Conceptual Behavior Ontology v1.1

Summary

This page defines the concepts and relations necessary to capture state-based behavior of elements (named BehavingElements) and the interactions among them.

Here, state-based means that the behavior is the state evolution of the system, not that it is necessarily captured using a state-space representation. Elements can be components (e.g., sensors, actuators) or environments, characterized by StateVariables that vary with time. This ontology makes a distinction between the internal behavior of a BehavingElement and the interaction behavior among BehavingElements. Both are captured using constraints on appropriate StateVariables. These constraints are not limited to a system of first-order differential equations as it would be in an exclusive state-space representation.

The ontology is *Conceptual* because it captures these concepts & relationships without regard to an implementation (in IMCE's case: via the SysML language). Having a Behavior Ontology that is independent from its implementation language has two distinct benefits:

- it makes it easier to understand since the concepts and relationships are not muddled by implementation-specific concepts;
- 2. it allows for the possibility of easily changing/adapting the implementation should languages other than SysML be used.

Note that the concepts of scenario and trajectory are included in the behavior ontology, but will be moved to an upcoming standalone ontology.

This page gives a detailed description of both the concepts and relations within the **Conceptual** Behavior Ontology, as well as simple examples to help clarify the semantics. Fully-fledged examples (simple flashlight example and spacecraft power and data example) are provided her e and specific links to that page for each concepts are included in the narrative. This page also has a section listing the validation & well-formedness assertions that apply to the **Conceptual** B ehavior Ontology. These assertions could be used by validation tools to explicitly check that a particular model instance conforms to a proper behavior specification.

Note: This **Conceptual** version of the Behavior Ontology cannot be embedded directly into SysML due to some current restrictions (see SysML-Embeddable Ontology & Implementation p age, Section "SysML-Embeddable Behavior Ontology - Description" for details). Because of this, a related **SysML-Embeddable** Behavior Ontology was developed to enable actual behavior modeling in SysML and is described here. [Note that this ontology is only a temporary solution until infrastructure enhancements are made to handle the construction of a SysML profile based directly on the Conceptual ontology.] Page Table of Contents:

- Summary
- Key Features of the Ontology
- Ontology Segments
 - Ontology Representation
 - Conventions • General
 - Ontology Conventions
 - Convention for Diagram Representation
 - Conventions for Table Information
 - Segment 1: BehavingElem ent Taxonomy
 - Segment 2: Properties (State Variables and Parameters)
 - Segment 3: Internal Behavior (Intra-Element)

- Segment 4: External Behavior (Inter-Element
- Interactions)
 Segment 5: Scenarios and
- Trajectories
- Combined Behavior
- Ontology
 - Abstract
 - classesComplete
 - ontology diagram
- Conceptual

Validation/Well-Formedness Assertions

- Conceptual Examples
- Discussion about
- InteractionTerminal
 - Additional validation rules

Key Features of the Ontology

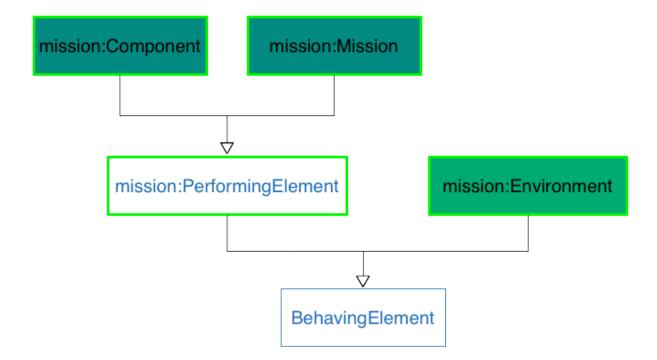
There are a few key features of the ontology introduced here to provide some overall context for the specific details of the ontology diagrams.

- 1. The ontology supports both the modeling of behavior at the system-level and at the component-level: in the latter case, the behavior of the system is the sum of the components' behaviors and their interactions.
- 2. The ontology builds on the concepts of internal (intra-element) and external (inter- or between- element) behaviors.
- 3. In this ontology, behavior properties are not directly included with the system elements whose behavior is being described. Instead, the IMCE characterization pattern is used to maintain the properties in separate but explicitly linked entities. It allows for example for multiple engineering authorities (e.g. mechanical, thermal, fault protection, electrical, etc) to apply distinct descriptions of the behaviors that are most pertinent to each domain. In this ontology, both internal and external behavior specifications are considered to be characterizations.

Ontology Segments

Page Top

The following section gives a detailed description of the **Conceptual** Behavior Ontology by breaking the contents into 5 segments for clarity. For each segment, ontological diagrams shows concepts and the relations between concepts, and each of the concepts and relations (including their inverse) are also explained with a short prose description; examples to illustrate specific semantics are given as needed.


Ontology Representation Conventions

Expand to show the conventions used for describing the ontology on this page:

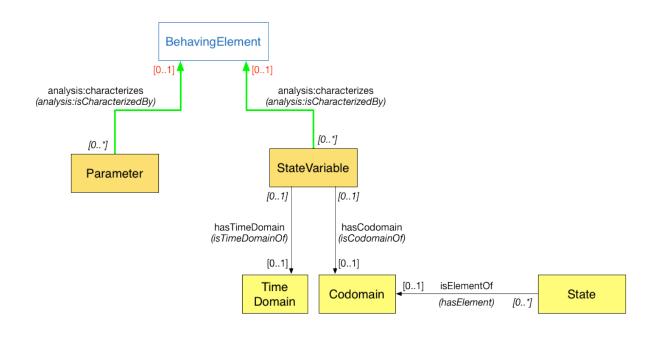
Segment 1: BehavingElement Taxonomy

BehavingElement is the central concept in this ontology - it is an abstract classifier that specifies which system elements can have some behavior characterization specified about them. Specifically, it indicates which system elements have notion of state and a prescribed way of evolving that state over time.

The diagram below shows the taxonomic structure of BehavingElement.m:PerformingElement (with m:Component and m:Mission as subclasses) and m:Environment (already existing IMCE Foundation concepts) specializing the abstract BehavingElement, meaning both of these elements can have some behavior characterization specified about them. The IMCE mission ontology has been modified accordingly.

