
OMG SysMLTM Adopted Specification 1

 OMG SysML™ Requirements Traceability

(informative)

This document has been published as OMG document ptc/07-03-09 so it can be referenced by
Annex E of the OMG SysML™ specification.

This document describes the requirements tracability matrix (RTM) that shows how SysML satisfies the requirements in Sec-
tions 6.5 (Mandatory) and 6.6 (Optional) of the UML for SE RFP (OMG document ad/03-03-41). The matrix includes col-
umns that correspond to those identified in the first paragraph of Section 6.5 of the RFP and are restated here. The text
requirement statement is included in the RFP and was excluded from this document due to space limitations.

a) The UML for SE requirement number.

b) The UML for SE requirement name (or other letter designator). Note: The reader should refer to the UML for SE
RFP for the specific text of the requirement, since there was inadequate room in the table to repeat it here.

c) Describes whether the proposed solution is a full or partial satisfaction of the requirement, or whether there is no
solution provided. The section header rows that do not have a text requirement are marked N/A.

d) A description of how SysML addresses the requirement. Note: In some cases, there may be other SysML solutions
to satisfy the requirement, but the intent was to describe at least one solution.

e) The specific UML and SysML metaclasses that address the requirement.

f) Reference to the applicable chapter in the SysML specification which addresses e) above. This diagram element
tables in the chapter describe the concrete syntax (symbols) that show how the solution to the requirement is
represented in diagrams. The usage examples in the chapters along with sample problem in “Annex B: Sample
Problem” describe how the solution to the requirement is used in representative examples. Note: The reference to
a chapter may require reference to a corresponding chapter in the UML specification. For example, when the
blocks chapter is referenced, this may include a combination of the SysML blocks chapter and the UML classes
and composite structure chapters.

Table E.1 - Requirement Traceability matrix

UML for
SE Req't
#

Requirement
name

Compl
(Y/N,
Partial)

Requirement Satisfaction Metaclass
Extension

SysML
Diagram
Chapter

Ver #

6.5 Mandatory
Requirements

6.5.1 Structure N/A Structure diagrams include block
definition, internal block, and
package diagrams

Structural
Constructs

6.5.1.1 System
hierarchy

Y Block composition (black or
white diamond) in a block
definition diagram and parts in
internal block diagrams are the
primary mechanisms for
representing system hierarchy.

SysML::Block,
UML::Association,
SysML::Block
Property

Blocks 1.0

2 OMG SysMLTM Adopted Specification

a. Subsystem
(logical or
physical)

 Y Typically represented by a set of
logical or physical parts in an
internal block diagram that
realize one or more system
operations. The corresponding
sequence diagram and activity
diagram with swim lanes can
represent a hybrid of structure
and behavior.

SysML::Block,
SysML::Block
Property

Blocks 1.0

b. Hardware
(i.e., electrical,
mechanical,
optical)

 Y Represented by a block or part. SysML::Block,
SysML::Block
Property

Blocks 1.0

c. Software Y Represented by a block or part or
a UML component.

SysML::Block,
SysML::Block
Property,
UML::Component

Blocks 1.0

d. Data Y Represented by a block or part.
Refer to input/output
requirements in 6.5.2.1.1 and
6.5.2.5 for data flows.

SysML::Block,
SysML::Block
Property,
SysML::ValueType,
UML::DataType

Blocks 1.0

e. Manual
procedure

 Y Represented by a block or part.
Can also be represented by the
standard UML stereotype
<<document>>.

SysML::Block,
SysML::Block
Property,
UML::Document

Blocks 1.0

f. User/person Y Represented by a block or part.
External users are also
represented as actors in a use
case diagram.

SysML::Block,
SysML::Block
Property

Blocks 1.0

g. Facility Y Represented by a block or part. SysML::Block,
SysML::Block
Property

Blocks 1.0

h. Natural
object

 Y Represented by a block or part. SysML::Block,
SysML::Block
Property

Blocks 1.0

i. Node Y Represented by a block or part. SysML::Block,
SysML::Block
Property

Blocks 1.0

6.5.1.2 Environment Y Environment is one or more
entities that are external to the
system of interest and can be
represented as a block or part of
a broader context. Also,
represented as actors in use
cases.

SysML::Block,
SysML::Block
Property

Blocks,

Use Case

1.0

OMG SysMLTM Adopted Specification 3

6.5.1.3 System
inter-
connection

Internal block diagram shows
connections using parts, ports,
and connectors.

SysML::Block,
SysML::Block
Property, UML
Association,
UML::Connector:
SysML::Nested
ConnectorEnd

Blocks 1.0

6.5.1.3.1 Port Y A port defines an interaction
point on a block or part that
enables the user to specify what
can flow in/out of the block/part
(flow port) or what services the
block/part requires or provides
(Standard Port). Ports are
connected using connectors.

SysML::Standard
Port,

UML::Interface,

SysML::FlowPort,
SysML::Flow
Specification,
SysML::Flow
Property

Ports and
Flows

1.0

6.5.1.3.2 System
boundary

Y The enclosing block for an
internal block diagram and its
ports.

