OMG SysML[™] Requirements Traceability

(informative)

This document has been published as OMG document ptc/07-03-09 so it can be referenced by Annex E of the OMG SysML[™] specification.

This document describes the requirements tracability matrix (RTM) that shows how SysML satisfies the requirements in Sections 6.5 (Mandatory) and 6.6 (Optional) of the UML for SE RFP (OMG document ad/03-03-41). The matrix includes columns that correspond to those identified in the first paragraph of Section 6.5 of the RFP and are restated here. The text requirement statement is included in the RFP and was excluded from this document due to space limitations.

- a) The UML for SE requirement number.
- b) The UML for SE requirement name (or other letter designator). Note: The reader should refer to the UML for SE RFP for the specific text of the requirement, since there was inadequate room in the table to repeat it here.
- c) Describes whether the proposed solution is a full or partial satisfaction of the requirement, or whether there is no solution provided. The section header rows that do not have a text requirement are marked N/A.
- d) A description of how SysML addresses the requirement. Note: In some cases, there may be other SysML solutions to satisfy the requirement, but the intent was to describe at least one solution.
- e) The specific UML and SysML metaclasses that address the requirement.
- f) Reference to the applicable chapter in the SysML specification which addresses e) above. This diagram element tables in the chapter describe the concrete syntax (symbols) that show how the solution to the requirement is represented in diagrams. The usage examples in the chapters along with sample problem in "Annex B: Sample Problem" describe how the solution to the requirement is used in representative examples. Note: The reference to a chapter may require reference to a corresponding chapter in the UML specification. For example, when the blocks chapter is referenced, this may include a combination of the SysML blocks chapter and the UML classes and composite structure chapters.

UML for SE Req't #	Requirement name	Compl (Y/N, Partial)	Requirement Satisfaction	Metaclass Extension	SysML Diagram Chapter	Ver #
6.5	Mandatory Requirements					
6.5.1	Structure	N/A	Structure diagrams include block definition, internal block, and package diagrams		Structural Constructs	
6.5.1.1	System hierarchy	Y	Block composition (black or white diamond) in a block definition diagram and parts in internal block diagrams are the primary mechanisms for representing system hierarchy.	SysML::Block, UML::Association, SysML::Block Property	Blocks	1.0

Table E.1 - Requirement Traceability matrix

	a. Subsystem (logical or physical)	Y	Typically represented by a set of logical or physical parts in an internal block diagram that realize one or more system operations. The corresponding sequence diagram and activity diagram with swim lanes can represent a hybrid of structure and behavior.	SysML::Block, SysML::Block Property	Blocks	1.0
	b. Hardware (i.e., electrical, mechanical, optical)	Y	Represented by a block or part.	SysML::Block, SysML::Block Property	Blocks	1.0
	c. Software	Y	Represented by a block or part or a UML component.	SysML::Block, SysML::Block Property, UML::Component	Blocks	1.0
	d. Data	Y	Represented by a block or part. Refer to input/output requirements in 6.5.2.1.1 and 6.5.2.5 for data flows.	SysML::Block, SysML::Block Property, SysML::ValueType, UML::DataType	Blocks	1.0
	e. Manual procedure	Y	Represented by a block or part. Can also be represented by the standard UML stereotype < <document>>.</document>	SysML::Block, SysML::Block Property, UML::Document	Blocks	1.0
	f. User/person	Y	Represented by a block or part. External users are also represented as actors in a use case diagram.	SysML::Block, SysML::Block Property	Blocks	1.0
	g. Facility	Y	Represented by a block or part.	SysML::Block, SysML::Block Property	Blocks	1.0
	h. Natural object	Y	Represented by a block or part.	SysML::Block, SysML::Block Property	Blocks	1.0
	i. Node	Y	Represented by a block or part.	SysML::Block, SysML::Block Property	Blocks	1.0
6.5.1.2	Environment	Y	Environment is one or more entities that are external to the system of interest and can be represented as a block or part of a broader context. Also, represented as actors in use cases.	SysML::Block, SysML::Block Property	Blocks, Use Case	1.0