Concept Descriptions:

Page Top | Segment 1 Top

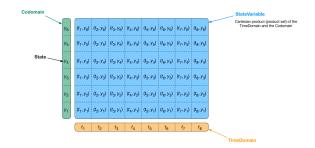

Concept	Description	Notes
BehavingElement	An abstract classifier that specifies which system elements have some behavior characterization.	Abstract class that generalizes m:Component and m:Environment
m:PerformingElement	Link to IMCE documentation: "object that performs one or more Functions".	Disjoint with the concept of m:Environ ment. Abstract class specialized by m:Compon ent and m:Mission
m:Component	Link to IMCE documentation. A m:Comp onent is any physical or logical entity/element of a system that is designed/specified through an engineering process. Naturally occurring items, such as the Jovian moon Europa or the Jovian radiation environment, are not considered m:Components (instead they are m:Environments).	Disjoint with the concept of m:Environ ment. A m:Component representation is valid at any level within a system hierarchy (part, assembly, subsystem, or whole system). It can also represent logical entities such as software modules or human entities such as operations teams.
m:Mission	Link to IMCE documentation. m:Compon ents are deployed by a m:Mission.	Disjoint with the concept of m:Environ ment.
m:Environment	Link to IMCE documentation. A m: Envi ronment corresponds to a set of conditions in which a m: Component mu st perform its m: Functions. Example m : Environments include low earth orbit, trans-Jupiter cruise, and Martian north polar surface.	Disjoint with the concept of m:Perform ingElement.

Note about m: Functions: One difference between m: PerformingElement and m: Environment is that the former performs functions ("m:performs m:Functions") while the latter does not. The relation between m:Functions and BehavingElements i s not tackled in this pattern, but should be the topic of a future pattern.

Segment 2: Properties (State Variables and Parameters)

Page Top

This segment introduces the concepts of StateVariables and Parameters, that are used in the expression of the behaviors of B ehavingElements or their interaction. The structure of a StateVariable is further elaborated with the concepts of TimeDomain, Codomain, and State. Some of these concepts are formally defined from a set theoretic point of view.



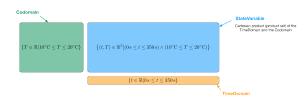
Concept	Description	Notes
---------	-------------	-------

StateVariable	A variable that represents a particular quantity (as per ISO-80000) of a Behavi ngElement that changes with time. Using set theory representation, we define a StateVariable as the Cartesi an product of its TimeDomain X and its Codomain Y: $X \times Y = \{(x, y) x \in X \land y \in Y\}$ See figures below this table for visualization aid.	 def. quantity (as per ISO-80000): "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed by means of a number and a reference". E.g. voltage, current, temperature. For a given scope, the set of all StateV ariables for a particular BehavingE1 ement will completely describe how the state of the BehavingE1ement change s in time within that scope. For example, in the context of an electrical current loop analysis, component voltage, current, and impedance may be the only StateVariables that are required to adequately describe the state evolution of that component. It is the task of the modeler to determine the appropriate modeling scope for a given design need, and what the set of StateVariables are that cover that given scope. Note that StateVariables can be constrained to be constant in time. For example: Power(t) = 10 Watts. StateVariables can also represent multidimensional quantities (e.g. vector quantities or quaternions) through the definition of a multi-dimensional Codoma in. A Trajectory is defined as the "value" of a StateVariable (see Trajector y for details).
TimeDomain	The set of possible times that belong to a particular StateVariable. See figures below this table for visualization aid.	TimeDomains can represent continuous time or discrete time. A TimeDomain th at is continuous is always uncountably infinite (even though it may be bounded by maximum and minimum values), but a discrete TimeDomain may either be countably finite (bounded) or countably infinite (unbounded).
Codomain	The set of possible values of a quantity represented by a StateVariable. For practical usage, Codomains are usually assigned a type (quantity kind) and possibly a unit. However, this structure will not be detailed here. See the SysML-Embeddable Behavior Ontology for more details on that particular specification. See figures below this table for visualization aid.	Codomains can either be continuous or discrete, including enumerated lists. For example, temperature in Celsius may be represented as the following continuous Codomain: {T T -273.15 °C} As another example, the operational mode of a radio may be represented as the following discrete enumerated list Co domain: {"OFF","IDLE","LOW_POWER","HIGH_ POWER"} Codomains can also represent multi-dimensional values. For example, the 3-D position of a spacecraft in a particular navigation frame may be represented with the following Codomai n: {(x, y, z) x, y, z } ³

State	A possible value of the quantity of a Beh avingElement, and in effect an element of the Codomain of a StateVa riable. (See figures below this table for visualization aid.)	Given the examples in Codomain Notes section above, here are example State s of the presented Codomains: * for temperature: T ₁ = 10.37 °C
	States need not be singular atomic values; they can be structured to represent more than one dimension (for example, a vector quantity).	<pre>* for radio mode: operational mode = "LOW_POWER" * for spacecraft position: (x₁, y₁, z₁) = (0.5 - 10.0 - 0.45 -)</pre>
		(3.5 m, 10.2 m, 8.45 m) With the exception of discrete enumerated lists ("ON", "OFF", "IDLE", etc), complete explicit definition of Sta tes for a given Codomain will most likely not exist in models (for reasons of practicality since there can be many or even infinite States belonging to a given Codomain). Instead, an explicit C odomain will be defined that restricts the States it contains to a certain set. An example of States explicitly defined would be in a behavior model specified by a state machine; another case could the threshold levels for thermal sensors or fault monitors.
		Also, it is an implied semantic that all St ates within a particular Codomain are unique (it would not make sense to have two values of "ON" for a mode StateVa riable or two values of 20.0V for a voltage StateVariable). For now, this uniqueness check is left to the modeler.
		Note that in other contexts, the word "state" is used to refer to the element of a state variable set. This is not the case here: a State is an element of the Codo main of a StateVariable, and the element of the StateVariable (as a Cartesian product) is a pair (time point, S tate). That element can also be conceived as a point on a Trajectory (see below).

Parameter	A quantity of a BehavingElement that does not dynamically change in time. A Parameter is similar to a Codomain i n that a type (quantity kind) and unit are usually assigned for practical usage.	Parameters can be thought of as State eVariables that do not change in time and hence they have no associated Time eDomain. Both Parameters and State eVariables are generalized by the abstract Property concept (see
		Segment 4 for details). Even though the values of Parameters are fixed in time, they can have their value changed between different analyses or simulation runs. For example, if you are evaluating a spacecraft attitude control system, you may have a Parameter in your model for the inertia of the spacecraft. You could vary the inertia values between analyses/simulation runs to see how we a particular control system (with its associated gains and other tuning parameters) handles variation in spacecraft inertia for a given set of control inputs.
		<u>Usage of Parameters vs. StateVari</u> <u>bles</u> : The specific selection of a Parameter or StateVariable is left to the intent of the modeler: when s/he wants to capture the time dynamics of that quantity, then a StateVariable is the logical choice; when the dynamical aspect in time of the quantity is of no interest to the modeler, then a Parameter er could be selected. However, nothingly StateVariables for example, but that choice could be at the expense of complexity or computation, as it is less expensive to track Parameters (single value) compared to StateVariables

Example for the StateVariable "Operating mode" of a Television:



The figure on the left represent the relationship between the TimeDomain, the Codomain and the StateVariable as their Cartesian product, and State. For clarity purposes, a discrete case was chosen, but these concepts are easily extended to the continuous case.