SysML::Block

SysML::Standard
Port,

SysML::FlowPort

Blocks, Ports
and Flows

1.0

6.5.1.3.3 Connection Y A connector binds two ports to
support interconnection. A
connector can be typed by an
association. A logical connector
can be allocated to a more
complex physical path depicting
a set of parts, ports, and
connectors (refer to allocation).
Note: A connector has limited
decomposition capability at this
time.

UML::Association,
UML::Connector,
SysML::Nested
ConnectorEnd

Blocks 1.0

6.5.1.4 Deployment of
components to
nodes

Y A structural allocation
relationship enables the
allocation (deployment) of one
structural element to another.

SysML::Allocation,
SysML::Allocated,
UML::Named
Element

Allocations 1.0

a. Y Software part, block or
component deployed to a
hardware part or block
(processor or storage device).

SysML::Allocation,
SysML::Allocated,
SysML::Block,
SysML::Block
Property,
UML::Component

Allocations 1.0

b. Y Generalized deployment
relationship between a deployed
element and its host.

SysML::Allocation,
SysML::Allocated,
SysML::Block,
SysML::Block
Property

Allocations 1.0

4 OMG SysMLTM Adopted Specification

c Y Deployed element and host can
be decomposed using blocks and
parts.

SysML::Block,
SysML::Block
Property

Allocations 1.0

 6.5.2 Behavior N/A Behavior diagrams include
activity, sequence, and state
machine diagrams.
Communication diagrams,
interaction overview diagrams,
and timing diagrams are
interaction diagrams that are not
included in SysML. Use case
diagrams are also viewed as a
behavior diagram in that they
represent the functionality in
terms of the usages of the system,
but do not depict temporal
relationships and associated
control flow or input/output flow.

Behavioral
Constructs

6.5.2.1 Functional
Transformation
of Inputs to
Outputs

A behavior is the generalized
form of a function with inputs
and output parameters. Activity is
a subclass of behavior.

UML::Behavior Activities

6.5.2.1.1 Input/Output Y Inputs and outputs can be
represented as parameters of
activities, object nodes flowing
between action nodes, and as
item flows between parts in an
internal block diagram. Note:
Object nodes are more precisely
represented by pins on action
nodes.

UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

a Y Parameters, object nodes, and
item properties are typed by
classifiers (blocks or value types)
that can have properties.

SysML::Block,
UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

b Y The classifiers that represent the
things that flow (type of
parameter, object node, and item
property) can be decomposed and
specialized.

SysML::Block,
UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows, Blocks

1.0

c Y "ItemFlows" associate the things
that flow with the connectors that
bind the ports. The parameters
and object nodes are bound to
the corresponding activities and
actions.

SysML::Block,
UML::Parameter,
UML::ObjectNode,
SysML::ItemFlow

Activities,
Ports and
Flows

1.0

OMG SysMLTM Adopted Specification 5

6.5.2.1.2 System store Partial Stored items can be represented
as parts of a block, and also
represented in an activity
diagram as object nodes or
central buffer nodes.

SysML::Block,
SysML::Block
Property,

UML::ObjectNode

UML::Central
BufferNode

Blocks,
Activities

1.0

a Partial Object nodes in an activity
diagram can represent depletable
stores, and a data store node can
represent non-depletable stores.

UML::ObjectNode,
UML::DataStore
Node

Activities 1.0

b Y A stored item can be the same
type of classifier as an input or
output in both an internal block
diagram and an activity diagram.
The classifier supports different
roles (store vs. flow).

SysML::Block,
SysML::Block
Property,
UML::ObjectNode,
UML::DataStore
Node

Blocks,
Activities

1.0

6.5.2.1.3 Function Y Activity specifies a generic
subclass of behavior that is used
to represent a function definition
in activity diagrams, sequence
diagrams, and state-machine
diagrams. Activities contain
CallBehaviorActions that call
(invoke) other activities to
support execution of the generic
behaviors.

UML::Activity Activities,
Interactions,
State
Machines

1.0

a Y Behaviors and the associated
parameters are named (i.e., name
of activity and activity parameter
node).

UML::Behavior Activities,
Interactions

State
Machines

1.0

b Y The action semantics define
different types of actions that
include CreateObject,
DestroyObject,
ReadStructuralFeature (monitor),
and WriteStructurealFeature
(update). A CallBehavior action
is a generalized action that can
call any behavior (activity,
interaction, state).

UML::CreateObject
Action,
UML::DeleteObject
Action, the various
object modification
actions in UML,
monitoring with
UML::AcceptEvent
Action

Activities,
Interactions

State
Machines

1.0

c Y The object nodes (pins) bind
input and output parameters to
actions.

UML::ObjectNode,
UML::Pin

Activities 1.0

6 OMG SysMLTM Adopted Specification

d Y The queuing semantics for object
nodes are specified. The default
queuing is FIFO, but other forms
of queuing including LIFO,
ordered, and unordered as
defined by the enumeration for
ObjectNodeKind.

UML::Behavior,
SysML::InputPin,
SysML::ObjectNode

Activities 1.0

e Partial Resource constraints to support
an execution can be specified by
Preconditions and
PostConditions. The constraints
can apply to resources that are
generated, consumed, produced,
and released, such as inputs and
outputs, or the availability of
memory or CPU. The constraints
imposed on the resources can be
further modeled using parametric
diagrams.

