
System Modeling Assessment & Roadmap Joint OMG/INCOSE Working Group

Systems Engineering Model Construction

Focus Area

Snapshot June, 2016

OMGSysML Model Construction Wiki

System Modeling Assessment & Roadmap Joint OMG/INCOSE Working Group

• Objectives:

- Assess effectiveness of system modeling with SysML in support of MBSE Adoption and Use
- Develop a preliminary System Modeling Roadmap to improve effectiveness
- Use the Roadmap to influence the SysML specification, tool vendor implementations, related standards efforts, and industry collaborations

• Scope:

- SysML modeling language and tools
- Modeling languages and tools that support use of SysML (e.g. constraint language, transformations)
- Reuse libraries (e.g., models, practices, ..)
- Integrations with other engineering models and tools

• Focus Areas:

- Systems Engineering Use Cases
- System Engineering Concept Model
- SysML v2/MBSE Capabilities including Model Construction, Model Visualization, Model Analysis, Model Management, Model Interoperability,

• Members:

• IBM, EADS, LMC, NASA/JPL, Raytheon, John Deere and Various Consultants

MBSE Capability: Construct Model

Background and Context

- Task objective
 - Elaborate concepts, requirements, and metrics for effective model construction that support the next generation system modeling language (SysML v2)
- Use Cases
 - Systems engineers and other discipline engineers contribute to the development and update of the system model throughout the lifecycle to support system specification, design, analysis, and verification activities
 - Hybrid SUV Change Scenario
- MoE
 - Ability to efficiently and intuitively construct models

• High Level Intent/Driving Requirement:

- Intuitive and efficient model construction.
- It often requires several clicks to capture a core concept in a model.
- Reduce the time and effort to build and maintain a model.
- Repeat common modeling patterns with reduced user input

