
Interconnection Pattern
Synopsis

An interconnection is a connection between elements, such as a
connection between a spacecraft and ground system, or a
connection between a power switch and an electrical load. Use this
pattern to describe connections between elements, in a context,
through which energy or material or information flows. This pattern
describes what flows through an interface and allows capture of
those attributes in a particular context.

Pattern Overview

Status Tool Version

In Work SSCAE MagicDraw Packages versions
1702SP3-02 or later

Line Org. Owner Submitter Point of Contact

3101 - Engineering
Development Office

IMCE Pattern Consolidation
Working Group

Dan Dvorak <daniel.l.dvorak
>@jpl.nasa.gov

Related Patterns

Interface Definition Pattern: For specifying interfaces and junctions between interfaces
Structural Context Pattern: For specifying context in which interconnections may be
asserted.
Interaction Pattern: For specifying interactions between functions
Requirements Definition Pattern: For requirements specification, including specification of
interface requirements
Reconciliation/Abstraction Pattern: For constructing and reasoning across multiple levels
of abstraction (logical/physical, conveyance of data across networks, etc.)
Characterization Pattern: For describing values related to the analysis of an interface.
This is useful when the specification is not yet determined and there are trades to be
explored.

Skip directly to the SysML Examples...
Table of Contents:

Synopsis
Pattern Overview
Applicability

Content Concerns
Artifact Concerns
Generic Reasoning
Questions
Assumptions

Pattern Implementation
Generic/Ontology
Implementation
SysML Implementation
Validation/Well-Formedne
ss Reasoning
Supporting Scripts/Tooling
Tooling Tricks

Open Questions
Further Examples
Community Page

Applicability

To help users assess the applicability of this pattern to their work (i.e., to the problem they want to solve or their area of interest), we describe
the way in which this pattern addresses a few kinds of common concerns. In particular, we address:

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Structural+Context+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interaction+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Requirements+Definition+Pattern
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307501
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Characterization+Pattern

Content concerns: the kind of content users can capture in this pattern
Artifact concerns: the kinds of artifacts (documents and views) that can come from this pattern
Reasoning concerns: the kind of reasoning (analysis) that this pattern is meant to support
Assumptions: what we expect to be true about the user's situation that is relevant to whether they can or should use the pattern.

Content Concerns
This pattern provides a mechanism for enumerating connections between elements as-exercised within the scope of a specified context.
Where the facilitates the definition of what connections exist between elements, this pattern allows the userInterface Definition Pattern may
to assert that, within the context of interest, previously defined interfaces are exercised. A complete representation of an interconnection
includes:

A context. The context is the domain or scope in which the connection between the elements is of interest.
A set of participants. These are the elements which present the connectable interfaces. These elements "play a part" in the context.
Connections. These are assertions that the Junction "plays a part" by connecting its associated interfaces in the context of interest.

At this generic level, we are concerned with the ability to cordon off a domain of interest and assert the junctions and interfaces that we want
to have available for use in that context. While the allows the user to specify what is by design, thisInterface Definition Pattern allowed
pattern specifies the orchestration of those junctions within discrete contexts.

Artifact Concerns

This pattern supports the enumeration of content that is present in the following conceptual systems engineering artifacts :note

Functional Block Diagram (FBD)
Interface Requirements Document (IRD)
Interface Control Document (ICD)
System block diagram with interconnections
DODAF SV-1 Systems Interface Description
DODAF OV-2 Operational Resource Flow Description
DODAF SV-2 Systems Resource Flow Description
DODAF SV-3 Systems-Systems Matrix
N-squared diagrams
Deployment Diagrams (Testbeds, etc.)

Note: we refer here to the underlying content present in these artifacts, rather than any particular paper examples. This pattern is not "how to
make an IRD;" instead, we assert that this pattern supports the capture of much of the content one would find if one examined many
examples of IRDs and retained the core attributes and concerns found therein.

Generic Reasoning Questions
This section captures some may be answered by the relationships and content present in the pattern. This is not an exhaustive list; there are
other examples for particular domains, etc. This is another useful way for users to determine whether they have the same reasoning needs as
the pattern developer, and thus whether the pattern is suitable for their use.