6.5.1.3	System inter- connection		Internal block diagram shows connections using parts, ports, and connectors.	SysML::Block, SysML::Block Property, UML Association, UML::Connector: SysML::Nested ConnectorEnd	Blocks	1.0
6.5.1.3.1	Port	Y	A port defines an interaction point on a block or part that enables the user to specify what can flow in/out of the block/part (flow port) or what services the block/part requires or provides (Standard Port). Ports are connected using connectors.	SysML::Standard Port, UML::Interface, SysML::FlowPort, SysML::Flow Specification, SysML::Flow Property	Ports and Flows	1.0
6.5.1.3.2	System boundary	Y	The enclosing block for an internal block diagram and its ports.	SysML::Block SysML::Standard Port, SysML::FlowPort	Blocks, Ports and Flows	1.0
6.5.1.3.3	Connection	Y	A connector binds two ports to support interconnection. A connector can be typed by an association. A logical connector can be allocated to a more complex physical path depicting a set of parts, ports, and connectors (refer to allocation). Note: A connector has limited decomposition capability at this time.	UML::Association, UML::Connector, SysML::Nested ConnectorEnd	Blocks	1.0
6.5.1.4	Deployment of components to nodes	Y	A structural allocation relationship enables the allocation (deployment) of one structural element to another.	SysML::Allocation, SysML::Allocated, UML::Named Element	Allocations	1.0
	a.	Y	Software part, block or component deployed to a hardware part or block (processor or storage device).	SysML::Allocation, SysML::Allocated, SysML::Block, SysML::Block Property, UML::Component	Allocations	1.0
	<i>b.</i>	Y	Generalized deployment relationship between a deployed element and its host.	SysML::Allocation, SysML::Allocated, SysML::Block, SysML::Block Property	Allocations	1.0

	с	Y	Deployed element and host can be decomposed using blocks and parts.	SysML::Block, SysML::Block Property	Allocations	1.0
6.5.2	Behavior	N/A	Behavior diagrams include activity, sequence, and state machine diagrams. Communication diagrams, interaction overview diagrams, and timing diagrams are interaction diagrams that are not included in SysML. Use case diagrams are also viewed as a behavior diagram in that they represent the functionality in terms of the usages of the system, but do not depict temporal relationships and associated control flow or input/output flow.		Behavioral Constructs	
6.5.2.1	Functional Transformation of Inputs to Outputs		A behavior is the generalized form of a function with inputs and output parameters. Activity is a subclass of behavior.	UML::Behavior	Activities	
6.5.2.1.1	Input/Output	Y	Inputs and outputs can be represented as parameters of activities, object nodes flowing between action nodes, and as item flows between parts in an internal block diagram. Note: Object nodes are more precisely represented by pins on action nodes.	UML::Parameter, UML::ObjectNode, SysML::ItemFlow	Activities, Ports and Flows	1.0
	a	Y	Parameters, object nodes, and item properties are typed by classifiers (blocks or value types) that can have properties.	SysML::Block, UML::Parameter, UML::ObjectNode, SysML::ItemFlow	Activities, Ports and Flows	1.0
	b	Y	The classifiers that represent the things that flow (type of parameter, object node, and item property) can be decomposed and specialized.	SysML::Block, UML::Parameter, UML::ObjectNode, SysML::ItemFlow	Activities, Ports and Flows, Blocks	1.0
	c	Y	"ItemFlows" associate the things that flow with the connectors that bind the ports. The parameters and object nodes are bound to the corresponding activities and actions.	SysML::Block, UML::Parameter, UML::ObjectNode, SysML::ItemFlow	Activities, Ports and Flows	1.0