• Services

• Documented in wiki

Systems Modeling Environment Conceptual Architecture - Construct Model

Model Repository

System

Models

Analysis

Data

Metadata

Information Model

•

Sytem model schema

Analysis model schema

Facilitate collaboration

Task synchronization

Model Manager

Configuration mgmt

Model Analyzer

Access control

Check

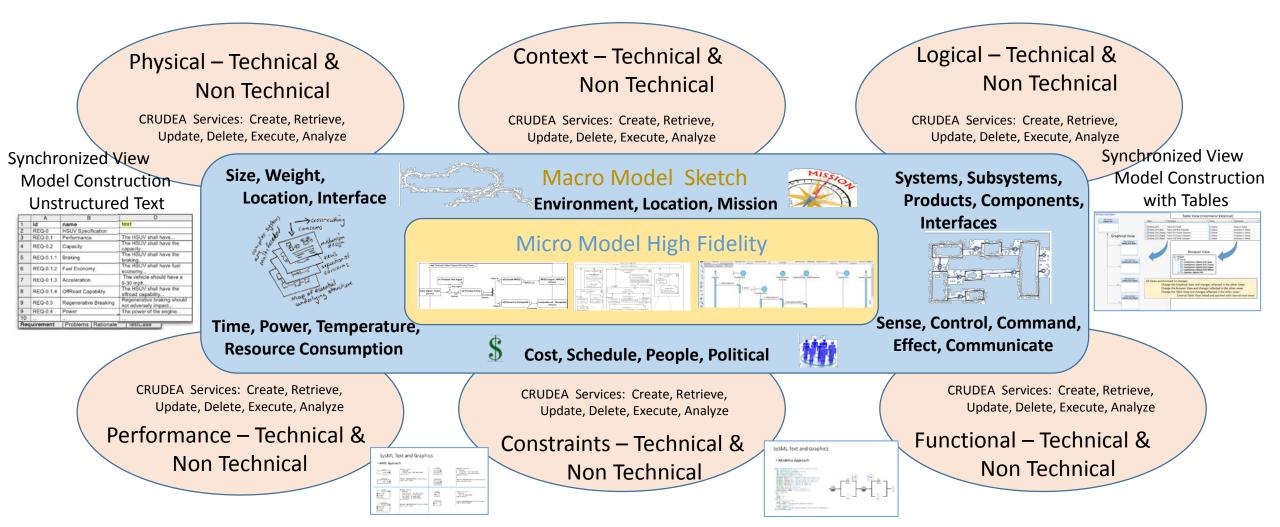
Solve

Simulate

Real Time

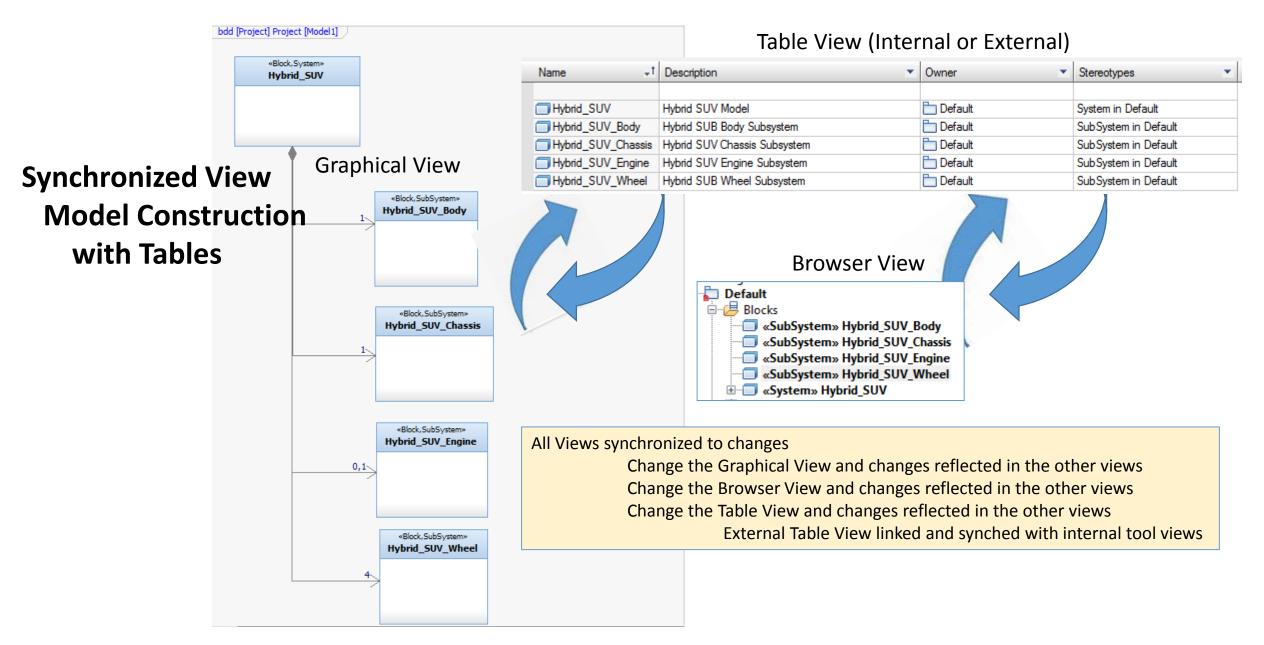
 Asynchronous Facilitate MBSE Workflow

Initial Scope System Modeling Environment Model Editor 'Rich' Interface Information Exchange Mgr Systems Query model Practices Engineer Synchronize Perform analysis Repository Orchestrate Present results Transform wanage viewpoint Model Editor 'Web' Interface **External Sources** External PLM/Workflow Manager Interface & Engineering Tools/Models Management Includes standard API's External Data Sources **Development Environment** Ontology Definition Domain Specific Model Editor


Metamodel Transformation

Developer/ Customizer

Next Generation Systems Modeling Environment – Model Construction


Highlights

From a Macro Model Sketch to a High Fidelity Micro Model

Model Construction with Tables

Highlights

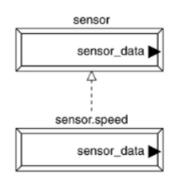
Model Construction with Unstructured Text