Does an Interface Definition (two interfaces and a junction) exist for every asserted connection?
Are any Interface Definitions not exercised in any context?
Are all connected interfaces of compatible types? (end-to-end as well as piecewise compatibility)
Given two interfaces, in what contexts is their connection exercised?
For a given context, what items are exchanged between systems (chart).N2

Given a component, what is connected to this component through any of its interfaces?
Given a component, what is connected through a specific interface?
What components produce messages or flows with some specific (property, value, data type, stereotype, etc.)?

Data Domain:

For a given context, what are the access points to each participant?
What is the set of protocols that each participant must implement?

Assumptions

There are currently no assumptions made about the user's situation relevant to this pattern.

Pattern Implementation

Here we describe the elements that make up the Interconnection Pattern, their relationships, responsibilities, and collaborations. The solution
does not describe a particular concrete design or implementation. Instead, the pattern provides an abstract description of a design problem
and how a general arrangement of elements solves it. The solution is presented first in in modeling language independent terms (in the Ontol

) and then as a SysML embedding (in the).ogy Description Section SysML Implementation Section

Generic/Ontology Implementation

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307275
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307283
https://mbse.jpl.nasa.gov/confluence/pages/viewpage.action?pageId=7307279

We start with a set of components and a context in which they connect and exchange items or information. We want to assert that all
interconnections we create between the components are true in that context. Ideally, we start with a set of predefined Components,
Interfaces, and Junctions as described in the - this is our library of possible connections. Within the context, weInterface Definition Pattern
can then assert the intended connection.
Click here to expand/collapse the rest of this section...

SysML Implementation

The concepts we described in the last section are mapped to concrete implementation in SysML so that they can be used to actually define
interfaces in a model. In this section we describe first the embedding of the ontology into SysML (so that the user can understand how the
concepts are made concrete) and then provide examples.

Embedding

The following table describes how the elements in the ontology appear in SysML. The easiest form of mapping is when one ontological
concept is represented by one SysML element: for example, a JunctionParticipant as described in the ontology is mapped to a Connector in
SysML. However, one-to-one mapping is not always possible, or even the best mapping.

Ontology Classification SysML Metaclass Stereotype

Context Concept Element (any element
that can contain
properties) Block,
Component

Classifier? n/a

ComponentParticipant Concept PartProperty Property <<Part Property>> (from
SysML)

InterfaceParticipant Concept Port typed by Interface Port <<Proxy Port>>

JunctionParticipant Concept Connector typed by
Junction

Connector n/a

Context-specific
Presents

Relationship Existence of
ComponentParticipant
typed by Component
owning Port typed by
Interface

n/a n/a

Context-specific Joins Relationship Existence of connector
which 1) connects two
ports typed by two
interfaces which are 2)
joined by the Junction
which types this
connector

n/a n/a

Concept Mapping: The context and all participants map to SysML Metaclasses directly (although ComponentParticipants are currently
restricted to PartProperties, although they could be more generic properties). No special stereotypes are necessary for the embedding.

Relationship Mapping: There are no specific stereotypes or elements to which the Joins and Presents map. The embedding is more of a
restriction stating that a ConnectorParticipant can only join the interfaces joined by the Junction by which it is typed and that a
ComponentParticipant can only present InterfaceParticipants which are presented by the Component by which it is typed.

SysML Examples

The following are simple pedagogical examples which make use of the concepts and their embedding into SysML:
Simple example: Spacecraft & Ground System exchange a file

Image Explanation

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern

Here we see the definition level elements in our system: A
spacecraft, a ground system, and the interfaces they present to
exchange Files. The interfaces are joined by the SC-Ground File
Transfer Junction. We also see that we can be more specific than
just "File" and identify the existence of "Image Files" as well.

Note: for an explanation of the directions of the flow properties in
the Interfaces and the Junction, see the discussion of flow direction

.in the Interface Definition Pattern

We now assemble our Spacecraft and Ground System into a
Context. Notice that nothing special is required to identify the
context as such; by owning and mediating information exchanged
between participating components, it becomes a context.

Note also that we have a generic Mission of which Mission Config
During Celestial Body Flyby is a specialization. We define attributes
that are universally true for the Mission at the Mission level, and
define structure and attributes specific to the Celestial Body Flyby
part of the mission in that context.

Note: if the Spacecraft and Ground System can be defined once
across the entire Mission, it would be simpler to draw the
composition relationships from the Mission to the SC and GS rather
than to the Celestial Body Flyby element as we have done here.
We discuss the pattern for decomposition (including inheritance
and redefinition) in another pattern.