6.5.2.1.2	System store	Partial	Stored items can be represented as parts of a block, and also represented in an activity diagram as object nodes or central buffer nodes.	SysML::Block, SysML::Block Property, UML::ObjectNode UML::Central BufferNode	Blocks, Activities	1.0
	а	Partial	Object nodes in an activity diagram can represent depletable stores, and a data store node can represent non-depletable stores.	UML::ObjectNode, UML::DataStore Node	Activities	1.0
	b	Y	A stored item can be the same type of classifier as an input or output in both an internal block diagram and an activity diagram. The classifier supports different roles (store vs. flow).	SysML::Block, SysML::Block Property, UML::ObjectNode, UML::DataStore Node	Blocks, Activities	1.0
6.5.2.1.3	Function	Y	Activity specifies a generic subclass of behavior that is used to represent a function definition in activity diagrams, sequence diagrams, and state-machine diagrams. Activities contain CallBehaviorActions that call (invoke) other activities to support execution of the generic behaviors.	UML::Activity	Activities, Interactions, State Machines	1.0
	а	Y	Behaviors and the associated parameters are named (i.e., name of activity and activity parameter node).	UML::Behavior	Activities, Interactions State Machines	1.0
	b	Y	The action semantics define different types of actions that include CreateObject, DestroyObject, ReadStructuralFeature (monitor), and WriteStructurealFeature (update). A CallBehavior action is a generalized action that can call any behavior (activity, interaction, state).	UML::CreateObject Action, UML::DeleteObject Action, the various object modification actions in UML, monitoring with UML::AcceptEvent Action	Activities, Interactions State Machines	1.0
	С	Y	The object nodes (pins) bind input and output parameters to actions.	UML::ObjectNode, UML::Pin	Activities	1.0

d	Y	The queuing semantics for object nodes are specified. The default queuing is FIFO, but other forms of queuing including LIFO, ordered, and unordered as defined by the enumeration for ObjectNodeKind.	UML::Behavior, SysML::InputPin, SysML::ObjectNode	Activities	1.0
e	Partial	Resource constraints to support an execution can be specified by Preconditions and PostConditions. The constraints can apply to resources that are generated, consumed, produced, and released, such as inputs and outputs, or the availability of memory or CPU. The constraints imposed on the resources can be further modeled using parametric diagrams.	UML::Constraint, SysML::Constraint Block	Activities, Constraint Blocks	1.0
f	Y	Refer to c	UML::ObjectFlow, UML::Pin	Activities	1.0
g.	Y	An activity can be decomposed into lower level actions that invoke other activities.	UML::Activity, UML::CallBehavior Action, UML::Activity ParameterNode, UML::ObjectFlow, UML:: Pin	Activities	1.0
h.	Y	An action has control inputs that can enable the execution of a function, and a control value input from a control operator that can both enable or disable an execution of a function. An execution of a function can also be terminated when it is enclosed in an interruptible region. Alternatively, state machine diagrams can be used to enable or disable execution upon transition events.	UML::Action, UML::Interruptible ActivityRegion, SysML::ControlValue UML::State	Activities, State Machines	1.0

	i	Y	A computational expression can be used to specify the behavior (i.e. activity) that is invoked by an action or an action that represents a primitive function such as an arithmetic expression. Specific math expressions may be included in a math model library. The expressions should be represented in a formal mathematical language and specify the language if they are to be interpreted by a computational engine.	UML::Activity, UML::Action	Activities, Interactions State Machines	1.0
	j	Y	A continuous or discrete rate stereotype can be applied to inputs and outputs. Inputs and outputs are discrete by default. A time continuous input or output is an input or output whose value can change in infinitely small increments of time. An activity can accept the continuous inputs and provide continuous outputs while executing if the inputs and outputs are also streaming. An alternative approach is to continuously invoke an activity that does not have streaming inputs or outputs, in which case each execution of an activity accepts the inputs at the start of execution and produces the output at the completion of execution.	SysML::Rate SysML::Continous, SysML::Discrete UML::Parameter (isStream=Value)	Activities, State Machines	1.0
	k	Partial	Different actions can invoke concurrent executions of the same generalized behavior. Actions can have multiplicity.	UML::Behavior, UML::Action	Activities	1.0
6.5.2.2	Function activation/ deactivation	N/A	Actions can be activated and deactivated using multiple mechanisms within SysML as described below including control flows, control operators, and interruptible regions.		Activities, Interactions State Machines	1.0
6.5.2.2.1	Control input	Y	Control flows in activity diagrams provide the control input. Control flow is represented in state machine diagrams by a transitions which activate states and in sequence diagrams by the passing of messages.	UML::ActivityEdge, UML::ControlFlow, UML::Transition, UML::Message, SysML::ControlValue	Activities, Interactions State Machines	1.0