This is an example of a discrete StateVariable:

- its Codomain is made of 3 States: "OFF", "STANDBY", and "ON";
- its TimeDomain has been discretized and 5 time points have been selected for this example: 0, 5, 10, 15 and 20 minutes that are of interest;
- the StateVariable is defined as the Cartesian product of these TimeDomain and Codomain and

Example of the StateVariable "Temperature" of an entity:

This is an example of a continuous StateVariable:

- continuous TimeDomain where time can take values between 0 and 350 seconds;
- continuous Codomain where the States can be between 10 and 20 degrees Celsius. For example, 15 degrees Celsius is a State, 17.26879 degrees Celsius is another one;
- the StateVariable is the set of all (infinite) possible combinations of times and temperature states.

StateVariable Structure Relation Descriptions:

Page Top_

	hasTimeDoma in (inverse)	isTimeDomain Of (inverse)	hasCodomain (inverse)	isCodomainOf (inverse)	isElementOf (inverse)	hasElement (inverse)
Subject	StateVariable	TimeDomain	StateVariable	Codomain	State	Codomain
Verb	hasTimeDoma in	isTimeDomain Of	hasCodomain	isCodomainOf	isElementOf	hasElement
Multiplicity	[01]	[01]	[01]	[01]	[01]	[0*]
Object	TimeDomain	StateVariable	Codomain	StateVariable	Codomain	State

Multiplicity Rationale	A TimeDomain is one of the two axial sets r equired for the complete definition of a S tateVariabl e [the term axi al set is used because when values of Stat eVariables (as time-based functions) are plotted, values from the TimeD omain set are on one axis and values from the Codom ain set are on the other axis]. Therefore, a ha sTimeDomain relationship between a Sta teVariable a nd exactly one TimeDomain i s a necessary, but not sufficient, condition for the definition of that StateVar iable to be semantically complete.	The current Behavior Ontology does not support the assignment of a particular Ti meDomain to many StateVa riables - separate Time Domains need to be defined for each State Variable. For example: Current_Power (t) for continuous times between 0 and infinity and Current_Power (t) for discrete times between 0 and infinity in 0.1 sec increments would be separate Stat eVariables	A Codomain is one of the two axial sets requ ired for the complete definition of a S tateVariabl e. Therefore, a hasCodomain relationship between a Sta teVariable a nd exactly one Codomain is a necessary, but not sufficient, condition for the definition of that StateVar iable to be semantically complete.	Given that the Codomain is the set of possible values for the aspect represented by the StateVar iable, it would be a conflict to have multiple C odomains associated with the same Stat eVariable.	It is semantically explicit that a S tate is defined in the context of a <u>specific</u> St ateVariable. Therefore, a St ate can be an element of at most one Codo main.	A Codomain c an contain as many States as necessary to define the unique dynamic values of the aspect captured by its associated Sta teVariable. Codomain sets may truly have an infinite number of Sta tes as elements (for example: in the cases of continuous-tim e or unbounded discrete-time S tateVariabl es).
Description	Ownership relation indicating that a given State Variable is directly associated with a particular Ti meDomain.	Inverse of has TimeDomain; indicates that a given TimeDom ain is associated with a particular St ateVariable.	Ownership relation indicating that a given State Variable is directly associated with a particular Co domain.	Inverse of has Codomain; indicates that a given Codomai n is associated with a particular Stat eVariable.	Membership relation indicating that a given State belongs to the set of elements in a particular c odomain.	Inverse of isE lementOf; indicates that a given Codomai n has the related State as one of its element members.
Notes	none	none	none	none	none	none

BehavingElement Characterization Relation Descriptions:

Page Top | Segment 2 Top_

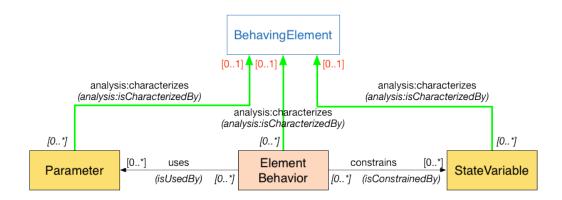
NOTE: this table reads by columns

(note: Columns in this table are only partially green; the relations described here are special usages of other IMCE Foundation Ontology relations. The names are the same, but the implied semantics are more specific to the particular usage of the relations. Also, the multiplicity restrictions are different in the case of a:characterizes).

	a:characterizes	a:isCharacterizedBy	a:characterizes	a:isCharacterizedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	Parameter	BehavingElement	StateVariable	BehavingElement
Verb	a:characterizes	a:isCharacterizedBy	a:characterizes	a:isCharacterizedBy
Multiplicity	[01]	[0*]	[01]	[0*]

