsystems or components and the interactions between them. For instance, the Modelica model of a motor controller (shown in Figure 1) contains subcomponents (such as motor, gearbox, and controller). The interactions between them are illustrated by edges connecting the interface locations (called connectors in Modelica) of the components. Such hierarchical compositions of Modelica models and the connections between them constitute the primary modeling approach in Modelica. Before considering the details of the language, it is thus important to consider carefully how these primary modeling constructs map to SysML.

	[image: image1.emf]motor

gearbox

ratio=100

load

J=0.5*m*r*r

phiload

-

positione...

controller

PID

Ti=Ti

Step1

startTime=0

	Figure 1: A Modelica model of a motor controller consisting of component models and the connections between them. The connections include both causal signal connections (e.g., in and out of the controller) and acausal energy connections (e.g., the rotational mechanical energy connections of the gearbox).

As illustrated in Figure 2, in SysML there are three types of diagrams that have a structure that is similar to the hierarchical, connector-based composition of Modelica models: the Internal Block Diagram, the Parametric Diagram, and the Activity Diagram. All three diagrams support some sort of "ports", some sort of connection of "port-based" objects through "port-connections", and hierarchical encapsulation through "port-delegation". The main question is thus: which of these diagrams and associated constructs have the semantics that match the Modelica semantics best? A short discussion of each follows in Sections 1.3.1 through 1.3.4.
	Diagram
	Modelica
	Internal Block
	Parametric
	Activity

	Model Definition
	Model
	Block
	Constraint Block
	Activity

	Model Usage
	Component
	Part Property
	Constraint Property
	Action

	Port Definition
	Connector
	Block, Value Type, Flow Spec.
	Value Type
	Block, ValueType

	Port Usage
	Component
	Flow Port
	Parameter
	Object Node

	Edge
	Connection
	Connector
	Binding Connector
	Object Flow

	Figure 2: A comparison of graphical constructs in Modelica and three types of SysML diagrams.

4.1.1 Modelica

In Modelica, ports are called connectors and the edges between ports are called connections [Modelica Spec, Chapter 9]. The ports (connectors) can include four types of quantities: inputs, outputs, flows and non-flows. Inputs and output are used when the direction of the flow is known and fixed, as for instance in signals flowing in a control system. Flow and non-flow quantities are used to describe energy or material flow (they are also sometimes referred to as through and across variables, respectively). When connecting two Modelica connectors with a connection, the semantics for inputs and outputs are causal binding: the input is assigned the value of the output to which it is connected. Input and output connecters must therefore be used in conjugate pairs, and only one output can be connected to each input. For flow and non-flow variables, the connection semantics correspond to Kirchhoff's Laws, namely, the value of the flow variables add up to zero and the values of the non-flow variables are set equal (in an equation-based, acausal fashion). When more than one connection is made to a connector containing a flow variable, then an ideal, loss-less energy or material exchange is assumed by imposing that the values of flow variables of all connected connectors add up to zero. To impose the correct modeling of energy exchange, Modelica requires that the number of flow and non-flow quantities of a connector be equal.
In addition to connectors, Modelica models can contain variables and submodels (i.e., model usage in Figure 2). Although Modelica does not explicitly distinguish between these three categories of “components” (i.e., connectors, variables, submodels), it may still be useful and desirable to distinguish explicitly among them when mapping to SysML.
4.1.2 SysML Internal Block Diagrams

The primary purpose of Internal Block Diagrams (ibd) in conjunction with block definition diagrams (bdd), is to express system structural decomposition and interconnection of its parts [SysML Spec, Chapters 8 and 9]. However, IBDs have quite flexible semantics and may be used to establish logical and conceptual decompositions, for instance, as in a context diagram [SysML Spec, Section B.4.2.1].] The Blocks in SysML are similar to Classes in Modelica (specifically the specialized class types of Model, Block, Connector, etc.). Blocks can be decomposed in the same way Modelica Classes can be decomposed.

The "ports" in IBDs are called Ports and the connections between ports are called Connectors. There are two kinds of ports: Flow Ports and Standard Ports. The Standard Ports are particularly geared towards service-based interactions by representing the interfaces (e.g., software methods) that are provided or required by a particular block. Such service-based interactions are not appropriate for modeling the connections found in Modelica. Flow Ports on the other hand do provide semantics that reflect Modelica connectors more closely. A Flow Port describes an interaction point through which input and/or output of items such as data, material, or energy may flow in and out of a block. For Modelica-type interactions, the "items" could be either signals (for input and output quantities) or energy/material (for flow and non-flow quantities). In Modelica these interactions are modeled as instances of Modelica Connector types.
 Such instances do not have a direction of flow associated with them directly, but should be interpreted as containing either inputs, outputs, or energy/material flows based on the definition of the Connector type of which they are an instance. This is similar to SysML nonatomic FlowPorts typed by FlowSpecifications, although one may argue that the combination of a flow and non-flow variable in a Modelica energy/material connector constitute one concept (i.e., one energy or material flow) and should therefore be modeled as an atomic rather than non-atomic flow port.
In addition, the (acausal) connection between flow ports in SysML does not explicitly carry the Kirchhoff semantics as for energy/material connections in Modelica.

An additional subtle difference in semantics lies in the fact that, in SysML, the type of a flow property defined in a flow port specifies what can flow through that port; what actually flows must be defined by associating an Item Flow to a SysML Connector (the connection between the flow ports). In Modelica, no such differentiation between what can flow and what actually flows is made. This makes sense because Modelica describes the behavior of what actually happens (what flows) rather than a specification of an interface (what can flow).

In conclusion, although IBDs seem to have very similar constructs to Modelica, there are some subtle differences in semantics so that new stereotypes will have to be introduced to adequately capture the Modelica semantics of Connectors and Connections.
4.1.3 SysML Parametric Diagrams

The purpose of Parametric Diagrams is to express mathematical relationships between parameters. In Parametric Diagrams, the "ports" are called Constraint Parameters and the "connections" are called Binding Connectors. Inside a Constraint Block, mathematical relationships are defined constraining its Constraint Parameters. A Constraint Property is a usage of a Constraint Block in the parametric diagram. Its Constraint Parameters are then bound to other Constraint Parameters or to Properties of Blocks. When using a Constraint Property in a Parametric Diagram, the semantics of a Binding Connector indicate a mathematical equality between the (Block) Properties or Constraint Parameters being connected. This mathematical equality is an acausal relationship.
Although the Binding Connectors in Parametric Diagrams share the acausal nature of energy-connections in Modelica, they are currently missing the notions of a Modelica Flow variable and of causal inputs and outputs (Note: an issue has been submitted requesting the addition of causality specifications in parametrics to future versions of SysML). The equivalent of a Binding Connector does not actually exist in Modelica, but can be captured in a non-graphical fashion by introducing an equality equation between the two variables that are bound. Therefore, in order to capture the semantics of a Modelica connection in Parametric Diagrams, one would have to introduce a new modeling element that is equivalent to a Modelica Connector, and introduce a new type of SysML Connector that reflects the semantics of Kirchhoff's laws. Another possibility would be to make the equations for Kirchhoff’s laws, which are implicit in Modelica connections, explicit as another SysML Constraint Property. This option is appealing because it makes the semantics very explicit, but has the disadvantage that it makes the models more cumbersome to create and more difficult to read.
Finally, unlike Blocks, Constraint Blocks do not have Value Properties that are not Constraint Parameters. As a result, (local) variables in Modelica would have to be represented as Constraint Parameters, making it difficult to distinguish them from “ports.”

In conclusion, the intent of Parametric Diagrams is similar to the intent of Modelica Models, and they therefore deserve consideration. However, the types of connections that exist in Modelica do not exist in Parametric Diagrams and vice versa. As a result, the use of Parametric Diagrams will require the introduction of additional constructs (stereotypes).
4.1.4 SysML Activity Diagrams

The purpose of an Activity Diagram in SysML is to specify the transformation of inputs to outputs through a controlled sequence of actions. An Activity decomposes into Actions. In activity diagrams, the Object Nodes (i.e. Pins and Parameter Nodes) correspond to buffers to place input and output tokens. The connections between Object Nodes correspond to Object Flows. These flows typically represent the transfer of one or more objects at a discrete moment in time, although it is possible to specify a streaming flow that could be continuous, i.e., the time between arrival of tokens (or "objects") is zero. It is this latter case that needs to be described in terms of differential equations and is also closest to the semantics of Modelica's flows. However, the strict notion of flows from output to inputs in Activity diagrams, is not imposed in Modelica (Note: this flow direction would correspond to a constraint on the sign of a flow variable, but has nothing to do with mathematical causality).
In conclusion, only the special case of continuously streaming object flows seems to match the Modelica semantics of energy flow, and even for that case, the semantics are quite different. Among the three SysML diagrams considered, Activity Diagrams therefore seems to be the least appropriate for a mapping from Modelica Class, although they will be explored when mapping the Modelica Function and Algorithm to SysML4Modelica.
4.1.5 Selected Diagram: SysML Internal Block Diagram with Embedded Constraints
It is clear from the discussion in the previous sections that there is not a single diagram that matches the Modelica semantics perfectly. As a result, the use of more than one SysML diagram with multiple stereotypes will need to be defined to extend the SysML semantics.

 Both Internal Block Diagrams and Parametric Diagrams can be used to map Modelica Models, Components, Connectors, and Connections to SysML Diagrams. This could be expected since Constraint Blocks are restricted versions of regular Blocks. Actually, Constraint Blocks and Parametric Diagrams are too restricted. For instance, Constraint Blocks cannot have value properties (only constraint parameters), and the only connectors allowed in a Parametric Diagram are binding connectors, which have semantics of equality constraints and can thus not be further restricted to represent Kirchhoff’s laws as is needed for Modelica. Still, Parametric Diagrams could be useful to capture the semantics of Modelica if one wants to make explicit the equations that are implicit in Modelica connections. This is illustrated in Section 1.4, but is not further pursued in the remainder of the document
.. From Chapter 2 forward, the focus will be exclusively on how to extend Blocks and Internal Block Diagrams to express the Modelica semantics.
4.2 Illustrative Example

Before going into the details of the SysML-Modelica mapping, it is helpful to provide a simple illustrative example to provide a context in which the detailed mapping in Chapter 2 can be understood.
Consider the design of a car suspension. As illustrated in Figure 3, the suspension can be described in the context of a car using a descriptive SysML model, expressed in a BDD and corresponding IBD.
	[image: image2.emf]CarStructure [Package] Structure bdd [] <<block>> SuspensionFlange <<block>> Suspension values stiffness : Stiffness <<block>> BodyConnection <<block>> Body values mass : Mass <<block>> Car -susp2body -body -body2susp -suspension

 [image: image3.emf][Block] ibd Car Car [] <<block>> body : Body <<block>> : SuspensionFlange <<block>> suspension : Suspension <<block>> : BodyConnection

	Figure 3: Descriptive model of a car suspension visualized as a BDD and IBD.
.