 +	1		1	1	
а	Y	Multiple control flows in an activity diagram that are input to a single activity node (i.e., action) are assumed to be "anded" together.	SysML::ControlValue , SysML::InputPin.is Control=true for control queuing	Activities	1.0
b	Y	Control inputs are discrete valued inputs that can enable or disable an activity node.	SysML::ControlValue	Activities	1.0
С	Y	In activity diagrams, the activity is invoked (enabled) when a token is received by the calling action. This includes tokens from all mandatory inputs and control inputs.	UML::Action, UML::ControlFlow, UML::ActivityEdge	Activities	1.0
d	Y	In activity diagrams, a control operator can produce an output control value to disable the execution of an activity. An action enclosed within an interruptible region also can disable the execution of an activity. In state machine diagrams, transition events can disable the actions in a state.	UML::Action, UML::Interruptible ActivityRegion, SysML::ControlValue , UML::State	Activities, State Machines	1.0
e	Y	An executing activity with non- streaming inputs and outputs terminates when it completes its transformation and produces an output value. An executing activity with continuous streaming inputs will terminate when it receives a disable from a control value and/or a signal that terminates the actions within an interruptible region. A TimeExpression can be specified in a control operator or can signal a termination in an interruptible region. An activity can also be terminated based on events, including timeout events, on a transition in a state machine diagrams, completion events occur upon completion of an activity.	UML::Activity, UML::Interruptible ActivityRegion, SysML ControlValue, UML::Time Expression, UML::State	Activities, State Machines	1.0
f	Y	The enabling of actions without explicit control flows as inputs are enabled based on the control associated with its inputs.	UML::Action, UML::ObjectNode	Activities	1.0

	8	Y	A control flow connects the control inputs from one activity node to another. The control input can also be the output control value of a control operator.	SysML::ControlValue , UML::Parameter, UML::ControlFlow	Activities	1.0
6.5.2.2.2	Control operator	Y	A control operator provides the mechanism apply control logic to enable and disable activity nodes.	SysML::Control Operator, SysML::ControlValue	Activities	1.0
	a	Y	Control Nodes such as joins, forks, etc. provide capability to activate activity nodes based on "and" and "or" logic. A SysML Control Operator provides the additional capability to disable an activity node.	UML::ControlNode, SysML::Control Operator, SysML::ControlValue , UML::Parameter	Activities	1.0
	b	Y	A join specification can be used to specify arbitrarily complex logic for enabling an activity node. A control operator can also be used to specify complex logic for enabling and disabling an activity node.	UML::JoinNode with join specification, UML::Parameter, SysML::Control Operator, SysML::ControlValue	Activities	1.0
	С	Y	The control nodes identified below provide the basic control logic for enabling activity nodes. Note: multi exit functions are supported by parameter sets. Also, Interaction Operators provide similar logic in Sequence Diagrams.	UML::ControlNode, UML::Interaction Operator	Activities, Interactions	1.0
	c1	Y	Decision nodes in activity diagrams support selection. The "alt" Interaction Operator supports selection in sequence diagrams.	UML::DecisionNode, UML::Interaction Operator.Alt	Activities, Interactions	1.0
	c2	Y	Forks in activity diagrams sup- port a single input flow gener- ating multiple concurrent output flows. The "par" Interac- tion Operator supports concur- rent message flow in Sequence Diagrams.	UML::Fork, UML::Interaction Operator.par	Activities, Interactions	1.0
	с3	Y	A join "and's" multiple input flows together resulting in a single output flow.	UML::Join	Activities	1.0
	<i>c4</i>	Y	A merge results a single output flow upon arrival of the first of multiple input flows.	UML::Merge	Activities	1.0