Object	BehavingElement	Parameter	BehavingElement	StateVariable
Multiplicity Rationale	Having a Parameter a: characterize mo re than one Behaving Element would be ambiguous. The aspect/condition/prope rty represented by the Parameter is about a <u>specific</u> BehavingEle ment, and this specific context would be lost if associated with multiple BehavingEle ments. This ontology requires that separate Parameters be defined for similiar aspects of different Be havingElements (for example, a thruster and a reaction wheel might both have a max power consumption, but these need to be modeled as two separate Parameters - one for each element).	A BehavingElement can be a:character izedBy as many Para meters as necessary to define appropriate behavioral constraints.	Having a StateVaria ble a: characteriz e more than one Beha vingElement would be ambiguous. The aspect represented by the StateVariable i s about a <u>specific</u> Beh avingElement, and this specific context would be lost if associated with multiple BehavingEle ments. This ontology requires that separate StateVariables be defined for similiar aspects of different Be havingElements (for example, a thruster and a reaction wheel might both have a current power consumption, but these need to be modeled as two separate StateVa riables - one for each element).	A BehavingElement can be a:character izedBy as many Stat eVariables as necessary to define appropriate behavioral constraints.
Description	Link to IMCE documentation For this specific usage of a:characterizes , it is being used in the sense of a description (the Parameter is describing an aspect present in the Behavi ngElement).	Inverse of a:charact erizes; indicates that there is a Parameter describing some static aspect of the Behavin gElement.	Link to IMCE documentation For this specific usage of a:characterizes , it is being used in the sense of a description (the StateVariable i s describing a dynamic aspect of the Behavin gElement).	Inverse of a:charact erizes; indicates that there is a StateVari able describing some dynamic aspect of the BehavingElement.
Notes	Use of the a: charact erizes relation here implies that Paramete r is a specialization of a:Characterizatio n and BehavingElem ent is a specialization of a:Characterized Element. *** In this specific usage of a: characte rizes, the multiplicity restriction is tighter than in the overall definition of a: charac terizes, being [0*].	The current Behavior Ontology does not enforce maintenance of consistency/uniquenes s between Parameter definitions (there could be two separate P arameter s called max_power for the same BehavingElem ent). It is up to the modeler to check for logical violations in this area (either manually or through the use of specialized analysis scripts).	Use of the a:charact erizes relation here implies that StateVar iable is a specialization of a:Ch aracterization an d BehavingElement i s a specialization of a: CharacterizedElem ent. **** In this specific usage of a:characte rizes, the multiplicity restriction is tighter than in the overall definition of a:charact terizes, being [0*].	The current Behavior Ontology does not enforce maintenance of consistency/uniqueness s between StateVari able definitions (there could be two separate StateVariables called X_position for the same BehavingE lement). It is up to the modeler to check for logical violations in this area (either manually or through the use of specialized analysis scripts).

Segment 3: Internal Behavior (Intra-Element)


Page Top

Segment 3 of the Behavior Ontology includes the concepts necessary for describing the internal behavior for a particular Behaving

Element.

Internal behavior, captured by the ElementBehavior concept, is behavior that exists directly as a result of the intrinsic nature of the BehavingElement; in other words, it is endogenous. Internal behavior can include specification for how the BehavingElement t responds to stimuli from or provides influence to external elements, but the internal behavior is not modified by these external stimuli.

In addition, the abstract concepts of StateVariableConstraint and UsingElement are included here are generalizations of El ementBehavior as well as other concepts introduced in Segment 4.

Concrete Concept Descriptions:

Page Top | Segment 3 Top _

Concept	Description	Notes
---------	-------------	-------

This is a specification of how the dynamic state of a BehavingElement i s allowed to evolve in time (but is not a specific trace of state evolution). Eleme ntBehavior is conceptually internal or intrinsic in nature. However, this does not preclude ElementBehavior specifi cations from accepting external happenings (signals, commands, etc) as inputs, or providing outputs (further commands, data, etc) to external elements. For example, in the case of a variable resistor with adjustment knob, both Ohm's Law (V=I*R) and a calibration relation between knob position and resistance R would be the E lementBehavior. This representation would accept a knob position as input from some external element (maybe a human operator), but both Ohm's Law and the calibration relationship are not dependent on the position of the knob (see discussion on input in the Notes column).

ElementBehavior is represented through constraints on StateVariable s. Parameters can also appear in these constraints. The specification of constraint expressions has not yet been finalized and is the object of an upcoming pattern. It will most likely involve mathematical constraints, state machine formalisms, temporal-logic constraint, predicate logic statements, etc. In the examples presented in subsequent pages, mathematical expressions and state machines formalisms are employed, as they were the most logical and compact representations of the constraints in that context. Note that the behavior pattern does not specify how to specify the constraints (this is left to the modelers and project internal agreement), only that the behavior is represented as a constraint on StateVariables.

It is implicit that the definition of any behavior is only valid within a scope, however large it may be (see Notes for further discussion). Currently, the ontology does not support the specification of the scope (see Open Questions). Behavior specifications covering protocols/interactions between different elements of a system are covered in a separate concept called InteractionB ehavior.

ElementBehavior is semantically interpretable to be true under all possible operating conditions even though some of these conditions are most likely not realistic (e.g. 100MV across a standard carbon 1 ohm resistor, which would result in overheating and burnout - under these conditions, Ohm's Law no longer applies). Therefore, it is the responsibility of the modeler to ensure that a particular ElementBehavior spe cification is appropriate for the operating conditions the BehavingElement will likely see, and to re-evaluate the Eleme ntBehavior specification if it is determined (through other analysis or simulation) that the range of reasonable operating conditions is different than originally considered.

Inputs are not explicitly supported in the current version of the behavior pattern, and will be investigated in future work. It is of particular interest to drive the behavior of a system for example, or in linking triggers of state machines to a ontological concept of the behavior pattern.

BehavingElement Characterization Relation Descriptions:

Page Top | Segment 3 Top

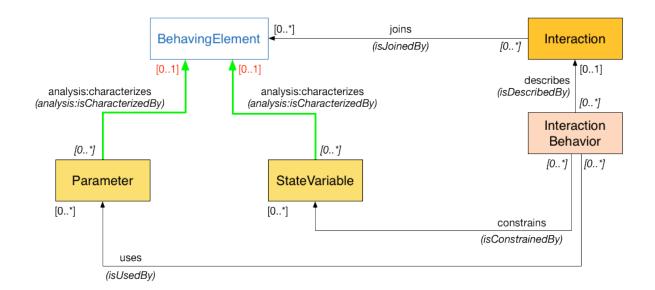
NOTE: this table reads by columns

(note: Columns in this table are only partially green; the relations described here are special usages of other IMCE Foundation Ontology relations. The names are the same, but the implied semantics are more specific to the particular usage of the relations. Also, the multiplicity restrictions are different in the case of a:characterizes).

	a:characterizes	a:isCharacterizedBy
	(inverse)	(inverse)
Subject	ElementBehavior	BehavingElement
Verb	a:characterizes	a:isCharacterizedBy
Multiplicity	[01]	[0*]
Object	BehavingElement	ElementBehavior
Multiplicity Rationale	ElementBehaviorS USE ParameterS and constrain StateVariableS of only the <u>single specific</u> BehavingElement t hey characterize.	A BehavingElement can be a:chara cterizedBy as many ElementBehavi ors as necessary to capture the dynamics of the BehavingElement.
Description	< <imce definition="" link="">> For this specific usage of a: character izes, it is being used in the sense of a restriction (the ElementBehavior is restricting the evolution of aspects of the BehavingElement).</imce>	Inverse of a:characterizes; indicates that there is an ElementBehavior con straining the StateVariables and/or using the Parameters of the Behaving Element.
Notes	Use of the a:characterizes relation here implies that ElementBehavior is a specialization of a:Characterizati on and BehavingElement is a specialization of a:CharacterizedEl ement. **** In this specific usage of a:characte rizes, the multiplicity restriction is tighter than in the overall definition of a: characterizes, being [0*].	The current ontology does not enforce maintenance of consistency/uniqueness between ElementBehavior definitions (there could be two separate ElementB ehaviors with inconsistent constraints for same BehavingElement). It is left to the modeler to check for logical violations (either manually or through the use of specialized analysis scripts).