Assume now that one needs to evaluate the dynamic response of the suspension by simulating the car body’s position as a function of time. A possible continuous dynamics model for such a simulation models the suspension as a linear spring and the car body as a point mass. This model is illustrated in Figure 4 in both Modelica and in SysML4Modelica (the Modelica profile in SysML). By stereotyping SysML ports and connectors, the semantics of Kirchhoff’s laws have been introduced into SysML.

	[image: image4.emf]mass

1

m

=

1

spring

1

fixed1

 [image: image5.emf]OscillatorModel OscillatorModel [Block] ibd [] <<ModelicaComponent>> spring1model : Spring <<ModelicaPort>> flange_a : Flange <<ModelicaPort>> flange_b : Flange <<ModelicaComponent>> fixed1model : Fixed <<ModelicaPort>> flange : Flange <<ModelicaComponent>> mass1model : Mass <<ModelicaPort>> flange_a : Flange <<ModelicaPort>> flange_b : Flange <<ModelicaConnection>> <<ModelicaConnection>>

	Figure 4: Mass-Spring model for a car suspension, in Modelica (left) and SysML4Modelica (right).

The SysML parts are stereotyped as «modelicaPart». (i.e., mass1model, spring1model, fixed1model), that correspond to) usages of models from the Modelica Standard Library. For instance, as illustrated in Figure 5, the library Modelica.Mechanics.Translational.Components includes definitions of continuous dynamics models for a Spring and a Mass. Note that one could apply stereotypes in SysML that include icons equivalent to the elements from the Modelica library so that the SysML4Modelica representation in Figure 4 could be almost identical to the Modelica representation on the left.
	 [image: image6.emf]ModelOverview Components [Package] bdd [] <<ModelicaModel>> ModelicaStandardLibrary::Mechanics::Translational::Components:: Mass {v = der(s); a = der(v); m*a = flange_a.f + flange_b.f;} <<ModelicaValueProperty>>+m : Mass{variability = parameter} <<ModelicaValueProperty>>+a : Acceleration <<ModelicaValueProperty>>+v : Velocity <<ModelicaValueProperty>>+stateSelect : ModelicaStateSelect{variability = parameter} <<ModelicaPort>> flange_a : Flange <<ModelicaPort>> flange_b : Flange <<ModelicaModel>> ModelicaStandardLibrary::Mechanics::Translational::Components:: Spring {f = c*(s_rel - s_rel0);} <<ModelicaValueProperty>>+c : TranslationalSpringConstant{variability = parameter} <<ModelicaValueProperty>>+s_rel0 : Distance{variability = parameter} <<ModelicaPort>> flange_a : Flange <<ModelicaPort>> flange_b : Flange <<ModelicaModel>> ModelicaStandardLibrary::Mechanics::Translational::Interfaces:: PartialCompliant {s_rel = flange_b.s - flange_a.s;
 flange_b.f = f;
 flange_a.f = -f;} <<ModelicaValueProperty>>+s_rel : Distance <<ModelicaValueProperty>>+f : Force <<ModelicaPort>> flange_a : Flange <<ModelicaPort>> flange_b : Flange <<ModelicaModel>> ModelicaStandardLibrary::Mechanics::Translational::Interfaces:: PartialRigid {flange_a.s = s - L/2;
 flange_b.s = s + L/2;} <<ModelicaValueProperty>>+s : Position <<ModelicaValueProperty>>+L : Length{variability = parameter} <<ModelicaPort>> flange_a : Flange <<ModelicaPort>> flange_b : Flange <<ModelicaExtendsRelation>> { ModelicaModification = "L=0" , "s(start=0, stateSelect=stateSelect)"} <<ModelicaExtendsRelation>>

	Figure 5: Continuous dynamics models for Mass and Spring defined in the Modelica Standard Library.

In Figure 4, the usages of these models, stereotyped as «modelicaPart» are connected to each other at their «modelicaPort» by «modelicaConnection». These connections carry the semantics of Kirchhoff’s Laws (in this example—or, more generally, the same semantics as an equivalent Modelica connection). These semantics can be made more explicit by using a Parametric Diagram (Figure 6). But, as one can see by comparing Figure 6 and Figure 4, this comes at a cost of a much larger and less readable diagram. Similarly, one could have represented the internal equations of the Mass model in a Parametric Diagram, as is illustrated in Figure 7, but again, the more explicit semantics come at a cost of increased complexity. For this reason, only Blocks and Internal Block Diagrams are further developed in Chapter 2.
	[image: image7.png][Block] Oscllatortiodel[[Oscilatortlodel

<<bloci>>
fixedimodel :

<<bloci>
masstmodel : Mass

<<bloci>

<<bloci>

Vi :Real : Real

I (]
<<constraint>>
node1 : KirchhoffsLaws
f1+i2=0,
vi=v2}

v2: Real 2: Real

<<constrant>>
node2 : KirchhoffsLaws
s

2}

v2:Real 2: Real

<<bloci>
springtmodel: Spring

<block>>

flanje_b: Flange

=}

biock>>

<ValeTypes> g | [<ValueTypes> o
sLength f:Force

flange_a: Flange

=}

<ValeTypes> g | [<ValueTypes> o
s:Length f:Force

	Figure 6: Mass-Spring model as represented in a Parametric Diagram.

	[image: image8.png]par [Block] Mass | [Mass |

T

<<ValeTypes> o

<ValeTes <<blocie> <ValeTes
o:Length flange_a: Flange LiLength
<ValeTes o
x: feal s:Length
<<consirait> <ValeTies o
o_v: Derivative fiForce
{der_x = der(x)}
il el w2 el 5 Real -
aer o el LIRC T LT]
<<ValueType>> g sum1: Sum sum2: Sum
v: Velocity ol {sum=xt+x2}
L <ebiocio>
e e flange_b : Flange sum Real

<<constrant>> T s:Length
ettt newton : NewtonsLaw
et ma=1 <VaeTypes> o
|__[mine T:Force
der x| Real [(il
a: Acceleration m Mass

<VaeType>> g
a:Acceleration

<ValeTypes> o
m:Mass

	Figure 7: Mass model as it could be represented in a Parametric Diagram.

Finally, it is worth illustrating how the SysML4Modelica continuous dynamics model in Figure 4 relates to the SysML descriptive model in Figure 3. Since both the descriptive and the continuous dynamics models are views of the same system, they cannot be independent of each other. Changes to the descriptive model are likely to require corresponding changes to the continuous dynamics model and vice versa. Such dependencies can be modeled in an analysis context — the context in which the analysis model (i.e., the continuous dynamic analysis in this case) is defined.
The analysis context
is illustrated in Figure 8. It establishes the dependencies between the descriptive model components and their corresponding analysis models.
In addition, the detailed bindings between the descriptive and analysis properties are defined in the Parametric Diagram illustrated in Figure 9.

	[image: image9.png]bad [Bloct] CarDynanicsCortext| [g AnalysisContext |

<<blocic>
(CarDynamicsContext

-oscimodel

ez
ftestRigPosiion : Length

<<blocic>
car

<<block>
suspension : Suspension

=}

<<bloci>
susp2body : BodyConnection

<<bloci>

body : Body

<<bloci>
body2susp : SuspensionFlange

<<Describe>>

<<Deseribes>

<<Deseribes>

<Deseribes>

<<blocic>
<<todelcaliodet>>
OscilltorModel

E-

<<lodelcaComponert>>
fixedimodel Fixed
{modslicabladifcation = "0=1]

<<llodeicaComponert>>
springtmodel: Spring
{modelicabiadifcation = s_ei0=2

[

e=10000)

q«mge a: Flange

flange_b : Flange

<<todefcaComponents>
massimodel : Mass
{modslicatiodification

	Figure 8: The Block Definition Diagram for the Analysis Context of the continuous dynamics analysis.

For very simple problems, one could consider combining the descriptive and analysis views into one model; e.g., suspension and spring1model would be combined into one component that includes both the descriptive properties and the analysis constraints/equations. However, for larger problems in which more than one analysis perspective needs to be considered (e.g., mechanical, electrical, controls, manufacturing, different levels of abstraction, etc.), combining all such analyses into one model would be difficult to manage. One would likely encounter problems with naming conflicts or duplication of properties. In addition, combining all the models severely limits the opportunity for model reuse because models from libraries (such as the Modelica Standard Library) would have to be combined with descriptive models rather than just included in an analysis context.
	[image: image10.png]par [Block] CardynanicsCortext| [CarbynamicsCortert 1]

<<bloci>
<<todeicatiodet>>
oscimadel : OscilltorModel

<<llodeicaComponert>> g
fixedimodel Fixed

<Dmension> @ <allodeicaValueProperty=>
sLength 50:Length

i o =] <SocicaCampanert>>
| springtmodel: Spring
<ot <SodeicaVakepeY g

<VaeTypes

|

suspension : Suspension | s_rel0 : Distance
|

stiffness : Stffness {

<<llodelcaValueProperty>
c: TranslationalSpringConstant

<<lodelcaComponert>

massimodel: Mass
<<block>>
ey g LiLengtn

<Dimension> g

B hizes <<lodeicaValueProperty>> o

|
|
|
|
| <CHodsicaVakeropery>>
|
|
|
|

	Figure 9: The Parametric Diagram for the Analysis Context of the continuous dynamics analysis; the properties of the descriptive model are bound to the corresponding properties in the analysis model.