UML::Constraint,

SysML::Constraint
Block

Activities,
Constraint
Blocks

1.0

f Y Refer to c UML::ObjectFlow,
UML::Pin

Activities 1.0

g. Y An activity can be decomposed
into lower level actions that
invoke other activities.

UML::Activity,
UML::CallBehavior
Action, UML::Activity
ParameterNode,
UML::ObjectFlow,
UML:: Pin

Activities 1.0

h. Y An action has control inputs that
can enable the execution of a
function, and a control value
input from a control operator
that can both enable or disable
an execution of a function. An
execution of a function can also
be terminated when it is enclosed
in an interruptible region.
Alternatively, state machine
diagrams can be used to enable
or disable execution upon
transition events.

UML::Action,
UML::Interruptible
ActivityRegion,
SysML::ControlValue
UML::State

Activities,
State
Machines

1.0

OMG SysMLTM Adopted Specification 7

i Y A computational expression can
be used to specify the behavior
(i.e. activity) that is invoked by
an action or an action that
represents a primitive function
such as an arithmetic expression.
Specific math expressions may be
included in a math model library.
The expressions should be
represented in a formal
mathematical language and
specify the language if they are to
be interpreted by a computational
engine.

UML::Activity,
UML::Action

Activities,
Interactions

State
Machines

1.0

j Y A continuous or discrete rate
stereotype can be applied to
inputs and outputs. Inputs and
outputs are discrete by default. A
time continuous input or output is
an input or output whose value
can change in infinitely small
increments of time. An activity
can accept the continuous inputs
and provide continuous outputs
while executing if the inputs and
outputs are also streaming. An
alternative approach is to
continuously invoke an activity
that does not have streaming
inputs or outputs, in which case
each execution of an activity
accepts the inputs at the start of
execution and produces the
output at the completion of
execution.

SysML::Rate

SysML::Continous,
SysML::Discrete

UML::Parameter
(isStream=Value)

Activities,
State
Machines

1.0

k Partial Different actions can invoke
concurrent executions of the
same generalized behavior.
Actions can have multiplicity.

UML::Behavior,
UML::Action

Activities 1.0

6.5.2.2 Function
activation/
deactivation

 N/A Actions can be activated and
deactivated using multiple
mechanisms within SysML as
described below including
control flows, control operators,
and interruptible regions.

Activities,
Interactions

State
Machines

1.0

6.5.2.2.1 Control input Y Control flows in activity
diagrams provide the control
input. Control flow is represented
in state machine diagrams by a
transitions which activate states
and in sequence diagrams by the
passing of messages.

UML::ActivityEdge,

UML::ControlFlow,
UML::Transition,
UML::Message,
SysML::ControlValue

Activities,
Interactions

State
Machines

1.0

8 OMG SysMLTM Adopted Specification

a Y Multiple control flows in an
activity diagram that are input to
a single activity node (i.e.,
action) are assumed to be
"anded" together.

SysML::ControlValue
, SysML::InputPin.is
Control=true for
control queuing

Activities 1.0

b Y Control inputs are discrete
valued inputs that can enable or
disable an activity node.

SysML::ControlValue Activities 1.0

c Y In activity diagrams, the activity
is invoked (enabled) when a
token is received by the calling
action. This includes tokens from
all mandatory inputs and control
inputs.

UML::Action,

UML::ControlFlow,
UML::ActivityEdge

Activities 1.0

d Y In activity diagrams, a control
operator can produce an output
control value to disable the
execution of an activity. An
action enclosed within an
interruptible region also can
disable the execution of an
activity. In state machine
diagrams, transition events can
disable the actions in a state.

UML::Action,
UML::Interruptible
ActivityRegion,
SysML::ControlValue
, UML::State

Activities,
State
Machines

1.0

e Y An executing activity with non-
streaming inputs and outputs
terminates when it completes its
transformation and produces an
output value. An executing
activity with continuous
streaming inputs will terminate
when it receives a disable from a
control value and/or a signal that
terminates the actions within an
interruptible region. A
TimeExpression can be specified
in a control operator or can
signal a termination in an
interruptible region. An activity
can also be terminated based on
events, including timeout events,
on a transition in a state machine
diagram. In state machine
diagrams, completion events
occur upon completion of an
activity.

UML::Activity,
UML::Interruptible
ActivityRegion,
SysML ControlValue,
UML::Time
Expression,
UML::State

Activities,
State
Machines

1.0

f Y The enabling of actions without
explicit control flows as inputs
are enabled based on the control
associated with its inputs.

UML::Action,
UML::ObjectNode

Activities 1.0

OMG SysMLTM Adopted Specification 9

g Y A control flow connects the
control inputs from one activity
node to another. The control
input can also be the output
control value of a control
operator.

SysML::ControlValue
, UML::Parameter,
UML::ControlFlow

Activities 1.0

6.5.2.2.2 Control
operator

 Y A control operator provides the
mechanism apply control logic to
enable and disable activity nodes.