Here we see the inside of the Mission Config During Celestial Body
Flyby element. We see the Spacecraft and Ground System playing
roles, and we have drawn a Connector between the ports these
participants present. We have typed the Connector with the
SC-Ground File Transfer Junction to complete the pattern.

Of particular importance here is that the Mission Config During
Celestial Body Flyby context now OWNS the Connector between
SC and GS. This is extremely useful because it is a formal
expression of utilizing that interface within that context. The context
may be queried for all owned Connectors, and that set represents
every connector that may be used in that context (i.e., if you leave
out a connector, you may not traverse that junction in that context).

Optionally, one may use the SysML construct of Conveyed
Information to informally show more specific flows and add some
convenient visual cues (i.e., the arrow). Here,we show the same
exchange of "file," but in this case it happens to be Image Files
(which is a specialization of File). Use of Conveyed Information in
this form is a shorthand for defining a new Junction. The Conveyed
Information should be interpreted as implying a specialized
Junction of SC-Ground File Transfer where Image File is the
traversing element instead of File.

SysML Example: Raspberry Pi

Image Explanation

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern#InterfaceDefinitionPattern-flowdirections
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern#InterfaceDefinitionPattern-flowdirections

We first identify the definitions of the things we wish to express
connectivity between (Components, Junctions, Interfaces,
Messages). We have joined interfaces transferring DataPackets,
and a USB interface that calls out USB wires individually.

Note: for an explanation of the directions of the flow properties in
the Interfaces and the Junction, see the discussion of flow direction

.in the Interface Definition Pattern

Here we show the system definition: the embedded computer
contains a motherboard and some packaging. We want to show
how the USB connection is made to the motherboard through the
packaging. We also have a laptop with two USB ports and a
crossover cable.

This diagram shows the usage of the crossover cable to connect
the laptop to the embedded computer. The connectors are typed by
the USB Connection Junction.

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern#InterfaceDefinitionPattern-flowdirections
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern#InterfaceDefinitionPattern-flowdirections

Here we show how the USB interface on the EmbeddedComputer
component is actually connected to the Data Tx/Rx component in
the Motherboard. The orange connectors shown here are Binding
Connectors, which indicate identity (the external USB Female
interface IS the USB Female interface on the Packaging which IS
the USB Female interface on the Motherboard, and the wires there
ARE the wires on the Data Tx/Rx). Another way to think of it is that
the USB Female interface on the Motherboard is actually exposed
through the Packaging to the outside. We also see the connection
between the Data Tx/Rx and the Data Processor via a Bus
Transfer.

The previous diagram showed a very low level exchange of
packets - what if we want to show a higher level, logical data
exchange? Here we see the connectivity of Data in the system - the
Data Tx/Rx data port is exposed to the outside, and internally can
exchange data with the data processor. How to map between these
levels of abstraction will be addressed in a future pattern.

Fun with Reasoning Questions
Reasoning Questions Explained: Spacecraft & Ground System exchange a file

Image Explanation

Q: Does an Interface Definition exist for every asserted
connection?

A: Yes. We can tell because there is only one connection in this
example and it is typed by a junction, which means that there must
be an appropriate interface definition... (if it were not typed a
junction, i.e. untyped or typed by something else, that would be a
validation error...?) If it is not typed by a junction, we can't be sure
that the interfaces are compatible.

Q: Are all connected interfaces of compatible types?

A: Yes. We assume that we have already validated the all interface
definitions in this model, so since we are able to type the connector
with the junction means the interfaces match. See the Interface

 (TODO - add anchor to validation stuff) forDefinition Pattern
description of checking interface correctness.

Q: For a given context, what items are exchanged between
systems?

A: In this example, the only exchange is between the spacecraft
and the ground system. More generally, we can find all of the
owned connectors for the context block, look at their ends (nested
connector end or part with port) - TODO - nested connector end
stereotype not always being set, when done manually, property
path not set...

Q: Are any Interface Definitions not exercised in any context?

A: No. In this example, there is only one interface definition pair
and only one connector, and the connector is typed by the junction.
More generally, you can find the set of junctions by finding all
connectors and getting their types, and compare that to the set of
junctions that exists in the model. If there are extra junctions or
connectors, there is a mismatch.