Unique Requirement Name

Established

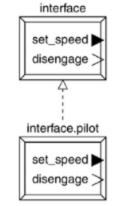
Synchronized View Model Construction Unstructured Text

Unique Requirement ID Established

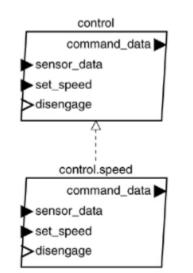

	A	8	D
1	id	name	text
2	REQ-0	HSUV Specification	and the second second second
3	REQ-0.1	Performance	The HSUV shall have
4	REQ-0.2	Capacity	The HSUV shall have the capacity
5	REQ-0.1.1	Braking	The HSUV shall have the braking
6	REQ-0.1.2	Fuel Economy	The HSUV shall have fuel economy
7	REQ-0.1.3	Acceleration	The vehicle should have a 0-30 mph
8	REQ-0.1.4	OffRoad Capability	The HSUV shall have the offroad capability
9	REQ-0.3	Regenerative Breaking	Regenerative braking should not adversely impact
9	REQ-0.4	Power	The power of the engine
10		44	
Requirement		Problems Rationale	lestuase

Requirement Text Semantically Parsed to capture system components, characteristics, functions, constraints, timing, value properties, etc

Highlights

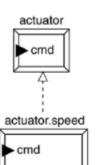

SysML Text and Graphics

AADL Approach


device sensor
 features
 sensor_data: out data port;
end sensor;

device implementation sensor.speed
end sensor.speed;

device interface
 features
 set_speed: out data port;
 disengage: out event port;
end interface;


device implementation interface.pilot
end interface.pilot;

process control

features
 command_data: out data port;
 sensor_data: in data port;
 set_speed: in data port;
 disengage: in event port;
end control;

process implementation control.speed
end control.speed;

device actuator
 features
 cmd: in data port;
end actuator;

device implementation actuator.speed
end actuator.speed;

Highlights

SySML Text and Graphics

Modelica Approach

```
model SecondOrderSystem "A second order rotational system"
  type Angle=Real(unit="rad");
  type AngularVelocity=Real(unit="rad/s");
  type Inertia=Real(unit="kg.m2");
  type Stiffness=Real(unit="N.m/rad");
  type Damping=Real(unit="N.m.s/rad");
                                                                                                                                   pulseCounte
  parameter Inertia J1=0.4 "Moment of inertia for inertia 1";
                                                                                                              ealSens
  parameter Inertia J2=1.0 "Moment of inertia for inertia 2";
                                                                                                      d=0.2
                                                                                                                                                   d=1
  parameter Stiffness k1=11 "Spring constant for spring 1";
  parameter Stiffness k2=5 "Spring constant for spring 2";
  parameter Damping d1=0.2 "Damping for damper 1";
                                                                                                     damper1
                                                                                                                                                 damper2
  parameter Damping d2=1.0 "Damping for damper 2";
  Angle phi1 "Angle for inertia 1";
                                                                                J=0.4
                                                                                                                             J=1
  Angle phi2 "Angle for inertia 2";
  AngularVelocity omega1 "Velocity of inertia 1";
  AngularVelocity omega2 "Velocity of inertia 2":
                                                                                inertia1
                                                                                                                           inertia2
initial equation
  phi1 = 0;
                                                                                                                                                  c=5
                                                                                                       c=11
  phi2 = 1;
  omega1 = 0;
  omega2 = 0;
                                                                                                                                                spring2
                                                                                                      spring1
equation
 // Equations for inertia 1
  omega1 = der(phi1);
  J1*der(omega1) = k1*(phi2-phi1)+d1*der(phi2-phi1);
  // Equations for inertia 2
  omega2 = der(phi2);
  J2*der(omega2) = k1*(phi1-phi2)+d1*der(phi1-phi2)-k2*phi2-d2*der(phi2);
end SecondOrderSystem:
```