SysML::Control
Operator,
SysML::ControlValue

Activities 1.0

a Y Control Nodes such as joins,
forks, etc. provide capability to
activate activity nodes based on
"and" and "or" logic. A SysML
Control Operator provides the
additional capability to disable
an activity node.

UML::ControlNode,
SysML::Control
Operator,
SysML::ControlValue
, UML::Parameter

Activities 1.0

b Y A join specification can be used
to specify arbitrarily complex
logic for enabling an activity
node. A control operator can also
be used to specify complex logic
for enabling and disabling an
activity node.

UML::JoinNode with
join specification,
UML::Parameter,
SysML::Control
Operator,
SysML::ControlValue

Activities 1.0

c Y The control nodes identified
below provide the basic control
logic for enabling activity nodes.
Note: multi exit functions are
supported by parameter sets.
Also, Interaction Operators
provide similar logic in Sequence
Diagrams.

UML::ControlNode,
UML::Interaction
Operator

Activities,
Interactions

1.0

c1 Y Decision nodes in activity
diagrams support selection. The
"alt" Interaction Operator
supports selection in sequence
diagrams.

UML::DecisionNode,
UML::Interaction
Operator.Alt

Activities,
Interactions

1.0

c2 Y Forks in activity diagrams sup-
port a single input flow gener-
ating multiple concurrent
output flows. The “par” Interac-
tion Operator supports concur-
rent message flow in
Sequence Diagrams.

UML::Fork,
UML::Interaction
Operator.par

Activities,
Interactions

1.0

c3 Y A join “and's” multiple input
flows together resulting in a
single output flow.

UML::Join Activities 1.0

c4 Y A merge results a single output
flow upon arrival of the first of
multiple input flows.

UML::Merge Activities 1.0

10 OMG SysMLTM Adopted Specification

c5 Y Decision and loop nodes support
iteration and looping. The
“loop” Interaction Operator
supports loops in sequence
diagrams.

UML::Decision-
Node, UML::Loop
Node, Interaction-
Operator.loop

Activities,
Interactions

1.0

c6 N

6.5.2.2.3 Events and
conditions

Partial Triggers and constraints as
guards provide the mechanism
for modeling events and
conditions.

Activities,
Interactions,
State
Machines

1.0

a Partial A trigger can be used to specify
an event. Events can be
associated with control flows in
activity diagrams, transitions in
state machine diagrams, and
sending and receiving of
messages in sequence diagrams.

UML:: Trigger,
UML::AcceptEvent
Action including
UML::TimeTrigger,
UML::Event
Occurence in
Interactions.

Note: Failure event
can be result in
various types of
actions that terminate
an Interruptible
Region in Activities,
etc.

Activity,
Interactions

State
Machines

1.0

b Y Refer to a) above UML::ActivityEdge,
UML::Trigger

Activity,
Interactions

State
Machines

1.0

c Y Conditions can be specified as
constraints that define guards to
control execution of behaviors.

UML::Constraint
(guard)

Activity,
Interactions

State
Machines

1.0

6.5.2.3 Function-based
behavior

Y Activity diagrams provide the
capability to model function
based behavior.

UML:: Activity Activities 1.0

OMG SysMLTM Adopted Specification 11

6.5.2.4 State-based
behavior

State machine diagrams provide
the capability to model state
based behavior with the specific
modeling constructs indicated.
Note 2 response: Activities are
common to each type of behavior
including both function based
and state based. Note 3 response:
A state is defined based on some
invariant being true. The
invariant can include reference to
certain property values.

UML::StateMachine State
Machines

1.0

a Y State UML::State State
Machines

1.0

b Y Simple state UML::State,

isSimple=True

State
Machines

1.0

c Y Composite states can contain one
region or two or more orthogonal
(concurrent) regions, each with
one or more mutually exclusive
disjoint states

UML::State

isComposite=True

State
Machines

1.0

d Y Transitions between states which
are triggered by events with
guard conditions.

UML::Transition,
UML::Trigger

State
Machines

1.0

e Y Transition within a composite
state

UML::Transition
(TransitionKind=
Internal)

State
Machines

1.0

f Y Pseudo states include joins, forks
and choice

UML::PseudoState State
Machines

1.0

g Y Transitions between states which
are triggered by events with
guard conditions.

UML::Activity State
Machines

1.0

h Y Entry, exit, doActivities are
performed upon entry or exit
from a state or while in a state.

UML::Activity State
Machines

1.0

i Y State machine semantics define
the ordering of actions that are
completed when exiting a
composite state (refer to UML
transition semantics). When a
composite state is exited, the exit
actions are executed beginning
with the most nested state.

UML::State (Note:
refer to semantics)

State
Machines

1.0

12 OMG SysMLTM Adopted Specification

j Y Entry and exit actions must be
completed prior to exiting a state.
A doActivity does not need to be
completed to execute.

UML::State (Note:
refer to semantics)

State
Machines

1.0

k Y Send and receive signals can be
sent via actions to interact with
other objects.

UML::SendSignal
Action

State
Machines

1.0

l Partial The failure and/or exception
states are user defined and
have no uniquely defined rep-
resentation. The use of exit
points on states can be used
to exit the state when a failure
event occurs.