Part II – SysML4Modelica Profile
This part describes the mapping of Modelica constructs to SysML. This mapping is the foundation for the SysML4Modelica profile. It is organized according to the chapters of the Modelica 3.0 specification, skipping those chapters that are irrelevant to the SysML-Modelica mapping. When necessary, new stereotypes (extensions of SysML) and associated tags are introduced.
5 Class Definition
5.1 Overview
The class concept is the basic structural unit in Modelica. Classes provide the structure for objects and contain equations and algorithms, which ultimately are the basis for the executable simulation code. The most general class is “model”. Specialized classes such as “record”, “type”, “block”, “package”, “function” and “connector” have most of the properties of a “model” but with restrictions, which need to be preserved in SysML to support round-trip mapping.
The following production rules define the different specialized classes. The reference in parentheses on the right indicates the section of this document in which the particular language element is discussed in detail:

stored_definition:

 [within [name] ";"]
(2.1.2)

 { [final] class_definition ";" }
(2.1.2)
class_definition :

 [encapsulated]
(2.1.2)
 [partial]
(2.1.2)
 (class
(2.1.2)
 | model
(2.1.3)
 | record
(2.1.4)
 | block
(2.1.5)
 | [expandable] connector
(2.1.6)
 | type
(2.1.7)
 | package
(2.1.8)
 | function)
(2.1.9)
 class_specifier
class_specifier :

 IDENT string_comment composition
(2.3)
 | IDENT "=" base_prefix name [array_subscripts]
(2.1.7)
 [class_modification] comment
(2.4)
 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment
(2.1.7)
 | IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment
(2.1.9)
 | extends IDENT [class_modification] string_comment composition
(2.4)
 end IDENT

The following table lists the SysML stereotypes for representing the specialized Modelica classes. Using this approach the modeler only needs to apply the respective stereotype to indicate all the semantics and restrictions of the associated Modelica class. This information is represented graphically in Figure 10. In the following subsections, the details of each stereotype are described.
Table 1: Mapping for the Modelica specialized classes.
	Modelica Construct
	SysML

Base Class
	SysML4Modelica

	
	
	New Stereotype
	Comments

	Class
	UML::Classifier
	«modelicaClass»
	See Section 2.1.2

	Model
	SysML::Blocks::Block
	«modelicaModel»
	See Section 2.1.3

	Record
	SysML::Blocks::ValueType
	«modelicaRecord»
	See Section 2.1.4

	Block
	SysML::Blocks::Block
	«modelicaBlock»
	See Section 2.1.5

	Connector
	SysML::Blocks::ValueType
	«modelicaConnector»
	See Section 2.1.6

	Type
	SysML::Blocks::ValueType
	«modelicaType»
	See Section 2.1.7

	Package
	UML4SysML::Package
	«modelicaPackage»
	See Section 2.1.8

	Function
	UML4SysML::Behavior
	«modelicaFunction»
	See Section 2.1.9

[image: image11.png]kg [Package] Classes | [Modeia Class Stereatypes | e
Glassifier
x
<<stercotype=>
ModelicaClass
Classifier]
isFina Boolean = false
isEncapsulsied : Boolean = false
<<stercotype=> | [<sstereatyper> | [<<stercotyper> <<stereotype=> <<stereatypes> <<stereatypes> <<stereatypes>
ModelicaModel | | ModelicaBlock | | Modeli ModelicaConnector ModelicaType ModelicaFunction
(Class) (Class] ot Dataypel ataType] FunctionBehavior]
isExapandable : Boolear +ArraySize Sting [0.°]
T
B v
<stereaypes = [emelaciass>> <melaciass>>
<estereatype>> e
s T Package FunctionBehavior
[Class] {ataType]

Figure 10: Package diagram with an overview of the stereotypes for Modelica classes

5.2 «modelicaClass
»
Stereotypes

· Classifier (from UML4SysML)
Abstract Syntax

See Figure 10.
Description

A Modelica class is the basic structural unit in Modelica. However, because it lacks precise semantics, the class construct should never be used in Modelica. Without precise semantics, a Modelica tool cannot easily check whether any restrictions are violated. Therefore, the constructs that are specialized from Modelica class should be used instead.
In the context of the SysML4Modelica profile, the Modelica class construct is mapped to the stereotype «modelicaClass» which is abstract and thus cannot be instantiated directly. This choice has been made because it is desirable to have the additional semantics specified by the specialized classes. In addition, as clearly shown in Figure 10, the stereotypes associated with the specialized classes derive from different SysML constructs and thus cannot be mapped to a single common construct for a Modelica class. The abstract stereotype «modelicaClass» serves the purpose of grouping the attributes that apply to all the Modelica specialized classes. It stereotypes UML::Classifier, which is a common generalization for the stereotypes of all the specialized classes.
In the remainder of this section, all the attributes and associations for all the constructs specialized from Modelica class are described. In subsequent sections for the individual specialized constructs, only the constraints on these attributes and associations will be described in detail.
Attributes
· isFinal : Boolean
In Modelica, the definition of a class can be qualified to be final (Modelica Specification 7.2.6). This means that the declared class cannot be further modified through (local) type modifications. Note that this is identical to the UML attribute isLeaf for redefinable elements (UML Specification 7.3.46) which, if true, indicates that no further redefinitions are possible.

The isFinal attribute is true when the final prefix is present in Modelica; false otherwise. Its default value is false.
[Peter: I tried this in Dymola, but it seems that even when I define a class to be final, I can still modify it. Is this a bug in Dymola or am I misinterpreting the meaning of final?]

· isEncapsulated
 : Boolean

As explained in Modelica Specification 5.3.2, the Modelica encapsulated construct limits the scope of name lookup. An encapsulated package can be moved within the package hierarchy without affecting the local name resolutions.
These semantics are different from the isEncapsulated attribute of Blocks in SysML (SysML Specification 8.3.2.2). An encapsulated block is treated as a black box; no connections can be made to its internal parts directly.
A second difference in semantics is that in Modelica the encapsulated prefix can be applied to all classes, although it is most commonly applied to packages. It is therefore necessary to introduce isEncapsulated as a new attribute so that it becomes available also for specialized class stereotypes that do not derive from a SysML Block.
The isEncapsulated attribute is true when the encapsulated prefix is present in Modelica; false otherwise. Its default value is false.
[Since the meaning of isEncapsulated is different in SysML, we should pick a different name for the Modelica isEncapsulated attribute]
· isAbstract : Boolean
The Modelica partial construct has the same semantics as the isAbstract attribute in SysML. Since «modelicaClass» stereotypes UML::Classifier, the isAbstract attribute is automatically inherited. The default value is false.
Associations

No additional associations.
Constraints

[1] «modelicaClass» is an abstract stereotype and cannot be instantiated.

[2] Can only participate in a generalization association that is stereotyped to «modelicaExtends»

Additional Notes

The Modelica within clause is explained in Modelica Specification 13.2.2.3. It defines where in the package hierarchy the subsequent class definitions are located. This is important in Modelica to allow large package structures to be divided over multiple model files. As long as fully qualified type identifiers are used, the within clause is not relevant in SysML.
5.3 «modelicaModel»
Generalizations

· «modelicaClass» (from SysML4Modelica)

· «block» (from SysML)
Abstract Syntax

See Figure 10.
Description
A Modelica model is

The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.

Attributes
No additional attributes. Not all the attributes inherited from «block» are allowed — see constraints.
Associations
No additional associations. Not all the associations inherited from «block» are allowed — see constraints.

[should we list here the associations that have been stereotyped to make them Modelica-specific?]
Constraints

[3] Name: The name of the Modelica model must be equal to the Name attribute of the «modelicaModel».
[4] Comment: The optional comment in the Modelica model must be mapped to an OwnedComment of the «modelicaModel»

[5] Components of type specialized class model or block: These components must be mapped to Parts (Property associations with aggregationKind=composite). All parts must be objects stereotyped to «modelicaModel» or «modelicaBlock».
[6] Components of type specialized class connector: These components must be mapped to Ports. All ports must be objects stereotyped to «modelicaConnector».
[7] Components of type specialized class type or record: These components must be mapped to ValueProperties. All value properties must be objects stereotyped to «modelicaType» or «modelicaRecord».

[8]
 Extends relationships
: Modelica extends relationships are mapped to generalizations stereotyped to «modelicaExtends». All generalizations must be relations stereotyped to «modelicaExtends».

[9] Equation sections: Modelica equation sections must be mapped to Constraints (ownedRule association) stereotyped to «modelicaEquation». The equations appear as an opaque Specification of «modelicaEquation» in the Modelica language. All Constraints must be objects stereotyped to «modelicaEquation» or «modelicaInitialEquation». (note: connect statements appearing in equation sections are treated differently — see Section qqq).
[10] Initial Equation sections: Modelica equation sections must be mapped to Constraints (ownedRule association) stereotyped to «modelicaInitialEquation». The equations appear as an opaque Specification of «modelicaInitialEquation» in the Modelica language.
[11] Algorithm sections: Modelica algorithm sections must be mapped to OwnedBehaviors of metatype OpaqueBehavior (or Activity – future work) stereotyped to «modelicaAlgorithm». The OpaqueBehavior contains all the algorithm statements in its body and has "Modelica" specified as its language.
[12] Initial algorithm sections: Modelica algorithm sections must be mapped to OwnedBehaviors of metatype OpaqueBehavior (or Activity – future work) stereotyped to «modelicaInitialAlgorithm». The OpaqueBehavior contains all the algorithm statements in its body and has "Modelica" specified as its language.

[13] All other attributes or associations inherited from «block» or Classifier may not be used.
Example
Modelica model for a translational mass, defined as a specialization of PartialRigid.
[image: image12.png]bad [Package] Componerts | |5 MassExample |

[flange_a:Flange flange_b: Flange —
{} i
<<modecaiodet>>
ModelcaStandardLbrary: Mechanics: Translationa:nerfaces:
PartialRigid

{flange as=s-Ln.
flange_h.s = + Lz}

|<<modeicaValueProperty=>-s : Postion
<<modicaValueProperty~>-+L : Length{variabity = parameter}

<<modefcaEfends>>
{modslicablodifcatio star, stateSelsctestateSelecty)

—flange_a-: Flange flange_b: Flange —
{ T i
<<modscaliodet>>
ModelcaStandardLbrary:Mechanics: Translational:Componerts:
Mass

m'a = flange .1+ flange_b.1,}

[<<modelaValueProperty>>+m Wass variabiy = parameter]
(<<modecaValueProperty=>+a Acceleration
|<<modeicaValueProperty=>+y : Velocity
<<modicaValucProperty~>-stateSelect ModelcastateSelect{variabily

parameter),

The corresponding Modelica models (with annotations omitted):

[image: image13.png]File Edit Simulation Plot Animation Commands Window Help

= HQ8| N N-OVAI-/ 2 -FF) =-

Packages

@Modelica Reference

5 Modelica

@ User's Guide of Modelica libr;

EJRotational
©] Translational
[JExamples
(5 Components
4, Fixed

FeMass
—Rod

e Spiing
-o=Damper

£ SpringDamper
s ElastoGap

4 SupportFricon
{-Brake

CeJ E#:

Components

=[Modelica Mechanics Translational

WPartialRigid - Modelica Mechani

%> mESEEE

model Mass "Sliding mass with inercia”

paramecter SI.Mass m(mi:

parameter StateSelect stateSelect=StateSelect.default

"Priority to use s and v as states!
extends Translational.Interfaces.PartialRigid (L=0, s (start=0,
stateSelect=stateSelect)
"absolute velocity of component”;

SI.velocity v(starc

SI.Acceleration al(starc:

equation
= qex(s)
a=der(v)

m*a = flange a.f + flange b.f;

end Mass;

., starc=1) "mass of the sliding mass".