	c5	Y	Decision and loop nodes support iteration and looping. The "loop" Interaction Operator supports loops in sequence diagrams.	UML::Decision- Node, UML::Loop Node, Interaction- Operator.loop	Activities, Interactions	1.0
	сб	N				
6.5.2.2.3	Events and conditions	Partial	Triggers and constraints as guards provide the mechanism for modeling events and conditions.		Activities, Interactions, State Machines	1.0
	a	Partial	A trigger can be used to specify an event. Events can be associated with control flows in activity diagrams, transitions in state machine diagrams, and sending and receiving of messages in sequence diagrams.	UML:: Trigger, UML::AcceptEvent Action including UML::TimeTrigger, UML::Event Occurence in Interactions. Note: Failure event can be result in various types of actions that terminate an Interruptible Region in Activities, etc.	Activity, Interactions State Machines	1.0
	b	Y	Refer to a) above	UML::ActivityEdge, UML::Trigger	Activity, Interactions State Machines	1.0
	с	Y	Conditions can be specified as constraints that define guards to control execution of behaviors.	UML::Constraint (guard)	Activity, Interactions State Machines	1.0
6.5.2.3	Function-based behavior	Y	Activity diagrams provide the capability to model function based behavior.	UML:: Activity	Activities	1.0

6.5.2.4	State-based behavior		State machine diagrams provide the capability to model state based behavior with the specific modeling constructs indicated. Note 2 response: Activities are common to each type of behavior including both function based and state based. Note 3 response: A state is defined based on some invariant being true. The invariant can include reference to certain property values.	UML::StateMachine	State Machines	1.0
	a	Y	State	UML::State	State Machines	1.0
	b	Y	Simple state	UML::State, isSimple=True	State Machines	1.0
	c	Y	Composite states can contain one region or two or more orthogonal (concurrent) regions, each with one or more mutually exclusive disjoint states	UML::State isComposite=True	State Machines	1.0
	d	Y	Transitions between states which are triggered by events with guard conditions.	UML::Transition, UML::Trigger	State Machines	1.0
	e	Y	Transition within a composite state	UML::Transition (TransitionKind= Internal)	State Machines	1.0
	f	Y	Pseudo states include joins, forks and choice	UML::PseudoState	State Machines	1.0
	g	Y	Transitions between states which are triggered by events with guard conditions.	UML::Activity	State Machines	1.0
	h	Y	Entry, exit, doActivities are performed upon entry or exit from a state or while in a state.	UML::Activity	State Machines	1.0
	i	Y	State machine semantics define the ordering of actions that are completed when exiting a composite state (refer to UML transition semantics). When a composite state is exited, the exit actions are executed beginning with the most nested state.	UML::State (Note: refer to semantics)	State Machines	1.0

	j	Y	Entry and exit actions must be completed prior to exiting a state. A doActivity does not need to be completed to execute.	UML::State (Note: refer to semantics)	State Machines	1.0
	k	Y	Send and receive signals can be sent via actions to interact with other objects.	UML::SendSignal Action	State Machines	1.0
	l	Partial	The failure and/or exception states are user defined and have no uniquely defined rep- resentation. The use of exit points on states can be used to exit the state when a failure event occurs.	UML::State	State Machines	1.0
6.5.2.4.1	Activation time	Y	The interval of time that an activity or state is active can be modeled by a UML Time Trigger or Time Interval and corresponding Time Expression (refer to UML trigger and interval notation). Note: A UML timing diagram is not included in SysML at this time, but could be used to model the time associated with the occurrence of events, such as state changes, or changes in property values.	UML::SimpleTime	Activities, Interactions, State Machines	1.0
6.5.2.5	Allocation of behavior to systems	Y	An allocation relationship pro- vides a generalized capability to allocate one model element to another.	SysML::Allocation, SysML::Allocated, UML::NamedElement	Allocations	1.0
	a	Y	In general, behaviors such as activities, interactions, and state machines are owned by a Behaviored Classifier which can correspond to an block. The SysML Allocation relation- ship can be used to explicitly allocate behaviors to blocks. Alternatively, activity partitions (swim lanes) can be used to allocate the action and/or activity to a part and/or block.	UML::BehavioredCla ssifier and UML::Behavior (owned behavior) - Refer to UML Common Behaviors, SysML::Allocate, SysML::Allocate AcitivtyPartition	Allocations, Activities	1.0