Rules/Axioms/Invariants

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Interface+Definition+Pattern

The following table expresses the modeling rules:

ID Modeling Rule

1 All content in an context must be consistent / exist / asserted in the
model (hiding a model element or connection from a diagram must
be for aesthetics, not for semantics / design / assertion). You must
be able to display every connection in that context and have it be
true (but maybe ugly). Union of IBDs in a particular context should
show truth for that context.

2 All connectors in a context must be valid/true/exist for the "duration"
of the context.

Syntactic Rules

JPL SysML Restriction Rules

ID Restriction Rule Owning Package

JPL-SysML-07 A binding connector must not have a type

Onto-Connector-01 A binding connector can be used in
several ways. These are enumerated in
Onto-Connector-01.1 &
Onto-Connector-01.2.

JPL Onto SysML Restrictions about
Connectors

Onto-Connector-01.1 In an IBD, a binding connector can be
used to connect a nested proxy port of a
proxy port on a part to an another proxy
port within the same part context.

Onto-Connector-01.2 Several cases must be distinguished for
binding connectors involving non-port
properties, these are enumerated in
Onto-Connector-01.2.1, 01.2.2, 01.2.3,
01.2.4, & 01.2.5.

Onto-Connector-01.2.1 A proxy port may have a SysML flow
property typed by a Mission:MaterialItem
(i.e., a kind of SysML Block). Such flow
property must be bound by a binding
connector to a SysML part property typed
by a compatible Mission:MaterialItem. The
part property bound could be inside or
outside the block owning such a proxy
port.

Onto-Connector-01.2.2 A proxy port may have a SysML flow
property typed by a Signal. The binding of
such a flow property depends on the
isBehavior meta-property of the proxy
port.

Onto-Connector-01.2.3 A proxy port may have a SysML flow
property typed by a SysML ValueType.
Such flow property must be bound to a
SysML value property typed by a
compatible SysML ValueType.

Onto-Connector-01.2.4 A proxy port may have a SysML reference
property. Such a reference property must
be involved in an end-to-end chain of
binding connectors, one end of which
must be a part property, the other end of
which must be a reference property and
all intermediate bindings must involve
either a proxy port with a single reference
properties or a reference property in the
IBD context.

Onto-Connector-01.2.5 A proxy port may have a SysML value
property typed by a SysML ValueType.
Such value property must be bound to a
SysML value property typed by a
compatible SysML ValueType inside or
outside the part or block owning the proxy
port.

Onto-Connector-02 An assembly connector must be typed by
a SysML AssociationBlock

JPL Onto SysML Restrictions about
Connectors

Onto-Connector-03 An assembly connector relates proxy
ports typed by Mission:Interfaces joined
via a directed Mission:Junction typing the
assembly connector. If the proxy ports
joined by an assembly connector have
nested ports or nested properties, then
interconnections for the nested ports and
properties must be defined in an IBD
typing the assembly connector instead of
nested connectors in the IBD where the
assembly connector is.

JPL Onto SysML Restrictions about
Connectors

Onto-Connector-04 SysML Connectors are partitioned in two
disjoint classes: binding and assembly
connectors

JPL Onto SysML Restrictions about
Connectors

Onto-Connector-05 An assembly connector can only be the
realizing connector for 1 item or
information flow

JPL Onto SysML Restrictions about
Connectors

Typing-01 A Connector can only be typed by a kind
of Association

Allowed Property Type Rules

Typing-05 A ParticipantProperty can only be typed
by a Block

Allowed Property Type Rules

Typing-06 A PartProperty can only be typed by a
Block

Allowed Property Type Rules

Workaround-01 InterfaceBlock can have only 1 Flow or
Reference property

JPL SysML1.3 Workarounds

Model Implementation Concerns

Connectors between Nested Ports:
Connections between nested ports can be shown in one of two ways: 1) with connectors between the nested ports owned by the
original context, or 2) with connectors owned by a Junction. There is an important trade in picking one of these two approaches. If
connectors are shown between nested ports on the original context, then these connectors cannot be reused in other contexts. On
the other hand, when they are owned by a Junction, the relationship between nested ports can be reused across multiple contexts
but the nested connectors cannot be shown in the IBDs owned by other contexts.