) mabsolute acceleration of component

stateSelect=stateselect));

parcial model Modelica.Mechanics.Translational.Interfaces.PartialRigid
"Rigid connection of two translational 1D flanges "

SI.Position s

"Absolute position of center of component (s = flange a.s + L/2 = flange b.s - L/2)";

parameter SI.Length L(starc

"Length of component,

equation
flange a.s
flange b.s
end PartialRigid;

connector Modelica.Mechanics.Translational.Interfaces.Flange_a
"(left) 1D translational flange (flange axis directed INTO cut plane, e

SI.Position s "absolute position of flange”,
flow SI.Force £ "cut force directed into flange

end Flange_a;

connector Modelica.Mechanics.Translational.Interfaces.Flange b

)

from left flange to right flange (= flange b.s - flange a.s)
Flange a flange a "Left flange of translational component”.
Flange b flange b "Right flange of translational component

"right 1D translational flange (flange axis directed OUT OF cut plane)”

SI.Position s "absolute position of flange”;
flow SI.Force £ "cut force directed into flange";

end Flange_b;

g. from left to right)"

Remarks:

· The name of each model (Mass and PartialRigid) appear as the Name attribute of the corresponding «modelicaModel»

· The parameters of each model (m and stateSelect) appear as «modelicaValueProperty» in «modelicaModel»

· The connectors flange_a and flange_b appear as ports stereotyped to «modelicaPort»

· The equation sections are each mapped to a «modelicaEquation», which are shown as any other constraint in the concrete graphical syntax
5.4 «modelicaRecord»
Generalizations

· «modelicaClass» (from SysML4Modelica)

· «valueType» (from SysML)
Abstract Syntax

See Figure 10.
Description
The Modelica specialized class record is restricted to contain only public declarations of components that in turn also contain only public declarations. A complete description of record is available in Section 4.6 of the Modelica Specification:
	Only public sections are allowed in the definition or in any of its components (i.e., equation, algorithm, initial equation, initial algorithm and protected sections are not allowed). May not be used in connections. The elements of a record may not have prefixes input, output, inner, outer, or flow. Enhanced with implicitly available record constructor function, see Section 12.6. Additionally, record components can be used as component references in expressions and in the left hand side of assignments, subject to normal type compatibility rules.

Attributes
No additional attributes. Not all the attributes inherited from «block» are allowed — see constraints.

Associations
No additional associations. Not all the associations inherited from «block» are allowed — see constraints.
Constraints
[14] Name: The name of the Modelica model must be equal to the Name attribute of the «modelicaRecord».

[15] Comment: The optional comment in the Modelica record must be mapped to an OwnedComment of the «modelicaRecord»

[16] Components of type specialized class model or block: are not allowed. Note that this is a bit more restrictive than what Modelica allows; this is to avoid encountering the difficulties with verifying whether a particular model or block could also have been defined as a record (i.e., it satisfies all the limitations necessary for a class to be a record).

[17] Components of type specialized class connector: are not allowed.

[18] Components of type specialized class type or record: These components must be mapped to ValueProperties. All value properties must be objects stereotyped to «modelicaType» or «modelicaRecord». All «modelicaValueProperty»'s must have the following attribute values:
· visibility = public

· scope = null

· causality = null

· flowFlag = non-flow

[19] Extends relationships: Modelica extends relationships are mapped to generalizations stereotyped to «modelicaExtends». All generalizations must be relations stereotyped to «modelicaExtends».

[20] Equation sections, initial Equation sections, algorithm sections, and initial algorithm sections : are not allowed

[21] All other attributes or associations inherited from «block» or Classifier may not be used.

Example
[To be added]
5.5 «modelicaBlock»
Generalizations

· «modelicaClass» (from SysML4Modelica)

· «valueType» (from SysML)
Abstract Syntax

See Figure 10.
Description
The Modelica specialized class block is very similar to a model except that all its connectors must be either an input or output making it similar to a Simulink block. A complete description of block is available in Section 4.6 of the Modelica Specification:
	Same as model with the restriction that each connector component of a block must have prefixes input and/or output for all connector variables. [The purpose is to model input/output blocks of block diagrams. Due to the restrictions on input and output prefixes, connections between blocks are only possible according to block diagram semantic]

Attributes
No additional attributes. Not all the attributes inherited from (SysML) «block» are allowed — see constraints.

Associations
No additional associations. Not all the associations inherited from (SysML) «block» are allowed — see constraints.

Constraints
[22] Name: The name of the Modelica block must be equal to the Name attribute of the «modelicaBlock».

[23] Comment: The optional comment in the Modelica block must be mapped to an OwnedComment of the «modelicaBlock»

[24] Components of type specialized class model or block: These components must be mapped to Parts (Property associations with aggregationKind=composite). All parts must be objects stereotyped to «modelicaModel» or «modelicaBlock».

[25] Components of type specialized class connector: These components must be mapped to Ports. All ports must be objects stereotyped to «modelicaConnector». All «modelicaPort»'s must have the following attribute values:
· causality = input or output (not null)

· flowFlag = non-flow

[26] Components of type specialized class type or record: These components must be mapped to ValueProperties. All value properties must be objects stereotyped to «modelicaType» or «modelicaRecord».

[27] Extends relationships: Modelica extends relationships are mapped to generalizations stereotyped to «modelicaExtends». All generalizations must be relations stereotyped to «modelicaExtends».

[28] Equation sections: Modelica equation sections must be mapped to Constraints (ownedRule association) stereotyped to «modelicaEquation». The equations appear as an opaque Specification of «modelicaEquation» in the Modelica language. All Constraints must be objects stereotyped to «modelicaEquation» or «modelicaInitialEquation». (note: connect statements appearing in equation sections are treated differently — see Section qqq).

[29] Initial Equation sections: Modelica equation sections must be mapped to Constraints (ownedRule association) stereotyped to «modelicaInitialEquation». The equations appear as an opaque Specification of «modelicaInitialEquation» in the Modelica language.

[30] Algorithm sections: Modelica algorithm sections must be mapped to OwnedBehaviors of metatype OpaqueBehavior (or Activity – future work) stereotyped to «modelicaAlgorithm». The OpaqueBehavior contains all the algorithm statements in its body and has "Modelica" specified as its language.

[31] Initial algorithm sections: Modelica algorithm sections must be mapped to OwnedBehaviors of metatype OpaqueBehavior (or Activity – future work) stereotyped to «modelicaInitialAlgorithm». The OpaqueBehavior contains all the algorithm statements in its body and has "Modelica" specified as its language.

[32] All other attributes or associations inherited from «block» or Classifier may not be used.

Example
[To be added]
5.6 «modelicaConnector»
Generalizations

· «modelicaClass» (from SysML4Modelica)

· «valueType» (from SysML)
Abstract Syntax

See Figure 10.
Description
The Modelica specialized class connector is a model that cannot contain equations or algorithms in any of its components. A complete description of block is available in Section 4.6 and Chapter 9 of the Modelica Specification:

	No equations are allowed in the definition or in any of its components. Enhanced to allow connect(..) to components of connector classes.

[Peter: the description above does not say that connectors cannot have algorithm sections, but that seems odd; I will assume that algorithm sections are excluded also – please, confirm.]
Attributes
· isExpandable : Boolean

As explained in Modelica Specification 9.1.3, the Modelica expandable prefix can be applied to a connector. The primary purpose of expandable connectors is to allow for the convenient modeling of bus interfaces. The default value of isExpandable is false.

Associations
No additional associations. Not all the associations inherited from (SysML) «block» are allowed — see constraints.

Constraints
[33] Name: The name of the Modelica connector must be equal to the Name attribute of the «modelicaConnector».

[34] Comment: The optional comment in the Modelica connector must be mapped to an OwnedComment of the «modelicaConnector»

[35] Components of type specialized class model or block: are not allowed. Note that this is a bit more restrictive than what Modelica allows; this is to avoid encountering the difficulties with verifying whether a particular model or block could also have been defined as a connector (i.e., it satisfies all the limitations necessary for a class to be a connector).

[36] Components of type specialized class connector: These components must be mapped to Ports. All ports must be objects stereotyped to «modelicaConnector».
[Oops… this seems to be a problem: ValueTypes cannot have ports – let's discuss]
[37] Components of type specialized class type or record: These components must be mapped to ValueProperties. All value properties must be objects stereotyped to «modelicaType» or «modelicaRecord».

[38] Extends relationships: Modelica extends relationships are mapped to generalizations stereotyped to «modelicaExtends». All generalizations must be relations stereotyped to «modelicaExtends».

[39] Equation sections, initial Equation sections, algorithm sections, and initial algorithm sections : are not allowed

[40] All other attributes or associations inherited from «block» or Classifier may not be used.

Example
[To be added]
5.7 «modelicaType»
Generalizations

· «modelicaClass» (from SysML4Modelica)

· «valueType» (from SysML)
Abstract Syntax

See Figure 10.
Description
The Modelica specialized class type is restricted to predefined types, enumerations, arrays of type or classes extending from type. It is enhanced to allow extension of predefined types.

Attributes
No additional attributes.
Associations
No additional associations.
Constraints
Example
type Size = enumeration(small, medium, large, xlarge);
Additional Notes
SysML4Modelica Stereotype « ModelicaTypeRelation »
	Tag Name
	Tag Value Type
	Multiplicity, Default Value
	Comment (from Modelica specification)

	arraySize
	ModelicaExpression
	[0..*], 1
	

	Modification
	ModelicaModification

	[0..*],
	Each comma-separated entry of a Modelica modification construct is represented by a separate tag value. Comma is omitted.

5.8 «modelicaPackage»
Generalizations

· «modelicaClass» (from SysML4Modelica)
· Package (from UML4SysML)
Abstract Syntax

See Figure 10.
Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
Associations
Constraints
Example
Additional Notes
5.9 «modelicaFunction
»
Generalizations

Abstract Syntax

See Figure 10.
Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
Associations
Constraints
Example
Additional Notes
«modelicaFunction» resembles «modelicaBlock» but:

· can only have inputs and outputs; no connectors – inout is also possible

· does not have a connectable interface but instead needs to be called

· can be called recursively

· is more dynamic; the arguments are computed at run-time

· does not have internal state

· can have only one algorithm section and no equation section; is always imperative

· becomes part of the equation system as black boxes only; the internals are not manipulated symbolically by the solver

can potentially be differentiated
Discussion and Comments:

· [Chris Paredis]: We need to revisit the «modelicaPackage» sometime in the future to account for Modelica's use of redeclarable packages defined in the scope of a model. ->for later discussions
5.10 Short Class Definitions
Generalizations

Abstract Syntax

See Figure 10.
Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
Associations
Constraints
Example
Additional Notes
Modelica provides a short-hand notation for definition of classes. It is a short-hand notation for an inheritance construct. However, this is the only way for defining ModelicaTypes. Therefore, the tag shortClassDefinition is included into the stereotype. TBD (Peter) is this correct?