Abstract Concept Relation Descriptions: (also applicable to Interaction and Execution Realm Segments)

Page Top | Segment 3 Top


	constrains	isConstrainedBy	uses	isUsedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	ElementBehavior	StateVariable	ElementBehavior	Parameter
Verb	constrains	isConstrainedBy	uses	isUsedBy
Multiplicity	[0*]	[0*]	[0*]	[0*]
Object	StateVariable	ElementBehavior	Parameter	ElementBehavior
	see generalizations for multiplicity rationale and descriptions			

Further Notes	Example of constraining multiple s tateVariables: Ohm's Law (V(t) = I(t) * R) for an Ohmic resistor, where V(t) and I(t) are StateVar iables and R is a Pa rameter. In this case a ElementBehavior constrains two Sta teVariables.	For example, one might have an exponential decay model for the power generated by an RTG power source. This model could include an equation with initial power and decay constant terms defined as an ElementBehav ior (a type of UsingE lement) - this would look like: Power(t) = P ower_init * e ^ (-t). In this case, both Power_ init and are Paramet ers.	Since the inverse use s relationship is essentially just a value reference for a Param eter, there is no limitation on the number of UsingElem ents that can reference its value.
---------------	--	--	---

Segment 4: External Behavior (Inter-Element Interactions)

Page Top

Segment 4 of the Behavior Ontology includes the concepts necessary for describing behavioral interactions among BehavingElements. This segment introduces the concepts of Interaction (to indicate which BehavingElements participate in the interaction) and InteractionBehavior to capture the constraints of the interaction.

Concrete Concept Descriptions:

Page Top | Segment 4 Top

Concept	Description	Notes

Interaction	A link that joins BehavingElements, representing the context of the interaction among the associated Behav ingElements. An Interaction does not represent any physical or logical entity of the system - it is merely a connection point that defines a context space where the exposed StateVariables and Param eters of the joined BehavingElement s are allowed to affect one another through the definitions of Interaction Behaviors. Interactions represent N-ary interactions among BehavingElement s (contrary to m:Junction that are strictly binary). This allows the modeler to choose potentially more efficient representations where the interaction expressions cannot be decomposed into binary relationships between Behaving Elements (see the flashlight example fo r such a case as Kirchhoff's voltage law i n a loop).	The defined usage for an Interaction is that it must join at least two different B ehavingElements. Otherwise, the associated InteractionBehaviorS could just be represented as ElementB ehaviors instead. It allows for the specification that an interaction takes place without specifying exactly what the interaction among Beha vingElements: this allows for example for multiple or competing descriptions of the interaction (e.g., different levels of fidelity) or for collaboration among different domain engineers.
InteractionBehavior	A specification describing how different BehavingElements interact with one another (by expressing the effects of Pr operty(ies) (see below) of a Behaving Element on other Property(ies) of the BehavingElements it interacts with). InteractionBehaviors are represented through constraints on Sta teVariables. Parameters can also appear in these constraints. InteractionBehaviors are external in nature: they dependent on a particular deployment of BehavingElements in relation to each other. It is implicit that the definition of any interaction is only valid within a scope, however large it may be (as for Elemen tBehavior). Currently, the ontology does not support the specification of the scope (see Open Questions).	A difference between ElementBehavio r and InteractionBehavior is that E lementBehavior constrains/uses StateVariables/Parameters of only One BehavingElement, while an Inte ractionBehavior constrains/uses StateVariables/Parameters of at least two different BehavingElements.

Interaction Relation Descriptions:

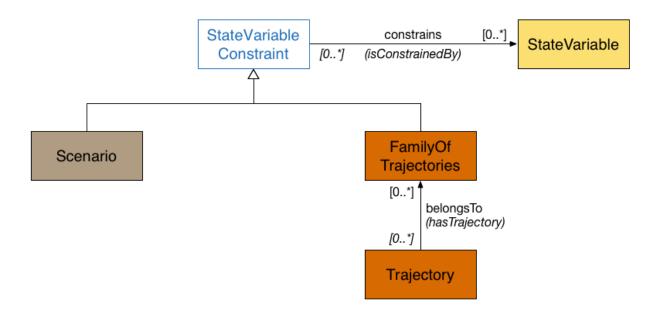
Page Top | Segment 4 Top

	joins	isJoinedBy	describes	isDescribedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	Interaction	BehavingElement	InteractionBehavior	Interaction
Verb	joins	isJoinedBy	describes	isDescribedBy
Multiplicity	[0*]	[0*]	[01]	[0*]
Object	BehavingElement	Interaction	Interaction	InteractionBehavior

Multiplicity Rationale	This is a direct consequence of the N-ary nature of the In teraction.	The StateVariables of a given BehavingE lement may be affected by many external interactions that are modeled through different Inte ractionS.	InteractionBehavi orS use ParameterS and constrain Stat eVariableS in the context of a <u>single</u> <u>specific</u> Interaction they describe.	A Interaction can be describedBy as many InteractionB ehaviors as necessary to capture the dynamics of the interaction.
Description	Relation indicating that the Property(ies) of the BehavingElemen ts are now in scope of the interaction represented by the jo ining Interaction.	Inverse of joins; indicates that there is an Interaction that joins the Behaving Element.	The constraints defined in the Intera ctionBehavior appl y within the context of the described Inte raction.	Inverse of describes ; indicates that there is an InteractionBeh avior that describe s a given Interacti on.
Notes	Also indicates that the exposed Property(i es) can now be referenced by the Int eractionBehaviorS describing the In teraction.	All of the associated constraints of all related interactions are levied on the Propert y(ies) of the Behavin gElementS.	none	none

InteractionBehavior Relation Descriptions:

Page Top | Segment 4 Top

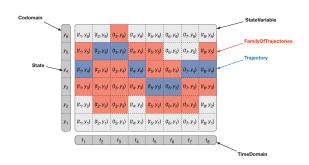

NOTE: this table reads by columns

	constrains	isConstrainedBy	uses	isUsedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	InteractionBehavior	StateVariable	InteractionBehavior	Parameter
Verb	constrains	isConstrainedBy	uses	isUsedBy
Multiplicity	[0*]	[0*]	[0*]	[0*]
Object	StateVariable	InteractionBehavior	Parameter	InteractionBehavior
	see generalizations for multiplicity rationale and descriptions			

Segment 5: Scenarios and Trajectories

Page Top

Segment 5 of the Behavior Ontology introduces concepts related to the execution of system behavior: Scenario, Trajectory, and FamilyOfTrajectories. Their full specification is currently in work and part of an upcoming separate pattern, but they are included in this pattern initially to describes how they relate to behavior.