Conveyed information:
The SysML concept of Conveyed information represents a short-hand for defining specialized Junctions for a particular connector.
These should be transformed into Junctions before preforming analysis on the model. Conveyed information is also useful as a visual
reference, but be careful to keep this conveyed information consistent with the directions specified in the interface definition.

Multiple Connectors attached to a Port:

We recommend that you attaching multiple connectors to one port. avoid
Because: there does not exist a clear way to specify the routing and/or duplication of signals and tokens when multiple connectors
leave a port. While UML/SysML Activity Modeling provides constructs like Fork, Join, Decision, and Merge nodes, nothing analogous
exists for the Class/Block/Part side of UML/SysML. To avoid ambiguity, we suggest that modelers avoid attaching multiple
connectors to a port. Workarounds include:

Creation of routing components containing behaviors for determining information destination at runtime
Creation of bus-type components containing binding connectors between input and output ports for expressing balancing of
continuous flows
Analysis of layers of abstraction to determine if multiple connectors is really necessary (if you are expressing interfaces,
does it make sense to have a one-to-many interface at a logical level? At a physical level, is it actually possible to have a
one-to-many connection?)
Inheritance: can you express the interface once between generic components instead of many specific ones?

1.
2.

3.

4.

5.

If modelers cannot avoid using multiple connectors to one port, we recommend that they either choose a consistent meaning for
multiple connectors, or attach a specification of logic for information is to be produced on / collected from multiple connectors (such
as a characterization or an attribute on the interface definition).

Completeness:

Fill in: see comment in Jira. TODO

Validation/Well-Formedness Reasoning

Every part with a connected port is typed «mission:Mission» or «mission:Component».
Every connected port is typed «mission:Interface».
Every connector is typed «mission:Junction».

Supporting Scripts/Tooling

We do not currently provide any supporting scripts or tooling.

Tooling Tricks

Trick How to do it Why?

Quickly type Connectors with an
appropriate Junction

Right-click on the connector. You will see
"Association" in the menu, near the bottom.
When clicked, a list of available Junctions
will appear for selection.

Note: a Junction is only available if a) the
connected ports are typed by Interfaces
and b) a Junction exists between those
Interfaces.

Faster, easier modeling!

Open Questions

Questions:

Does the ontology need to have a concept of a context? Resolved: no.
What happens if the multiplicity of the association block is greater than 1? Discussion: Should it be allowed? (Currently: no, it is
not allowed.) What would that mean for connectors? (discussion 7/9/13)
What is methodology or rules for when to make something a context? Discussion: who is deciding where the boundaries are?
What do we mean by context change? Structural configuration change? Depends on the stakeholder / engineer who needs to
understand the distinctions. Conversation with Nicolas R. about consistency of information between IBDs in the same context. In this
pattern we assert that if IBDs share a context, they must be consistent views of a consistent system. It appears that SysML allows an
IBD to ALSO be a context, meaning that two IBDs could have their own elements. This seems very confusing and hard to manage
(and would require BST expansion to make it work), so we are proposing in this pattern that people create a new context if they wish
to create an IBD that would introduce inconsistency.
Asserting a lack of connection: How do we assert that something is connected? A multiplicity 0 connector would be nice but isnot
not currently possible. Concern is that absence of connector may not be intentional. Possibility of "null connector."
How to show structural configuration changes? For example, if your antenna is covered during ascent, or your pipe becomes
disconnected, and is capped, etc.

References and Pattern Resources
Currently no Working Group approved references. See the references area for unofficialCommunity Page: Interconnection Pattern
references.

Modeling Guide (somewhat outdated): SysML Modeling Guide

Further Examples
Currently no Working Group approved examples. See the examples area for further examples.Community Page: Interconnection Pattern

Community Page
The has been set up to collect Frequently Asked Questions, Discipline Specific (and extended)Community Page: Interconnection Pattern

https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Interconnection+Pattern
https://sscae-help.jpl.nasa.gov/sysml/chunks/sysml_modeling_guide.html
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Interconnection+Pattern
https://mbse.jpl.nasa.gov/confluence/display/IMCECOP/Community+Page%3A+Interconnection+Pattern

examples and reasoning, and References. Everyone should have write access and are free to discuss and contribute.

Copyright

Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

https://jira1.jpl.nasa.gov:8443/secure/CreateIssue.jspa?pid=11064&issuetype=1&Create=Create

	Interconnection Pattern