Example

connector RealInput = input Real "'input Real' as connector";

SysML4Modelica Stereotype «modelicaType»

	Tag Name
	Tag Value Type
	Multiplicity, Initial Value
	Comment (from Modelica specification)

	shortClassDefinition
	String
	[0..1],
	This is the short-hand class declaration. Except for ModelicaType the same can be expressed using inheritance construct.

[Chris Paredis] : This is semantically a very weak way of covering the short-hand definitions. Many of these shorthand definitions are redundant, in which case we should map them to the non-short-hand versions in SysML; Others (such as "der" cannot be expressed in non-short-hand — for those we should create additional constructs in SysML.
5.11 «modelicaNestedClassRelation»
Generalizations

· UML4SysML::Class::nestedClassifier
Abstract Syntax

Description
Attributes
Associations
Constraints
Example
Additional Notes
Modelica allows definitions nested class definitions.
5.12 «modelicaExtends»
Generalizations

· UML4SysML::Generalization
Abstract Syntax

See Figure 10.
Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
An inherited class can be modified.
This is reflected by the additional tag “modification”.

SysML4Modelica Stereotype «modelicaExtendsRelation»

	Tag Name
	Tag Value Type
	Multiplicity, Default Value
	Comment (from Modelica specification)

	Modification
	ModelicaModification

	[0..*],
	Each comma-separated entry of a Modelica modification construct is represented by a separate tag value. Comma is omitted.

Associations
Constraints
Example
Additional Notes
The extends clause of Modelica is mapped to SysML Generalization. Both concepts have same semantics.

Modelica extends syntax (p.61):

extends_clause :

 extends name [class_modification] [annotation]

constraining_clause :

 extends name [class_modification]
6 Predefined Types
6.1 Overview
The following primitive types are available in the Modelica language: Real Type, Integer Type, Boolean Type, String Type, Enumeration Types, StateSelect, ExternalObject, Graphical Annotation Types. These primitive types are defined as predefined types in SysML4Modelica::BasicTypes. Although these types have direct counterparts in SysML, they are defined again to account for the additional attributes associated with them in Modelica. An example for ModelicaReal is shown in the diagram below
:

[image: image14.emf]Modelica Types Basic Types [Package] pkg [] <<ValueType>> ModelicaReal start : Real = 0 quantity : String unit : String displayUnit : String min : Real = -Inf max : Real = +Inf fixed : Boolean nominal : Real stateSelect : ModelicaStateSelect = default <<ValueType>> Real we have left off the value attribute because that is automatically included by specializing Real We still need to create similar definitions for Integer, Boolean, and String

Note that in Modelica, the properties such as “start”, “quantity
”, etc, are not really equivalent to user-defined complex data-types. For instance, if one defines “Real x;” then one cannot refer to “x.min” in an equation. The only way one can specify a value for these special properties is as part of a type definition or local modification: e.g., “Real x(start=1, unit=”m”);
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	Predefined Type
	Constraints

	SysML::Blocks::ValueType
	ModelicaReal
	

	SysML::Blocks::ValueType
	ModelicaInteger
	

	SysML::Blocks::ValueType
	ModelicaBoolean
	

	SysML::Blocks::ValueType
	ModelicaString
	

	UML4SysML::Enumeration
	ModelicaEnumeration
	

	SysML::Blocks::ValueType
	ModelicaStateSelect
	

	SysML::Blocks::Block
	ModelicaExternalObject
	This is an abstract type

	SysML::Blocks::ValueType
	ModelicaAnnotation
	

6.2 ModelicaReal

The following tables list the tag values associated with the new stereotypes. All of the tags listed below are optional and can only be defined once, i.e. their multiplicity is [0..1]. Empty “Initial Value” field implies an empty string (null).
SysML4Modelica Predefined Type ModelicaReal (inherits from Real in SysML
)
	Property Name
	Property Value Type
	Multiplicity, Default Value
	Comment

	Quantity
	String
	[0..1],
	Inherited from ValueType (corresponds to quantityKind (dimension in the SysML 1.1)

	unit

	String
	[0..1],
	Unit used in equations.
Inherited from ValueType.

	displayUnit
	String
	[0..1],
	Default display unit

	Min
	Real
	[0..1], -Inf
	Inf denotes a large value.

	Max
	Real
	[0..1], +Inf;
	Inf denotes a large value.

	Fixed
	Boolean

	[0..1], true, // default for parameter/constant;

false; // default for other variables
	

	Start
	Real
	0
	Initial value. Initial guess value when fixed=false.

	Nominal
	Real
	[0..1],
	Nominal value used for scaling

	stateSelect
	ModelicaStateSelect
	[0..1], StateSelect.default
	

6.3 ModelicaInteger

SysML4Modelica Predefined Type ModelicaInteger (inherits from Integer in SysML)
	Property Name
	Property Value Type
	Default Value
	Comment

	Quantity
	String
	
	Inherited from ValueType (corresponds to quantityKind (dimension in the SysML 1.1)

	Min
	Integer
	-Inf
	Inf denotes a large value.

	Max
	Integer
	+Inf;
	Inf denotes a large value.

	Fixed
	Boolean
	true, // default for parameter/constant;

false; // default for other variables
	

	Start
	Integer
	0
	Initial value. Initial guess value when fixed=false.

6.4 ModelicaBoolean

SysML4Modelica Predefined Type ModelicaBoolean (inherits from Boolean in SysML)
	Property Name
	Property Value Type
	Default Value
	Comment (from Modelica specification)

	Quantity
	String
	
	Inherited from ValueType (corresponds to quantityKind (dimension in the SysML 1.1)

	Start
	Boolean
	false;
	Initial value.

6.5 ModelicaString

[ToDo]
6.6 ModelicaEnumeration

[ToDo]
6.7 ModelicaStateSelect

SysML4Modelica Predefined Type ModelicaStateSelect
	Property Name
	Property Value Type
	Comment (from Modelica specification)

	Never
	Enumeration literal
	Do not use as state at all.

	Avoid
	Enumeration literal
	Use as state, if it cannot be avoided (but only if variable appears differentiated and no other potential state with attribute default, prefer, or always can be selected)

	Default
	Enumeration literal
	Use as state if appropriate, but only if variable appears differentiated.

	Prefer
	Enumeration literal
	Prefer it as state over those having the default value (also variables can be selected, which do not appear differentiated).

	Always
	Enumeration literal
	Do use it as a state

6.8 «modelicaExternal»
[ToDo]
6.9 «modelicaAnnotation»
[ToDo] – do we really need to include this? Maybe we can just capture the entire annotation as a string....
6.10 Additional Predefined Types
TO DO: These do not need to be predefined types if we consider treating the declaration equations and modifications explicitly as a Tag. We should include the Modelica expression syntax and the modification syntax as part of our profile definition. (we should move this section to the later in the document, maybe as subsections of 2.1.2 where declarationEquation and modifications are defined.
The following predefined types are not defined in Modelica. The reason for including them is to capture Modelica semantics that would be omitted otherwise. These are used as types for tags or properties where appropriate.
NOTE: It seems like some of the omitted semantics would actually be useful when referring to Modelica models within a SysML model. For instance, when assigning an initial value to a variable, it would often be useful to do so as a function of a quantity defined elsewhere in the SysML model (maybe as a structural property). By representing expressions as text, the semantics of the name of the quantity are lost, making references to other SysML quantities cumbersome to maintain and error prone. SUGGESTION: We need to consider constructs besides a simple string to capture both ModelicaExpression and ModelicaModification.
To illustrate the use of ModelicaExpression and ModelicaModification, consider the following example:

model Oscillator
 import SI = Modelica.SIunits;
 parameter SI.Mass fullMass = 1000;
 /* parameter value defined using ModelicaExpression */

 parameter SI.Mass quarterMass = fullMass/4

;
 /* component type modified using ModelicaModifications */

 Modelica.Mechanics.Translational.Components.Mass mass1(

 L=1,

 m=quarterMass,

 s(start=-0.5));

 Modelica.Mechanics.Translational.Components.Spring spring1;
 Modelica.Mechanics.Translational.Components.Fixed fixed1;

equation

 connect(spring1.flange_b, fixed1.flange);

 connect(mass1.flange_b, spring1.flange_a);

end Oscillator;
7 Component Declarations
7.1 Overview
In the Modelica language, instances (or usages) of a class are referred to as “components”. In SysML these can be mapped to Block Properties, such as Value Property,, Part Property,, or FlowProperties. Note that Modelica does not have the equivalent of a reference property — properties are never shared. [SysML Spec, pg. 34]]
The following production rules define Modelica Components:

component_clause:

 type_prefix type_specifier [array_subscripts] component_list

type_prefix :

 [flow]

 [discrete | parameter | constant] [input | output]

type_specifier :

 name

component_list :

 component_declaration { "," component_declaration }

component_declaration :

 declaration [conditional_attribute] comment

conditional_attribute:

 if expression

declaration :

 IDENT [array_subscripts] [modification]
7.2 «modelicaComponent»
Generalizations

· property
Abstract Syntax

Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
SysML4Modelica Stereotype «modelicaPart»

	Tag Name
	Tag Value Type
	Multiplicity, Default Value
	Comment

	isFinal

	Boolean
	[1], false
	final prefix

	modification

	ModelicaModification
	[0..*],
	Modification refers to the short-hand notation used in Modelica for modify or redeclare values and types in usages and specialisations. The parenthesis “(” and “)” are omitted.

	redeclaration
	ModelicaRedeclaration = enumeration (replaceable, redeclare)
	[0..1],
	replaceable or redeclare prefixes.