UML::State State
Machines

1.0

6.5.2.4.1 Activation time Y The interval of time that an
activity or state is active can be
modeled by a UML Time Trigger
or Time Interval and
corresponding Time Expression
(refer to UML trigger and
interval notation). Note: A UML
timing diagram is not included in
SysML at this time, but could be
used to model the time associated
with the occurrence of events,
such as state changes, or changes
in property values.

UML::SimpleTime Activities,
Interactions,
State
Machines

1.0

6.5.2.5 Allocation of
behavior to
systems

Y An allocation relationship pro-
vides a generalized capability
to allocate one model element
to another.

SysML::Allocation,
SysML::Allocated,
UML::NamedElement

Allocations 1.0

a Y In general, behaviors such as
activities, interactions, and
state machines are owned by
a Behaviored Classifier which
can correspond to an block.
The SysML Allocation relation-
ship can be used to explicitly
allocate behaviors to blocks.
Alternatively, activity partitions
(swim lanes) can be used to
allocate the action and/or
activity to a part and/or block.

UML::BehavioredCla
ssifier and
UML::Behavior
(owned behavior) -
Refer to UML
Common Behaviors,
SysML::Allocate,
SysML::Allocate
AcitivtyPartition

Allocations,
Activities

1.0

OMG SysMLTM Adopted Specification 13

b Partial An object node in an activity
diagram can be allocated to an
item that flows in an internal
block diagram using an
allocation relationship. Note: the
object node is typed by the same
classifier as the item that flows.
See req't 6.5.2.1.1.

SysML::Block (type of
ObjectNode to type of
ItemProperty),
UML::ObjectNode,
UML::Property

Allocations,
Activities,
Ports and
Flows

1.0

 6.5.3 Property N/A Properties and their relation-
ships are represented in
SysML using properties of
blocks in conjunction with con-
straint blocks to capture the
relationships between them.

Blocks,
Constraint
Blocks

6.5.3.1 Property type Y Primitive types, data types,
and value types provide the
capability to model the differ-
ent types of quantitative prop-
erties.

UML:: PrimitiveType,
UML::DataType,

SysML::Value Type

Blocks 1.0

a Y Primitive type. UML::Integer

b Y Primitive type. UML::Boolean

c Y Primitive type. UML::Enumeration

d Y Primitive type. UML::String

e Y Primitive type. SysML::Real

f Y Data type. SysML::Complex

g Y Composite data type made up
of primitive types.

Refer to a-f

h Y Composite data type made up
of primitive types.

Refer to a-f

6.5.3.2 Property value Y Auxiliary 1.0

a Y Value properties are typed by
a value type or data type and
have an associated value.

SysML::Block
Property,
SysML::ValueType,
UML::DataType,

Blocks 1.0

b Y A value type can include a
dimension and units such as
length and feet or meters.

SysML::ValueType
(unit and dimension
are defined as
blocks in a model
library)

Blocks 1.0

c Y A value property is a block
property that is typed by a
value type that can have an
associated probability distribu-
tion on its values.

SysML::ValueType,
SysML::Distribution
Definition

Blocks 1.0

14 OMG SysMLTM Adopted Specification

d Y Source data can be included in
a comment attached to the
property or a user defined ste-
reotype could be applied.

UML::Comment Model
Elements

1.0

e Y Reference data can be
included in a comment
attached to the property or a
user defined stereotype could
be applied.

UML::Comment Model
Elements

1.0

6.5.3.3 Property
association

A value property can be a feature
of any classifier (.i.e., block)

SysML::Block,
SysML::Block
Property

Blocks 1.0

a Y Blocks, parts, or items that
flow can have (or reference)
properties.

SysML::Block,
SysML::Block
Property

Blocks 1.0

b Y A function (activity) can have
properties since it is a class

UML::Activity Activities 1.0

c Partial An event is specified by a trig-
ger which is an element. The
element does not have proper-
ties.A signal which is sent
upon the occurrence of the
event can have properties.

UML::Signal 1.0

d Y A property can be related to
other properties through a con-
straint property

SysML::Constraint-
Block,
SysML::Constraint-
Property

Constraint
Blocks

1.0

6.5.3.4 Time property Y Time can be treated as a prop-
erty, typed by a Real that can
represent either continuous or
discrete time. Time ultimately
derives from clocks which can
be continuous or discrete.
Clocks can be modeled as
blocks which have a time prop-
erty that can be bound to a
parameter of a constraint prop-
erty (e.g., equation). Time
durations, start and stop times,
etc. can be modeled using the
UML time model for time
triggers, time expressions,
intervals, and durations. Note:
More elaborate models of time
and clocks can be found in the
UML schedulability,
performance, and time profile.

SysML::Block,

SysML::Block
Property,

SysML::ValueType,

SysML::Constraint
Property,
SysML::Constraint
Parameter,
UML::SimpleTime
Package

Blocks,

Constraint
Blocks,
Interactions

1.0

OMG SysMLTM Adopted Specification 15

6.5.3.5 Parametric
model

 Y The parametric diagram supports
modeling of constraints which
bind parameters of the
constraints to value properties.