Concrete Concept Descriptions:

Page Top | Segment 5 Top

Concept	Description	Notes
Scenario	A set of constraints on StateVariable s and/or other specifications (such as initial conditions, system inputs or sequence of commands) without any guarantee that these will actually happen in any particular execution case. Formal specification is currently in work and part of an upcoming pattern . For one take on scenario modeling, see K. Donahue work on modeling Scenarios using SysML Activity Diagrams and the Timeline ontology (reference here).	 For example: In the flashlight example, the scenario indicates that the flashlight should be turned on and turned off at certain times a sequence of planned file uploads to a spacecraft
Trajectory	 Functional subset of a StateVariable that spans the entire TimeDomain (see figure for clarification). The set of constraints that define a Trajectory may result from the mathematical reduction of the set of ElementBehaviors and InteractionBe haviors within a particular system with the set of constraints from a Scenario under which that same system is executed. Relation to Behavior and Scenario is being further developed and is part of an upcoming pattern. 	The functional subset in this context is a set of ordered pairs of times and State s in which no time values are repeated. Also, a Trajectory is defined to be a S tateVariable "value". A Trajectory implies a fully-constrained behavioral execution of a given system.

FamilyOfTrajectories	Subset of a StateVariable that spans the entire TimeDomain (see figure for clarification), which can include many ordered pairs of times and States where the time values are repeated. This is also equivalent to a subset of a S tateVariable defined by a set of Tra jectories.	none
	The set of constraints that define a Fami lyofTrajectories may result from the mathematical reduction or solving of the set of ElementBehaviors and Int eractionBehaviors within a particular system with the set of constraints from a Scenario under which that same system is executed.	
	Relation to Behavior and Scenario is being further developed and is part of an upcoming pattern.	

This figure is an extension of the figure presented in Segment 2.

Concrete Concept Relation Descriptions:

Page Top | Segment 5 Top

	belongs	hasTrajectory
	(inverse)	(inverse)
Subject	Trajectory	FamilyOfTrajectories
Verb	belongsTo	hasTrajectory
Multiplicity	[0*]	[0*]
Object	FamilyOfTrajectories	Trajectory
Multiplicity Rationale	Mathematically, a Trajectory can be a subset of many different FamilyOfTraj ectories.	As per definition, a FamilyOfTrajecto ries is also equivalent to a subset of a StateVariable defined by a set of Tr ajectories.
Description	If the Trajectory is a subset of the Fa milyOfTrajectories, then the Traj ectory belongsTo it.	Inverse of hasTrajectory
Notes	none	none

Combined Behavior Ontology

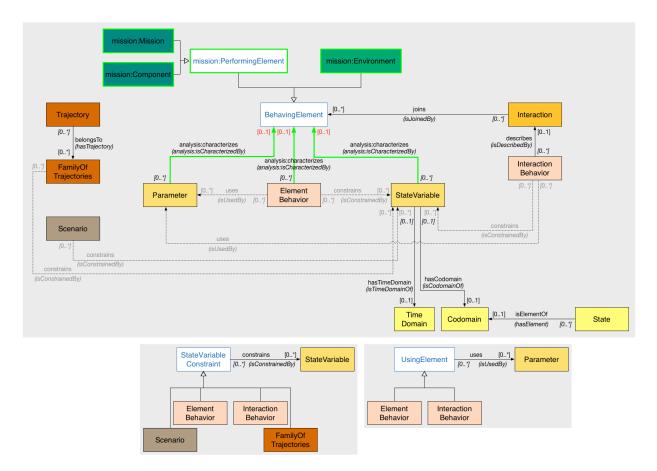
Abstract classes

The constrains and uses relationships have each one target concept (StateVariable and Parameter respectively), but

several source concepts:

- ElementBehavior, InteractionBehavior, Scenario and FamilyOfTrajectory for StateVariable;
- ElementBehavior, InteractionBehavior for Parameter.

To respect IMCE's "simple range class expression" rules (relationships have only one source concept and one target concept), we introduce the StateVariableConstraint and the UsingElement classes.


Concept	Description	Notes
UsingElement	Abstract concept representing a behavioral constraint element (either El ementBehavior Or InteractionBeh avior) that uses a particular Paramet er value in its constraint specification(s). See the uses relation definition for an example of the usage of a Parameter.	Generalizes ElementBehavior and In teractionBehavior.
StateVariableConstraint	Abstract concept representing a behavioral constraint element (either El ementBehavior, InteractionBehav ior, Scenario, Or Trajectory) that c onstrains a particular StateVariabl e through its constraint specification(s). See the constrains relation definition for an example of the constraint of a Sta teVariable.	 Generalizes ElementBehavior, Inter actionBehavior, Scenario, and Trajectory. Each of the 4 specializations of StateV ariableConstraint constrain StateVariables, but the semantic for each constraint is slightly different in each case: ElementBehavior - constraints that pertain to a single BehavingElement that are physically true for all time in all execution cases; InteractionBehavior - constraints that relate at least two different BehavingElements that are physically true for all time in all execution cases; Trajectory - constraints that give the (time-) complete specification of StateVariable's States for a given execution of the system; the set of constraints that define a Trajectory m ay result from the resolution/simplification of the set of constraints from ElementBehaviors and InteractionBehaviors within a particular system with the set of constraints from a scenario under which that same system is executed. Scenario - (still under consideration: constraints on StateVariable without any guarantee that these will actually happen in any particular execution case).

	constrains	isConstrainedBy	uses	isUsedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	StateVariableConstra int	StateVariable	UsingElement	Parameter
Verb	constrains	isConstrainedBy	uses	isUsedBy