Replaceable is necessary to be allowed to redeclare the type. Modifications other than type redeclaration can be made regardless of the replaceable prefix being spedified.

	conditionalExpression
	ModelicaExpression

	[0..1],
	The result of ModelicaExpression must be of type Boolean. This string contains the expression. The keyword “if” is omitted.
Only if the condition is true then the «modelicaPart» is created; the condition is only evaluated at compile time and is often used for configuration changes.

	arraySize

]One string that contains the full array specification (e.g., “[1,3,:]”
	ModelicaExpression

	[0..1]
	One string that contains the full array specification (e.g., “[1,3,:]”

Associations
Constraints
Example
Additional Notes
In order to include all necessary aspects of a component declaration four new stereotypes are introduced. The overarching stereotype for any kind of Modelica component is «modelicaComponent». This stereotype is then further refined into three stereotypes corresponding to the type of construct used as a SysML representation.three sare
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotype
	Constraints

	UML4SysML::Association and UML4SysML::Property with aggregationKind = composite
	«modelicaPart»
	Applied when the Modelica Component is of specialized class Model or Block

	UML4SysML::Port
	«modelicaPort»
	Applied when the Modelica Component is of specialized class Connector

	SysML::Blocks::ValueProperty

	«modelicaValueProperty»
	Applied when the Modelica Component is of specialized class Record or is (a subtype of) one of the predefined (primitive) types

(Note: Component, Usage, Object, Instance are equivalent in Modelica; they are different concepts in SysML – property, instance, type.)
Tag summary for «modelica

	Attribute Name
	«modelicaPart»
	«modelicaPort»
	«modelicaValueProperty»

	Visibility
	•
	
	•

	Scope
	•
	
	•

	Causality
	
	•
	•

	flowFlag
	
	
	•

	Variability
	
	
	•

	isFinal
	•
	•
	•

	modification
	•
	•
	•

	redeclaration
	•
	•
	•

	conditionalExpression
	•
	•
	•

	declarationEquation
	
	
	•

	arraySize
	•
	•
	•

These are common
7.3 «modelicaPart»

Generalizations

· «modelicaComponent»
Abstract Syntax

Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
Associations
Constraints
Example
Additional Notes
The following table lists all associated tags of the «modelicaPart» stereotype. Multiplicity [1] indicates a mandatory value and [0..1] indicates optional values. Empty “Initial Value” field implies an empty string (null).

SysML4Modelica Stereotype «modelicaPart»

	Tag Name
	Tag Value Type
	Multiplicity, Default Value
	Comment

	Visibility
	ModelicaVisibility = enumeration(public, protected)
	[1], public
	The default value can be omitted in Modelica. Although SysML does not explicitly define visibility, most implementation do have a visibility tag for properties because they are built on top of UML.

	scope

	ModelicaScope = enumeration(inner, outer)
	[0..1], null
	 “lexical” is not a keyword in Modelica; “lexical” is the default when neither “inner” nor “outer” are specified. Note that the resolution of the scope is performed by the Modelica compiler in the instance hierarchy

7.4 «modelicaPort»

Generalizations

· «modelicaComponent»
Abstract Syntax

Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
SysML4Modelica Stereotype «modelicaPort»

	Tag Name
	Tag Value Type
	Multiplicity, Default Value
	Comment

	Causality
	ModelicaCausality = enumeration(input, output)
	[0..1], null
	“none” is not a keyword in Modelica; “none” is the default when neither “input” nor “output” are specified.

Can only be applied to primitive types, records, or arrays; not to models, blocks, functions.

Associations
Constraints
Example
Additional Notes
7.5 «modelicaValueProperty»

Generalizations

· «modelicaComponent»
Abstract Syntax

Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
SysML4Modelica Stereotype «modelicaValueProperty»

	Tag Name
	Tag Value Type
	Multiplicity, Default Value
	Comment

	Visibility
	ModelicaVisibility = enumeration(public, protected)
	[1], public
	The default value can be omitted in Modelica. Although SysML does not explicitly define visibility, most implementation do have a visibility tag for properties because they are built on top of UML.

	Scope
	ModelicaScope = enumeration(inner, outer)
	[0..1], null
	 “lexical” is not a keyword in Modelica; “lexical” is the default when neither “inner” nor “outer” are specified. Note that the resolution of the scope is performed by the Modelica compiler in the instance hierarchy

	Causality
	ModelicaCausality = enumeration(input, output)
	[0..1], null
	“none” is not a keyword in Modelica; “none” is the default when neither “input” nor “output” are specified.

Can only be applied to primitive types, records, or arrays; not to models, blocks, functions.

	flowFlag
	ModelicaFlowFlag = enumeration(flow, non-flow)
	[1], non-flow
	“non-flow” is not a keyword in Modelica; “non-flow” is the default when “flow” is not specified.

This tag can only be applied to variables that are a subtype of ModelicaReal. It can only be used inside «modelicaConnector» or to define a Type. Input/output cannot be combined with flow.

	Variability
	ModelicaVariability = enumeration(constant, parameter, discrete, continuous)
	[0..1], continuous
	In the context of Modelica, the read-only flag in UML/SysML will be ignored. Although the variability “parameter” could potentially be expressed as “read-only” in SysML, a new tag (variability) is defined to account for all the Modelica variabilities

	declarationEquation
	ModelicaExpression

	[0..1],
	The result must be of the same type as the «modelicaPart» itself. Declaration Equation refers to the shorthand notation in Modelica. In this case the value of the tag is the right-hand-expression of the equations. The “=” sign is omitted, i.e., it is implicit.

Associations
Constraints
Example
Additional Notes
8 Equation and Algorithm Sections
8.1 Overview
Equations and Algorithm are the main Modelica constructs for defining behavior of classes. These constructs are mapped to UML Constraint.
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	UML4SysML::Constraint
	«modelicaInitialEquation»
	Represents initial equation section

	UML4SysML::Constraint
	«modelicaEquation»
	Represents equation section

	UML4SysML::Constraint
	«modelicaInitialAlgorithm»
	Represents initial algorithm section

	UML4SysML::Constraint
	«modelicaAlgorithm»
	Represents algorithm section

Each of the stereotypes includes the tag “specification” which contains the actual equation or algorithm section. The equation itself is captured in the Constraint Specification field.
8.2 «modelicaEquation
»
Generalizations

· Constraint (from UML4SysML)
Abstract Syntax

Description
Attributes
No additional attributes
Associations
No additional associations
Constraints
Example
Additional Notes
8.3 «modelicaInitialEquation»
Generalizations

· Constraint (from UML4SysML)
Abstract Syntax

Description
Attributes
No additional attributes

Associations
No additional associations

Constraints
Example
Additional Notes
8.4 «modelicaAlgorithm»
Generalizations

· Behavior (from UML4SysML)
Abstract Syntax

Description
Attributes
Attributes
No additional attributes

Associations
No additional associations

Example
Additional Notes
8.5 «modelicaInitialAlgorithm»
Generalizations

· Behavior (from UML4SysML)
Abstract Syntax

Description
Attributes
Associations
Constraints
Example
Additional Notes
8.6 «modelicaConnection»
Generalizations

· Connector (from UML4SysML)
Abstract Syntax

Description
The Modelica specialized class model is the most general specialized class. All the Modelica class elements are allowed in models: variables, connectors, sub-models, equations and algorithm sections. A model can include state variables.
Attributes
Associations
Constraints
Example
Additional Notes
In Modelica the causality of the connector is defined in the type while the flow direction of a FlowPort is associated with a usage. Thus Modelica connector cannot be mapped to FlowPort.
Alternatives:

1. (preferred solution) discard the direction attribute of an atomic FlowPorts, and FlowPort to an instance of a Modelica Connector in a Modelica Model/Block.
2. Connector Modelica is conceptually an interaction point, same is a Port in UML -> Define a new SysML construct form UML Ports, call it ???
Based on alternative 1: «modelicaConnector» is a type for an atomic FlowPort. FlowPort name is the name of the instance of a connector in a «modelicaModel» or «modelicaBlock».

Modelica connection is mapped to SysML connector. No new stereotype provided the FlowPorts are typed by FlowSpecification having «modelicaConnector» applied to it.

	UML4SysML:: Connector
	Connection clause

9 Related non-Modelica Constructs
9.1 «modelicaSimulation»
Generalizations

· Block
Abstract Syntax

Description
Attributes
Associations
Constraints
Example
Additional Notes
«modelicaSimulation» (mapped to SysML Block) is not a Modelica language construct. However, it is introduced in order to distinguish between the model and its simulation. The following tags are associated with this stereotype:
	SysML

Abstract Syntax Reference
	SysML4Modelica

	
	New Stereotypes
	Constraints

	SysML::Blocks::Block
	«modelicaSimulation»
	

SysML4Modelica Stereotype «modelicaSimulation»

	Tag Name
	Tag Value Type
	Default Value
	Comment

	startTime
	Real
	0.0
	Simulation start time

	stopTime
	Real
	1.0
	Simulation stop time

	Model
	«modelicaModel», «modelicaBlock»
	
	Reference to the model to be simulated

We need to come up with a way to get to the results…

Part III – Modelica Meta-Model
10 Class Definition
11 Predefined Types
12 Component Declarations

13 Equation and Algorithm Sections

Part IV – Correspondence
14 Correspondence Definition

Part V – Annexes
A References

Akhvlediani, D. (2006). Design and implementation of a UML profile for Modelica/SysML. M.S. Thesis. Department of Computer Science. Linköping University, Linköping, Sweden. LITH-IDA-EX--06/061—SE.

Fritzson, P. (2004). Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. New York, NY, Wiley-IEEE Press.

Johnson, T. A. (2008). Integrating Models and Simulations of Continuous Dynamic System Behavior into SysML. M.S. Thesis. G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology. Atlanta, GA.

Johnson, T. A., C. J. J. Paredis and R. M. Burkhart (2008). "Integrating Models and Simulations of Continuous Dynamics into SysML." 6th International Modelica Conference, Bielefeld, Germany, March 3-4, Modelica Association, 135-145.

Modelica Association, (2009) Modelica Specification: http://www.modelica.org/index_html/documents/ModelicaSpec31.pdf
Object Management Group, SysML 1.2 Specification:
http://www.omg.org/spec/SysML/1.2 (pending the September OMG TC meeting)

Object Management Group, UML 2.3 Specification:
http://www.omg.org/spec/UML/2.3 (pending the September OMG TC meeting)

Pop, A., and Akhvlediani, D., and Fritzson, P. (2007). "Towards Unified Systems Modeling with the ModelicaML UML Profile." International Workshop on Equation-Based Object-Oriented Languages and Tools. Berlin, Germany, Linköping University Electronic Press.
Peak, R., McGinnis, L., Paredis, C. (2008) "Integrating System Design with Simulation and Analysis Using SysML – Phase 1 Final Report," (available from russell.peak@gatech.edu)

B Glossary

algorithm section: part of a class definition consisting of the keyword algorithm followed by a sequence of statements. Like an equation, an algorithm section relates variables, i.e. constrains the values that these variables can take simultaneously. In contrast to an equation section, an algorithm section distinguishes inputs from outputs: An algorithm section specifies how to compute output variables as a function of given input variables. A Modelica processor may actually invert an algorithm section, i.e. compute inputs from given outputs, e.g by search (generate and test), or by deriving an inverse algorithm symbolically.

array or array variable: a component whose components are array elements. For an array, the ordering of its components matters: The kth element in the sequence of components of an array x is the array element with index k, denoted x[k]. All elements of an array have the same type. An array element may again be an array, i.e. arrays can be nested. An array element is hence referenced using n indices in general, where n is the number of dimensions of the array. Special cases are matrix (n=2) and vector (n=1). Integer indices start with 1, not zero.

array element: a component contained in an array. An array element has no identifier. Instead they are referenced by array access expressions called indices that use enumeration values or positive integer index values.