SysML::Constraint
Block,

SysML::Constraint
Property

SysML::Constraint
Parameter,

SysML::Block
Property,

UML::Connector,
SysML::Nested
ConnectorEnd

Constraint
Blocks

1.0

a Y Constraints blocks and their
usages (constraint properties)
specify the mathematical
relationships/constraints
between constraint parame-
ters.

SysML::Constraint-
Block,
SysML::Constraint-
Parameter

Constraint
Blocks

1.0

b Partial Mathematical and logical
expressions can be defined in
SysML in a reference lan-
guage, but there is no inter-
preter built into SysML. The
range of values can be speci-
fied via value properties and
probability distributions per
6.5.3.2a-c.

SysML::Block
Property,
SysML::Distribution-
Definition

Blocks 1.0

c Y The reference language for
interpreting the constraint can
be included as part of the Con-
straintBlock along with the
compartment for the expres-
sion.

SysML::Constraint-
Block

Constraint
Blocks

1.0

6.5.3.6 Probe N No specific mechanization has
been provided. In the testing
profile, there is a mechanism to
capture data and create actions
in response to the data. This will
be investigated in a future
version of SysML.

N

 6.5.4 Requirement N/A The requirements diagram
provides the basic capability
for relating text based require-
ments to other SysML models.

Require-
ments

1.0

16 OMG SysMLTM Adopted Specification

6.5.4.1 Requirement
specification

Y A requirement is a stereotype
of a class in SysML. The vari-
ous subtypes of requirement
are specified as subclasses of
the the requirement stereotype
and can include specific prop-
erties and constraints on what
model elements can satisfy the
subclass of requirement. A
sample set of subclasses of
requirements are included in
the NonNormative Extensions
Annex C.

SysML::Requirement Requirements,

Non-
Normative
Extensions,
Profiles &
Model
Libraries

1.0

Note 1 Y Values and tolerances can be
specified as part of the text
property or via property values
and distributions per 6.5.3.2a-
c.

Requirement.text,
SysML::Value
Property

Require-
ments,
Blocks

1.0

Note 2 Y There is no explicit subclass of
requirement as a stakeholder
need, but a requirement can
be named or subclassed as
“stakeholderNeed.”

SysML::Require-
ment

Requirements,

Non-
Normative
Extensions

1.0

Note 3 Y User defined requirements can
be added via subclasses to
specify any type of life cycle
requirement of interest to the
modeler.

SysML::
Requirement

Requirements,

Non-
Normative
Extensions,
Profiles &
Model
Libraries

1.0

a Y Operational requirement SysML::
Requirement

Requirements,

Non-
Normative
Extensions

1.0

b Y Functional requirement SysML::functional-
Requirement

Requirements,

Non-
Normative
Extensions

1.0

c Y Interface requirement SysML::interface
Requirement

Requirements,

Non-
Normative
Extensions

1.0

d Y Performance requirement SysML::perfor-
manceRequirement

Requirements,

Non-
Normative
Extensions

1.0

OMG SysMLTM Adopted Specification 17

e Y Activation/Deactivation (Con-
trol) requirement

SysML::
Requirement

Requirements,

Non-
Normative
Extensions

1.0

f Y Storage requirement SysML::
Requirement

Requirements,

Non-
Normative
Extensions

1.0

g Y Physical requirement SysML::physical
Requirement

Requirements,

Non-
Normative
Extensions

1.0

h Y Design constraint SysML::
Requirement

Requirements,

Non-
Normative
Extensions

1.0

i Y Specialized requirement SysML::
Requirement

Requirements,

Non-
Normative
Extensions

1.0

j Y Measure of effectiveness SysML::moe Requirements,

NonNormative
Extensions

1.0

6.5.4.2 Requirement
properties

Y A requirement includes default
properties for id and text.
Other properties can be added
via stereotype properties.

SysML::Requirement Requirements,

Non-
Normative
Extensions,
Profiles &
Model
Libraries

1.0

6.5.4.3 Requirement
relationships

 Y The requirement relationships
include the relationships
containment, trace, deriv-
eReqt, satisfy, verify and refine
relationships.

Require-
ments

1.0

a Y A derive relationship relates a
derived (target) requirement to
a source requirement.

SysML::deriveReqt Requirements 1.0

b Y A satisfy relationship relates
the model elements (i.e. the
design) to the requirements
that are
satisfied.

SysML::satisfy Requirements 1.0

18 OMG SysMLTM Adopted Specification

c Y Goals, capabilities, or usages
of systems are often
expressed using use cases.
Subgoals can be represented
using the include and extend
relationships between use
cases.
Requirements can be related
to use cases using the refine
relationship. Requirements
use the containment relation-
ship to breakdown an existing
requirement into its containing
requirements.

UML:UseCase,
UML::Include,

SysML::Requirement,
UML:refine

Require-
ments, Use
Case

1.0

6.5.4.4 Problem Y A problem is an extension of a
comment that can be attached
to any model element. Note:
This could also be used to rep-
resent issues.