Multiplicity	[0*]	[0*]	[0*]	[0*]
Object	StateVariable	StateVariableConstra int	Parameter	UsingElement
Multiplicity Rationale	A StateVariableCo nstraint may const rain many StateVar iables to convey the dynamic effects within the system.	Since StateVariabl eConstraints can take many different forms (which have different semantics), there is no limitation on the number of StateV ariableConstraint s that can constrain any particular StateV ariable. For example: a voltage StateVariab le in a resistor may be constrained by both an ElementBehavio r describing the internal dynamics of the resistor (via Ohm's Law), and an Interac tionBehavior descri bing the dynamics of the external interactions of that resistor with other elements in the same circuit (via Kirchoff's Voltage Law).	A UsingElement may use many Paramete rs to convey the dynamic effects within the system.	Since the inverse use s relationship is essentially just a value reference for a Param eter, there is no limitation on the number of UsingElem ents that can reference its value.
Description	Levying a constraint on a StateVariable will result in limiting the generated Trajec tory(ies)'s range(s) to a subset of the original Codomain.	Inverse of constrain s; indicates that there is a StateVariableC onstraint applying a limitation to a given St ateVariable.	Using a Parameter (i n the specific context of this ontology) is equivalent to referencing its value in a behavioral constraint without having the constraint affect its value. Therefore, a Pa rameter is causally independent within the constraint.	Inverse of uses; indicates that there is a UsingElement that references the value of the Parameter.

Complete ontology diagram

Below is the diagram showing all concepts and relations defined within the Behavior Ontology:

Conceptual Validation/Well-Formedness Assertions

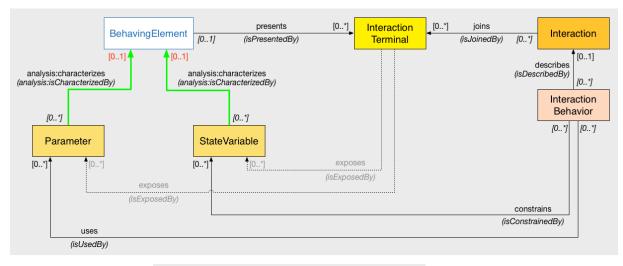
Related Segment	Assertion
Segment 2	a:characterizes with StateVariable as domain must have a class that specializes BehavingElement as range
Segment 2	a:characterizes with Parameter as domain must have a class that specializes BehavingElement as range
Segment 2	A StateVariable must a:characterize exactly one Beha vingElement
Segment 2	A Parameter $must$ a:characterize exactly one Behaving Element
Segment 2	StateVariable must have exactly one TimeDomain
Segment 2	StateVariable must have exactly one Codomain
Segment 2	A State must be an element of exactly one ${\tt Codomain}$
Segment 3	An ElementBehavior must a: characterize exactly one B ehavingElement
Segment 3	An ElementBehavior must only constrain StateVariab le(s) that a:characterizes the same BehavingElement as the ElementBehavior
Segment 3	An ElementBehavior must only use Parameter(s) that a: characterizes the same BehavingElement as the Eleme ntBehavior

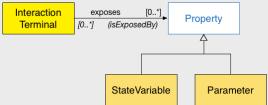
Segment 4	An Interaction must join at least two different ${\tt Behaving}$ ${\tt Elements}$
Segment 4	An InteractionBehavior must only constrain StateVa riable(s) that a:characterizes a BehavingElement tha t isJoinedBy the Interaction that the InteractionBeh avior describes
Segment 4	An InteractionBehavior must only use Parameter (s) that a:characterizes a BehavingElement that isJoine dBy the Interaction that the InteractionBehavior des cribes
Segment 4	An InteractionBehavior must describe exactly one Int eraction

Validation rules for Segment 5 will not be elaborated until the Scenario pattern is fully formulated.

Conceptual Examples

Two conceptual examples are provided here to illustrate the concepts introduced in this pattern and their usage: a simple flashlight example and a more advanced spacecraft power and data example.


Discussion about InteractionTerminal


Page Top

An additional concept that was discussed during the elaboration of the behavior ontology is the concept of *InteractionTerminal*. An I nteractionTerminal is defined as a construct that acts as a filter for selecting the StateVariables and Parameters of one B ehavingElement involved in an interaction with other BehavingElements. Their use would be similar to declaring a variable public or private in a programming language. They would also be a potential hook to reconcile structural interface definition and behavior specification. The added complexity of introducing InteractionTerminal compared to their potential, but unproven, usage benefits, led us to propose them as *optional* to the modeler for now (both approaches, with or without InteractionTermin al are seen as valid semantics). The recommended approach does not make use of them (see complete ontology above), but the modeler can experiment with them if s/he wishes to do so.

They would fit between BehavingElements and Interaction as shown in the figure below. The joins relationship would point to the InteractionTerminal instead of the BehavingElement. The InteractionTerminal and the newly introduced relationships are described in tables below.

Additional validation rules are proposed below as well.

Concrete Concept Descriptions:

Page Top | Discussion Top

Concept	Description	Notes
InteractionTerminal	A construct that acts as a filter for selecting the StateVariables and Pa rameters of one BehavingElement in volved in an interaction with other Behav ingElements, for the purposes of being constrained and used, respectively, by the InteractionBeha viors describing the behavioral nature of the interaction. InteractionTerminals do not represent anything other than a "window" into the BehavingElement s o that InteractionBehaviors describing interaction constraints have access to them. Currently, there is no explicit semantic connection with any physically or logically defined m: Interf aces.	The manner of associating an InteractionTerminal with any particular physically or logically defined m:Interface is still under consideration. This type of connection could answer questions related to the consistency of the behavioral model with the physical and logical models of the system (e.g. whether the architecture/topolgy of the physical/logical system can actually support the specified behavior). An InteractionTerminal Can only expose Property(ies) of the Behaving Element presenting that Interaction Terminal. This chain rule is currently not explicitly enforced by the ontology, and its validation is left to the modeler.