assignment: a statement of the form x := expr. The expression expr must not have higher variablity than x.

attribute: a component contained in a scalar component, such as min, max, and unit. All attributes are predefined and attribute values can only be defined using a modification, such as in Real x(unit="kg"). Attributes cannot be accessed using dot notation, and are not constrained by equations and algorithm sections. E.g. in Real x(unit="kg") = y; only the values of x and y are declared to be equal, but not their unit attributes, nor any other attribute of x and y.

base class or base: class A is called a base class of B, if class B extends class A. This relation is specified by an extends clause in B or in one of B's base classes. A class inherits all elements from its base classes, and may modify all non-final public elements inherited from base classes.

binding equation: Either a declaration equation or an element modification for the value of the variable. A component with a binding equation has its value bound to some expression.

class restriction: property of a class: one of: model, connector, package, record, block, function, type. The class restriction of a class represents an assertion regarding the content of the class and restricts its use in other classes. For example, a class having the package class restriction must only contain classes and constants.

class: a description that generates an object called instance. The description consists of a class definition, an optional qualified modification (called modification environment) that modifies the class definition, an optional list of qualified dimension expressions if the class is an array class, and a enclosing class for all classes except the root class.

class definition: a node in the class tree. It has a name, an enclosing class, and may contain elements.

class tree: tree of class definitions rooted at the unnamed root package. In this tree, the children of a class definition cd are exactly those elements of the cd which themselves are class definitions. In particular, a class definition inherited to cd is not a child of cd.

component or variable: an instance generated by a component declaration. Special cases of components are scalar, array, and attribute.

component declaration: an element of a class definition that generates a component. A component declaration specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order to generate the component and (3) an optional Boolean parameter expression. Generation of the component is suppressed if this parameter expression evaluates to false. A component declaration may be overidden by an element redeclaration.

component reference: An expression containing a sequence of idents and indices. A component reference is equivalent to the referenced object, which must be a component or function. A component reference is resolved (evaluated) in the scope of a class (or expression for the case of a local iterator variable). A scope defines a set of visible components and classes. Example reference: Ele.Resistor.u[21].r
declaration assignment: assignment of the form x := expression defined by a component declaration. This is similar to a declaration equation. In contrast to a declaration equation, a declaration assignment is allowed only when declaring a component contained in a function.

declaration equation: Equation of the form x = expression defined by a component declaration. The expression must not have higher variability than the declared component x. Unlike other equations, a declaration equation can be overriden (replaced or removed) by an element modification.

derived class or subclass, extended class: class B is called derived from A, if B extends A

element: part of a class definition, generates an instance, one of class definition, component declaration or extends clause. Component declaration and class definition are called named elements. An element is either inherited from a base or local.

environment: a qualified modification used to define a class. The environment of a class defines how to modify the corresponding class definition when instantiating the class.

equation: part of a class definition. An equation relates scalar variables, i.e. constrains the values that these variables can take simultaneously. When n-1 variables of an equation containing n variables are known, the value of the nth variable can be inferered (solved for). In contrast to an algorithm section, an equation does not define, for which of its variable it is to be solved. Special cases are: initial equation, instantaneous equation, declaration equation.

event: something that occurs instantaneously at a specific time or when a specific condition occurs. Events are for example defined by the condition occuring in a when clause, if clause, or if expression.

extends clause: an unnamed element of a class definition that uses a name and an optional unqualified modification to specify a base of the class defined using the class defintion.

expression: a term built from components or component references (refering to functions or components) and literals. Each expression has a type and a variability.

function: a class of class restriction function, or a component generated by a class of class restriction function

global package: a predefined unnamed package without enclosing class that contains the predefined elements Real, Integer, Boolean, String, and time.

flattening: the computation that creates a flattened class of a given class.

instantaneous: An equation or statement is instantaneous if it holds only at events, i.e. at single points in time. The equations and statements of a when-clause are instantaneous.

identifier or id or ident: an atomic (not composed) name. Example: Resistor
index or subscript: An expression, typically of Integer type or the colon symbol (:), used to reference a component (or a range of components) of an array.

instance: the object generated by a class. An instance contains zero or more components. An instance may also be associated with qualified equations and algorithms. An instance has a type. Basically, two instances have same type, if their public components and classes have pairwise equal idents and types. More specific type equivalence definitions are given e.g. for functions.

instance tree: a tree where each tree node is an instance and the children are given by the components of the instance.

literal: a real, integer, boolean, enumeration, or string literal. Used to build expressions.

local: an element of a class definition is called local if it is not inherited (modified or not) from another class definition.

matrix: an array with dimension 2.

modification: part of an element. Modifies the instance generated by that element. A modification contains element modifications and element redeclarations.

element modification: part of a modification, overrides declaration equations in the instance generated by the modified element. Example: vcc(unit="Volt")=1000.

element redeclaration: part of a modification, replaces one of the named elements possibly used to build the instance generated by the element that contains the redeclaration. Example: redeclare class Voltage = Real(unit="Volt") replaces class Voltage.

name: Sequence of one or more identifiers. Used to reference a class. A class name is resolved in the scope of a class, which defines a set of visible classes. Example name: "Ele.Resistor".

prefix: boolean property of an element of a class definition, e.g. final, public, flow.

predefined type: one of the types Real, Boolean, Integer, String. The component declarations of the predefined types define attributes, such as min, max, and unit.

primitive type: one of the built-in types RealType, BooleanType, IntegerType, StringType, EnumType. The primitive types are used to define attributes and value of predefined types and enumeration types.

qualified: An expression, modification, equation, or algorithm is called qualified if it does not contain a component reference. Qualification is part of flattening. To qualify an object that contains a component reference, the reference is resolved (looked up) in the scope of the class that contains the reference, and replaced by the resulting component or function.

root package: root of the class tree, an unnamed package that contains all top-level class definitions, i.e. class definitions (typically of class restriction package) found in the directories listed in the MODELICAPATH. The ordering of the directories in MODELICAPATH matters. The class definition found first hides all other class definitions with the same name found later.

scalar or scalar variable: a component of predefined type or enumeration type.

subtype or compatible with: relation between types. A is a subtype of (compatible with) B
supertype: relation between types. The inverse of subtype. A is a subtype of B means that B is a supertype of A.

transitively nonreplaceable: a class reference is considered transitively non-replaceable if there are no replaceable elements in the referenced class, or any of its base classes or constraining types transitively at any level.

type or interface: property of an instance or expression.

variable: synonym for component.

variability: property of an expression: one of

•
continuous: a real-valued expression that may change its value at any point in time

•
discrete: may change its value only at events during simulation

•
parameter: may change its value only between two simulation runs of the executable

•
constant: may change its value only when rebuilding the executable

Assignments x := expr and binding equations x = expr must satisfy a variablity constraint: The expression must not have a higher variability than component x.

vector: an array with dimension 1.

C Modelica Concrete Syntax

Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[] optional

{ } repeat zero or more times

| or

The following lexical units are defined:

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" (Q-CHAR | S-ESCAPE) { Q-CHAR | S-ESCAPE } "’"

NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z"

STRING = """ { S-CHAR | S-ESCAPE } """

S-CHAR = any member of the source character set except double-quote """, and backslash "\"

Q-CHAR = any member of the source character set except single-quote "’", and backslash "\"

S-ESCAPE = "\’" | "\"" | "\?" | "\\" |

 "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

UNSIGNED_INTEGER = DIGIT { DIGIT }

UNSIGNED_NUMBER = UNSIGNED_INTEGER ["." [UNSIGNED_INTEGER]]

[("e" | "E") ["+" | "-"] UNSIGNED_INTEGER]

[The single quotes are part of an identifier. E.g. ’x’ and x are different IDENTs].

Note: string constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the "+" operator in Modelica.

Modelica uses the same comment syntax as C++ and Java, and also has structured comments in the form of annotations and string comments. Inside a comment, the sequence <HTML> </HTML> indicates HTML code which may be used by tools to facilitate model documentation.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used as identifiers, with the exception of initial which is a keyword in section headings, but it is also possible to call the function initial().

Grammar

Stored Definition – Within

stored_definition:

 [within [name] ";"]

 { [final] class_definition ";" }

Class Definition

class_definition :

 [encapsulated]

 [partial]

 (class | model | record | block | [expandable] connector | type |

 package | function)

 class_specifier

class_specifier :

 IDENT string_comment composition end IDENT

 | IDENT "=" base_prefix name [array_subscripts]

 [class_modification] comment

 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment

 | IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

 | extends IDENT [class_modification] string_comment composition

 end IDENT

base_prefix :

type_prefix

enum_list : enumeration_literal { "," enumeration_literal}

enumeration_literal : IDENT comment

composition :

 element_list

 { public element_list |

 protected element_list |

 equation_section |

 algorithm_section

 }

 [external [language_specification]

 [external_function_call] [annotation ";"]

 [annotation ";"]]

language_specification :

 STRING

external_function_call :

 [component_reference "="]

 IDENT "(" [expression_list] ")"

element_list :

 { element ";" | annotation ";" }

element :

 import_clause |

 extends_clause |

 [redeclare]

 [final]

 [inner] [outer]

 ((class_definition | component_clause) |

 replaceable (class_definition | component_clause)

 [constraining_clause comment])

import_clause :

 import (IDENT "=" name | name ["." "*"]) comment

Extends

extends_clause :

 extends name [class_modification] [annotation]

constraining_clause :

 extends name [class_modification]

Component Clause

component_clause:

 type_prefix type_specifier [array_subscripts] component_list

type_prefix :

 [flow]

 [discrete | parameter | constant] [input | output]

type_specifier :

 name

component_list :

 component_declaration { "," component_declaration }

component_declaration :

 declaration [conditional_attribute] comment

conditional_attribute:

 if expression

declaration :

 IDENT [array_subscripts] [modification]

Modification

modification :

 class_modification ["=" expression]

 | "=" expression

 | ":=" expression

class_modification :

 "(" [argument_list] ")"

argument_list :

 argument { "," argument }

argument :

 element_modification_or_replaceable

 | element_redeclaration

element_modification_or_replaceable:

 [each] [final] (element_modification | element_replaceable)

element_modification :

 component_reference [modification] string_comment

element_redeclaration :

 redeclare [each] [final]

((class_definition | component_clause1) | element_replaceable)

element_replaceable:

 replaceable (class_definition | component_clause1)

 [constraining_clause]

component_clause1 :

 type_prefix type_specifier component_declaration1

component_declaration1 :

 declaration comment

Equations

equation_section :

 [initial] equation { equation ";" | annotation ";" }

algorithm_section :

 [initial] algorithm { statement ";" | annotation ";" }

equation :