SysML::Problem Model
Elements

 2.0

6.5.4.5 Problem
association

Y Refer to 6.5.4.4 SysML::Problem Model
Elements

2.0

6.5.4.6 Problem cause N 2.0

6.5.5 Verification N/A The following responses to the
Verification requirements will
include references to the Testing
Profile [OMG Adopted
Specification

ptc/03-08-03] which is not
currently part of SysML but is
intended to be evaluated for
integration with version 1.1 of
SysML [refer to white paper on
integrating SysML with Testing
Profile]

Require-
ments

6.5.5.1 Verification
Process

OMG SysMLTM Adopted Specification 19

a Y The SysML verify relationship
between one or more system
requirements and one or more
test cases represents the method
for verifying that a system design
satisfies its requirements. A
verified system design implies
that the system will satisfy its
requirements if the component
parts satisfy their allocated
requirements. An alternative
approach to capture the verify
relationship is to associate a test
case with a satisfy relationship
using the rationale.

SysML::Verify,
SysML::Rationale

Requirements,
Model
Elements

1.0

b Y The SysML verify relationship
between one or more
requirement(s) and one or more
test case(s) is used to verify that
the implemented system design
instances satisfy their
requirements. Alternatively, a
reference to a TestCase using
SysML:Rationale may be
attached to a satisfy relationship.

SysML::Verify
SysML::Rationale

Require-
ments,
Model
Elements

1.0

c Y A derive relationship between the
requirement being validated and
the higher level requirement or
need may have a Rationale
attached that references the
validation method(s).

SysML:deriveReqt

SysML::Rationale

Require-
ments,
Model
Elements

1.0

Note 1 Y Verification methods of analysis
and similarity may be modeled as
a Rationale with reference to the
specific analysis report or other
reference data. Verification
methods including Test,
Inspection, and Demonstration
may be modeled as a TestCase.

SysML::Rationale,
SysML::TestCase

Require-
ments

1.0

Note 2 Partial Validation methods are user
defined. A rationale can
reference the user defined
methods.

SysML::Rationale Model
Elements

1.0

6.5.5.2 Test case Partial A test case refers to the
method for verifying a require-
ment. Note: The testing profile
associates a test case with a
behavior that can include the
specific method and associ-
ated input stimulus and
response.

SysML::TestCase Requirements 1.0

20 OMG SysMLTM Adopted Specification

Note 1 Partial Refer to above note on the
testing profile.

1.x

Note 2 Partial The test criteria can be
established via the require-
ment

1.x

Note 3 Partial Test cases can contain other
test cases, like any other
named element.

SysML::TestCase Require-
ments

1.0

6.5.5.3 Verification
result

Partial The result of a SysML:TestCase
may be expressed through its
verdict attribute (Testing Profile)

SysML::TestCase,
SysML::Verdict

Requirements 1.0

6.5.5.4 Requirement
verification

Partial A constraint may be used to
relate the required value to the
verification result.

SysML::Constraint
Property;

SysML::TestCase,

SysML::Rationale

Requirements,
Constraint
Blocks

1.0

6.5.5.5 Verification
procedure

Partial A rationale can be associated
with the test case or the satisfy
relationship between a require-
ment and a design, and
reference a verification
procedure. Note: The testing
profile will associate a behav-
ior with a test case which can
be implemented by a specific
procedure.

SysML::TestCase,
SysML::Rationale

Requirements,
Model
Elements

1.x

Note

6.5.5.6 Verification
system

Partial A verification system can be
modeled as any other system
(block) or it can be modeled as
the system environment.
However, the future integration
with the testing profile is
intended to provide explicit
modeling of the verification
system.

SysML::Block Blocks 2.0

 6.5.6 Other N/A

6.5.6.1 General
relationships

 Y SysML includes several standard
UML relationships as described
below.

a Y An association relationship. UML::Association Blocks 1.0

b Y A package contains package-
able elements and can repre-
sent collections of elements.

UML::Package,
UML::Packageable
Element;
UML::owned
Member

Class 1.0

OMG SysMLTM Adopted Specification 21

c Partial Blocks can be decomposed
into parts that are typed by
other blocks using composition
(refer to Reqt 6.5.1.1). The
completeness of the
decomposition is not explicitly
represented.

SysML::Block,
SysML::Block
Property,
UML::Association
(composition)

Blocks 1.0

d Y A dependency relationship. UML::Dependency Model
Elements

1.0

e Y Generalization/specialization
relationship. Generalization
sets provide the means to par-
tition specializations to support
further categorization.

UML::Generalization,
UML::Generalization
Set

Blocks 1.0

f Y Instantiation is modeled using
Instance Specifications to
uniquely identify a classifier.
Instances are represented as a
property specific value with a
unique set of values.

UML::Instance
Specification,
UML::InstanceValue

Blocks 1.0

6.5.6.2 Model views Partial A view represents the model
from a particular viewpoint.
Both the view and the view-
point are represented in
SysML. The view is a stereo-
type of package that identifies
the set of model elements that
conform to the viewpoint, and
the viewpoint specifies the
stakeholders, their purpose,
concerns and the construction
rules (language and methods)
to specify the view. Note: The
model elements that depict the
view are visually represented
in diagrams, tables, and other
notation. Integrity between
model views is accomplished
by creating a well formed
model. This in part results from
the constraints imposed by the
language, and in part is
defined by the specific meth-
odology and tools that are
employed. Navigation among
views results from a tool ven-
dor implementation.