Interaction	A link that joins InteractionTermina 1s, representing the context of the interaction among the associated Behav ingElements. An Interaction does not represent any physical or logical entity of the system - it is merely a connection point that defines a context space where the exposed StateVariables and Param eters of the joined BehavingElement InteractionTerminals are allowed to affect one another through the definitions of InteractionBehaviors. Interactions represent N-ary interactions among BehavingElement s (contrary to m:Junction that are strictly binary). This allows the modeler to choose potentially more efficient representations where the interaction expressions cannot be decomposed into binary relationships between Behaving Elements (see the flashlight example fo r such a case as Kirchhoff's voltage law i n a loop).	The defined usage for an Interaction is that it must join at least two different I nteractionTerminals and at least two of those InteractionTerminals must be presented by different Behavin gElements. Otherwise, the associated InteractionBehaviors could just be represented as ElementBehaviors ins tead. Another perspective on this usage: it is allowed for an Interaction to join Int eractionTerminals of the same Beh avingElement, as long as it also joins at least one other InteractionTermi nal from a different BehavingElement It allows for the specification that an interaction takes place without specifying exactly what the interaction among Beha vingElements: this allows for example for multiple or competing descriptions of the interaction (e.g., different levels of fidelity) or for collaboration among different domain engineers.
InteractionBehavior	A specification describing how different BehavingElements interact with one another (by expressing the effects of Pr operty(ies) (see below) of a Behaving Element on other Property(ies) of the BehavingElements it interacts with). InteractionBehaviors are represented through constraints on Sta teVariables. Parameters can also appear in these constraints. InteractionBehaviors are external in nature: they dependent on a particular deployment of BehavingElements in relation to each other. It is implicit that the definition of any interaction is only valid within a scope, however large it may be (as for Elemen tBehavior). Currently, the ontology does not support the specification of the scope (see Open Questions).	A difference between ElementBehavio r and InteractionBehavior is that E lementBehavior constrains/uses StateVariables/Parameters of only One BehavingElement, while an Inte ractionBehavior constrains/uses StateVariables/Parameters of at least two different BehavingElements. It is implied that InteractionBehavio r constrains/uses StateVariable s/Parameters that have been exposed by InteractionTerminals that are joined by the Interaction that the In teractionBehavior describes. This chain rule is currently not explicitly enforced by the ontology, and its validation is left to the modeler.
Property	Abstract concept representing some aspect of a BehavingElement. A Pro perty can either be static (Parameter) or dynamic (StateVariable) in time. Property(ies) can be exposed through InteractionTerminals to be used or constrained by InteractionBehavio rs, which represent behaviors of interactions between system elements.	Generalizes StateVariable and Para meter.

InteractionTerminal Relation Descriptions:

Page Top | Discussion Top

	presents	isPresentedBy	exposes	isExposedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	BehavingElement	InteractionTerminal	InteractionTerminal	Property
Verb	presents	isPresentedBy	exposes	isExposedBy
Multiplicity	[0*]	[01]	[0*]	[0*]
Object	InteractionTerminal	BehavingElement	Property	InteractionTerminal
Multiplicity Rationale	A BehavingElement may present many I nteractionTermina 1s to filter and organize access to Pr operty(ies)	The purpose of an Int eractionTerminal i s to provide access to Property(ies) of a single BehavingElem ent.	An interaction can affect several Proper ty(ies) of a single Beh avingElement. The modeler may choose to expose them into a single InteractionT erminal.	The modeler can choose to model separate interactions that affect the same Pr operty. For example, the temperature State Variable of a component could be affected by thermal and electrical interactions. In that case, the temperature can be exposed by both the "thermal Inte ractionTerminal" and the "electrical Int eractionTerminal".
Description	A BehavingElement presents an Intera ctionTerminal if its Property(ies) are affected by Property(ies) of other Behavin gElementS.	Inverse of presents; indicates that there is a BehavingElement th at presents this Int eractionTerminal.	It indicates that the exposed Property(ie s) can now be affected by influences outside of the BehavingElem ent.	Inverse of exposes; in dicates that there is a InteractionTermin al that exposes this P roperty.
Notes	none	none	The InteractionTe rminal can expose 0 nly the Property(ies) of the BehavingElem ent presenting that In teractionTerminal	none

Interaction Relation Descriptions:

Page Top | Discussion Top

	joins	isJoinedBy	describes	isDescribedBy
	(inverse)	(inverse)	(inverse)	(inverse)
Subject	Interaction	InteractionTerminal	InteractionBehavior	Interaction
Verb	joins	isJoinedBy	describes	isDescribedBy
Multiplicity	[0*]	[0*]	[01]	[0*]
Object	InteractionTerminal	Interaction	Interaction	InteractionBehavior

Multiplicity Rationale	This is a direct consequence of the N-ary nature of the In teraction.	The StateVariables of a given BehavingE lement may be affected by many external interactions that are modeled through different Inte ractions. Continuing from the example in the isExp osedBy multiplicity rationale - the temperature of a spacecraft component may be affected by two separate thermal interactions: 1) incoming solar radiation, and 2) physical conduction to spacecraft structure. In this case, the modeler may choose to have one thermal In teractionTerminal exposing the temperature StateVa riable that isJoine dBy InteractionS representing both of these thermal effects.	InteractionBehavi or\$ use Parameter\$ and constrain Stat eVariables in the context of a <u>single</u> <u>specific</u> Interaction they describe.	A Interaction can be describedBy as many InteractionB ehaviors as necessary to capture the dynamics of the interaction.
Description	Relation indicating that the Property(ies) ex posedBy the joined InteractionTermin als are now in scope of the interaction represented by the jo ining Interaction.	Inverse of joins; indicates that there is an Interaction that joins the Interact ionTerminal.	The constraints defined in the Intera ctionBehavior appl y within the context of the described Inte raction.	Inverse of describes ; indicates that there is an InteractionBeh avior that describe s a given Interacti on.
Notes	Also indicates that the exposed Property(i es) can now be referenced by the Int eractionBehaviorS describing the In teraction.	All of the associated constraints of all related interactions are levied on the Propert y(ies) exposed by the InteractionTermin als.	none	none

Additional validation rules

Assertion

An InteractionTerminal can only expose Property(ies) that a:characterizes the BehavingElement that presents the InteractionTerminal

An InteractionTerminal must expose at least one Property

An Interaction must join at least two different InteractionTerminals

At least two of the InteractionTerminals joined by the same Interaction must be presented by different BehavingE lements

(if only using InteractionTerminal) An InteractionBehavior must only constrain StateVariable(s) that a:charac terizes a BehavingElement which presents an InteractionTerminal that isJoinedBy the Interaction that the In teractionBehavior describes

(if only using InteractionTerminal) An InteractionBehavior must only use Parameter (s) that a:characterizes a BehavingElement which presents an InteractionTerminal that isJoinedBy the Interaction that the Interaction Behavior describes

Behavior Page Navigation - continue reading:

- (0) Community Page
- (1) Main Behavior Pattern Page
 - (2) Conceptual Behavior Ontology v1.1 (3) Behavior Pattern: Conceptual Examples v1.1
 - (4) SysML-Embeddable Ontolgy & Implementation v1.1 (5) Behavior Pattern: SysML Example v1.1