 (simple_expression "=" expression

 | if_equation

 | for_equation

 | connect_clause

 | when_equation

 | IDENT function_call_args)

 comment

statement :

 (component_reference (":=" expression | function_call_args)

 | "(" output_expression_list ")" ":=" component_reference function_call_args

 | break
 | return
 | if_statement

 | for_statement

 | while_statement

 | when_statement)

 comment

if_equation :

 if expression then
 { equation ";" }

 { elseif expression then
 { equation ";" }

 }

 [else
 { equation ";" }

]

 end if
if_statement :

 if expression then
 { statement ";" }

 { elseif expression then
 { statement ";" }

 }

 [else
 { statement ";" }

]

 end if
for_equation :

 for for_indices loop
 { equation ";" }

 end for
for_statement :

 for for_indices loop
 { statement ";" }

 end for
for_indices :

 for_index {"," for_index}

for_index:

 IDENT [in expression]

while_statement :

 while expression loop
 { statement ";" }

 end while
when_equation :

 when expression then
 { equation ";" }

 { elsewhen expression then
 { equation ";" } }

 end when
when_statement :

 when expression then
 { statement ";" }

 { elsewhen expression then
 { statement ";" } }

 end when
connect_clause :

 connect "(" component_reference "," component_reference ")"

Expressions

expression :

 simple_expression

 | if expression then expression { elseif expression then expression }

 else expression

simple_expression :

 logical_expression [":" logical_expression [":" logical_expression]]

logical_expression :

 logical_term { or logical_term }

logical_term :

 logical_factor { and logical_factor }

logical_factor :

 [not] relation

relation :

 arithmetic_expression [rel_op arithmetic_expression]

rel_op :

 "<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic_expression :

 [add_op] term { add_op term }

add_op :

 "+" | "-"

term :

 factor { mul_op factor }

mul_op :

 "*" | "/"

factor :

 primary ["^" primary]

primary :

 UNSIGNED_NUMBER

 | STRING

 | false
 | true
 | name function_call_args

 | component_reference

 | "(" output_expression_list ")"

 | "[" expression_list { ";" expression_list } "]"

 | "{" function_arguments "}"

 | end
name :

 IDENT ["." name]

component_reference :

 IDENT [array_subscripts] ["." component_reference]

function_call_args :

 "(" [function_arguments] ")"

function_arguments :

 expression ["," function_arguments | for for_indices]

 | named_arguments

named_arguments: named_argument ["," named_arguments]

named_argument: IDENT "=" expression

output_expression_list:

 [expression] { "," [expression] }

expression_list :

 expression { "," expression }

array_subscripts :

 "[" subscript { "," subscript } "]"

subscript :

 ":" | expression

comment :

 string_comment [annotation]

string_comment :

 [STRING { "+" STRING }]

annotation :

 annotation class_modification
� In Modelica, the dot notation refers to member access [Modelica Spec, section 3.6.6]. In SysML, the double colon notation is used instead.

� Note that an instance in Modelica is similar to a usage in UML or SysML.

�Confirm the profile includes both the subset of SysML and the extensions.

�Does this discussion belong in the Transformation Specification?

�Not sure I understand this. I would associated the across and through variables with flow properties in the Flow Spec.

�I believe that Modelica does make a differentiation between what can flow vs. what actually flows but this differentiation is done in a different way than it is in SysML because of the difference in semantics of types in SysML & Modelica.

Modelica uses structural subtyping

SysML uses nominal subtyping.

With nominal subtyping, we need to have explicitly defined elements to make the distinction between what can flow (i.e., flow spec) and what actually flows (i.e., item flow).

With structural subtyping, we have more flexibility.

Generally the distinction boils down to the semantics of a type in Modelica as a set of values.

Here, this entails that:

- a type specifies what can flow;

- runtime values specify what actually flows.

We can lift the specification of what actually flow to the type level using specialization/refinement.

�Suggest we continue to leverage parametrics for the explicit semantics. We should restate this accordingly.

�Issues in having analytical model in SysML

Redundancy between descriptive/design and analytical model

Potential inconsistency between descriptive/design and analytical model (current solution: analysis context

Difference in paradigm for dynamic models (Modelica) and other modelling paradigms (

�Fix the <<block>> errors in diagram

�Name the ibd Body to Suspension Conection. Remove <<block>> stereotype from ibd.

.I suggest we consider using the flow port instead of the part for representing the Body Connection nd SuspensionFlange. This has the advantage of being able to map flow ports to Modelica Connectors and will appear more intuitive.

�The terminology in the text needs to be related explicitly to the notation used in the diagrams.

What is an analysis context in the model?

(maybe we should have a stereotype)

What are descriptive elements in the model?

What are analysis models in the model?

-How are dependencies captured in the model?

(it may be not obvious for some readers to equate “dependency” in the text with a <<Describe>> relationship in the model or an allocation relationship as Sandy is suggesting)

�Perhaps we could use allocation for this dependency to represent to the mapping between the two user models.

�Reconsider the name of the profile

�Consider renaming this because according to Modelica spec a class and a model are identical. Using «modelicaClass» with a different meaning here may cause confusion. How about:

«modelicaRootClass» or «modelicaClassConcept»

�Discuss with Nicolas whether this is correct

�This seems to be a bug.

See Modelica Language Spec 3.1:

7.2.6 Element Modification Prevention

7.3.3 Restrictions on Redeclarations

�I believe that isEncapsulated in Modelica has the same semantic effect as that of isEncapsulated in SysML.

According to the specification of isEncapsulated in Modelica & SysML (see below), it seems to me that the intent of isEncapsulated is the same in both languages; i.e., one cannot “reach” in an encapsulated block (SysML) or class (Modelica).

If there is an agreement about this, then Modelica’s encapsulated prefix would map to Block::isEncapsulated.

See Modelica Spec 5.3.1 & 5.3.2

When an element, equation, or section is flattened, any name is looked up sequentially in each member of the ordered set of enclosing classes until a match is found or an enclosing class is encapsulated. In the latter case the lookup stops except for the predefined types, functions and operators defined in this specification. For these cases the lookup continues in the global scope, where they are defined. [E.g. abs is searched upwards in the hierarchy as usual. If an encapsulated boundary is reached, abs is searched in the global scope instead. The operator abs cannot be redefined in the global scope, because an existing class cannot be redefined at the same level.]

If the identifier denotes a class, that class is temporarily flattened with an empty environment (i.e. no modifiers, see Section 7.2.2) and using the enclosing classes of the denoted class. The rest of the name [e.g., B or B.C] is looked up among the declared named elements of the temporary flattened class. If the class does not satisfy the requirements for a package, the lookup is restricted to encapsulated elements only. The class we look inside may not be partial in a simulation model.

SysML 8.3.2.2 Block says:

If true, then the block is treated as a black box; a part typed by this black box can only be connected via its ports or directly to its outer boundary. If false, or if a value is not present, then connections can be established to elements of its internal structure via deep-nested connector ends.

�I think the constraints as defined below need some refinement in order to be part of the stereotype specification. I have noted a couple proposed changes below.

�We may want to replace this by stating that "A property of a block that has the modelicaModel applied must have a modelicaComponent stereotype applied, or a ..."

�

We have to be careful about extension without modification vs. extension with modification.

That is, the production rule for Modelica’s class definition needs to be refined as follows:

In 2.1.1, we have:

class_specifier:

…

| extends IDENT [class_modification] string_comment composition 	(� REF _Ref238721977 \r \h ��2.4�)

…

Here, we need to distinguish:

class_specifier:

…

| extends IDENT string_comment composition 	(� REF _Ref238721977 \r \h ��2.4�a)

| extends IDENT class_modification string_comment composition 	(� REF _Ref238721977 \r \h ��2.4�b)

…

(2.4a) corresponds to [6]

(2.4b) involves a more complicated mapping to establish the correspondence between Modelica’s nominal subtyping approach for specialization (i.e., “class_modification”) and SysML’s structural subtyping approach for specialization which can involve a combination of:

- redefinition

- subsetting

- reifying the modified class as an intermediate in the generalization hierarchy between the general classifier (i.e., what we extend) & the specialized classifier (i.e., what we define)

� Perhaps this constraint should specify what are the allowable relationships that can be applied to this stereotype, but the Extends relationship should be defined as a separate stereotype.

�include meta-model

�Look at redefinition rules in SysML.

� displayUnit: is really not appropriate because it is session/user dependent not model dependent. Modelica may want to consider eliminating it or turning it into an annotation.

�Note these predefined types should be stereotyped to «modelicaType»

�Should this be included in SysML?

�It was noted that stateSelect makes most sense for properties rather than for Types – but in Modelica all types can be locally modified.

�Must be updated to make consistent with new QUDV proposal

�Consider using parametrics to capture this (this would cause quite a bit of overhead.

Other possibility is to create a separate equation in an “initial equation” block

A third possibility is to simply capture it as a string in a declarationEquation Tag as we actually suggested below (preferred initial solution

�Consider using parametrics to capture this (this would cause quite a bit of overhead.

Other possibility is to create a separate equation in an “initial equation” block

A third possibility is to simply capture it as a string in a declarationEquation Tag as we actually suggested below

�There are quite a few tags in common between these different flavors of Modelica components. Should we make «modelicaComponent» abstract and specialize it to «modelicaPart>> <<ModelicaPort>> and <<ModelicaValueType>>?

�There are quite a few tags in common between these different flavors of Modelica components. Should we make «modelicaComponent» abstract and specialize it to «modelicaPart>> <<ModelicaPort>> and <<ModelicaValueType>>?

�May correspond to isLeaf in UML/SysML. We have been silent about this in SysML — may want to go back and reconsider it

�May correspond to isLeaf in UML/SysML. We have been silent about this in SysML — may want to go back and reconsider it

�Relates to redefine and property specific types in UML/SysML – action item for Nicolas. We should consider using these SysML constructs provided they are well-supported by tools

�Relates to redefine and property specific types in UML/SysML – action item for Nicolas. We should consider using these SysML constructs provided they are well-supported by tools

�We should consider a general approach for working with collections in SysML; Action Item for Roger

�In the mean time, we need to decide which of the two alternative representations is most convenient.

�I couldn’t find any reference to ValueProperty in the SysML Spec. Not sure how to specify this correctly…

�There are quite a few tags in common between these different flavors of Modelica components. Should we make «modelicaComponent» abstract and specialize it to «modelicaPart>> <<ModelicaPort>> and <<ModelicaValueType>>?

�There are quite a few tags in common between these different flavors of Modelica components. Should we make «modelicaComponent» abstract and specialize it to «modelicaPart>> <<ModelicaPort>> and <<ModelicaValueType>>?

�Reconsider the name “scope”; There are many different types of scoping: lexical scoping, instance scoping ; namespace scoping in SysML

�consider constrainProperty perspective also