SysML::View,
SysML::Viewpoint
SysML::Conform

Model
Elements

1.0

6.5.6.3 Diagram types Diagram
Appendix

1.0

22 OMG SysMLTM Adopted Specification

a The standard UML diagram
types that are needed to sup-
port the requirements have
been included in SysML. Some
additional diagram types pro-
vide some redundant capabili-
ties, but have been preserved
to allow flexibility in represen-
tations and methodologies. For
example, the sequence dia-
grams along with activity and
state diagrams provide over-
lapping capability for repre-
senting behavior. A few
diagram types have not been
included explicitly in SysML,
although they are not pre-
cluded from use along with
SysML.

N/A Diagram
Appendix

1.0

b The requirements diagram and
parametric diagram have been
added to address the require-
ments of this RFP. In addition,
an informal mechanism has
been added to represent dia-
gram usages. This enables
renaming and constraining the
usage of a particular diagram
type for a particular usage.

SysML::Diagram
Usage

Diagram
Appendix

1.0

6.5.6.4 System role Partial A part in a block represents the
role for a classifier in the con-
text of the enclosing block. It
defines the relationship
between an instance of the
classifier that types the part
and an instance of the block
that encloses the part. This is a
primary mechanism for provid-
ing a unique context for a part
of a whole (enclosing block).
The part may use only a sub-
set of the behavior and proper-
ties of the class that types the
part. However, the specific
mechanism for containing the
subset has not been explicitly
defined.

SysM::Block,
SysML:Block
Property

Blocks 1.0

6.6 Optional
Requirements

 N/A

6.6.1 Topology N

a N 2.0

OMG SysMLTM Adopted Specification 23

b N 2.0

6.6.2 Documentation Y A document (stereotype of
artifact).

UML::Document Diagram
Appendix

1.0

a Y The document stereotype can
include stereotype properties
to represent information about
the document.

UML::Document Profiles &
Model
Libraries

1.0

b Y The trace relationship relates a
document to other model
elements.

UML::Trace Diagram
Appendix

1.0

c N The ability to represent the text
of the document in terms of the
descriptions provided by the
related (traced) model ele-
ments is accomplished by a
tool implementation.

 6.6.3 Trade-off
studies and
analysis

Partial Parametric diagrams can depict
the relationship between
measures of effectiveness and
various system properties
(including probability
distributions on their values) to
evaluate the effectiveness of a
particular system model. Specific
constructs for criteria, weighting,
and alternatives are planned for
a future version of SysML to
support modeling of trade
studies.

SysML::moe,
SysML::objective
Function,
SysML::Constraint
Property

Constraint
Blocks, Non-
Normative
Extensions

1.0

a Y Alternative models can be
specified via organization of
models/packages. Model
libraries can be used to estab-
lish reusable portions of the
model.

UML::Model,
UML::Package

Model
Elements,
Profiles &
Model
Libraries

1.0

b Partial Criteria can be modeled as
properties typed by value
types or as Requirements

SysML::Block
Property,
SysML::ValueType,
SysML::Require-
ment

Blocks,
Require-
ments

1.0,
2.0

c Y Measures of effectiveness are
modeled as a subclass of
block property that represents
a value property. A constraint
can represent the objective
function.

SysML::moe,
SysML::Constraint-
Property

Non-
Normative
Extensions,
Constraint
Blocks

1.0

6.6.4 Spatial
representation

 N

24 OMG SysMLTM Adopted Specification

6.6.4.1 Spatial
reference

 N

6.6.4.2 Geometric
relationships

 N

6.6.5 Dynamic
structure

 Partial

a Y The action semantics provide
the capability for creating and
destroying objects.

UML::CreateObject
Action,
UML::DestroyObject
Action

Action (UML
Spec)

1.0

b Partial The capability is partially
provided by 6.6.5a.

2.0

c N 2.0

d N 2.0

6.6.6 Executable
semantics

Partial The action semantics are
intended to provide execution
semantics. There is no formal
graphical syntax for this.

UML::Action Action in
UML Spec

1.0

6.6.7 Other behavior
modeling
paradigms

 Y A UML behavior is a general-
ized behavior that can accom-
modate a wide range of
behavior modeling paradigms.
This include
function based, state based,
and message based behavior
(sequence diagrams).

UML::Behavior Activities,
Interactions,
State
Machines

1.0

6.6.8 Integration with
domain-specific
models

Partial SysML is a general purpose
language that will integrate
with other types of domain
specific models. This is
accomplished in part by map-
ping SysML via XMI to the
AP233 data interchange stan-
dard. In addition, the paramet-
ric diagram is intended to
provide a capability to inte-
grate with domain specific
engineering analysis models.

Model
Interchange

1.x,
2.0

6.6.9 Testing Model Partial SysML is intended to be inte-
grated with the UML Testing
Profile. Refer to Response to
Reqt 6.5.5 above.

SysML::TestCase Requirement 2.0

6.6.10 Management
Model

 N

OMG SysMLTM Adopted Specification 25

26 OMG SysMLTM Adopted Specification