	b	Partial	An object node in an activity diagram can be allocated to an item that flows in an internal block diagram using an allocation relationship. Note: the object node is typed by the same classifier as the item that flows. See req't 6.5.2.1.1.	SysML::Block (type of ObjectNode to type of ItemProperty), UML::ObjectNode, UML::Property	Allocations, Activities, Ports and Flows	1.0
6.5.3	Property	N/A	Properties and their relation- ships are represented in SysML using properties of blocks in conjunction with con- straint blocks to capture the relationships between them.		Blocks, Constraint Blocks	
6.5.3.1	Property type	Y	Primitive types, data types, and value types provide the capability to model the differ- ent types of quantitative prop- erties.	UML:: PrimitiveType, UML::DataType, SysML::Value Type	Blocks	1.0
	a	Y	Primitive type.	UML::Integer		
	b	Y	Primitive type.	UML::Boolean		
	С	Y	Primitive type.	UML::Enumeration		
	d	Y	Primitive type.	UML::String		
	е	Y	Primitive type.	SysML::Real		
	f	Y	Data type.	SysML::Complex		
	g	Y	Composite data type made up of primitive types.	Refer to a-f		
	h	Y	Composite data type made up of primitive types.	Refer to a-f		
6.5.3.2	Property value	Y			Auxiliary	1.0
	a	Y	Value properties are typed by a value type or data type and have an associated value.	SysML::Block Property, SysML::ValueType, UML::DataType,	Blocks	1.0
	b	Y	A value type can include a dimension and units such as length and feet or meters.	SysML::ValueType (unit and dimension are defined as blocks in a model library)	Blocks	1.0
	c	Y	A value property is a block property that is typed by a value type that can have an associated probability distribu- tion on its values.	SysML::ValueType, SysML::Distribution Definition	Blocks	1.0

	d	Y	Source data can be included in a comment attached to the property or a user defined ste- reotype could be applied.	UML::Comment	Model Elements	1.0
	е	Y	Reference data can be included in a comment attached to the property or a user defined stereotype could be applied.	UML::Comment	Model Elements	1.0
6.5.3.3	Property association		A value property can be a feature of any classifier (.i.e., block)	SysML::Block, SysML::Block Property	Blocks	1.0
	а	Y	Blocks, parts, or items that flow can have (or reference) properties.	SysML::Block, SysML::Block Property	Blocks	1.0
	b	Y	A function (activity) can have properties since it is a class	UML::Activity	Activities	1.0
	С	Partial	An event is specified by a trig- ger which is an element. The element does not have proper- ties.A signal which is sent upon the occurrence of the event can have properties.	UML::Signal		1.0
	d	Y	A property can be related to other properties through a con- straint property	SysML::Constraint- Block, SysML::Constraint- Property	Constraint Blocks	1.0
6.5.3.4	Time property	Y	Time can be treated as a prop- erty, typed by a Real that can represent either continuous or discrete time. Time ultimately derives from clocks which can be continuous or discrete. Clocks can be modeled as blocks which have a time prop- erty that can be bound to a parameter of a constraint prop- erty (e.g., equation). Time durations, start and stop times, etc. can be modeled using the UML time model for time triggers, time expressions, intervals, and durations. Note: More elaborate models of time and clocks can be found in the UML schedulability, performance, and time profile.	SysML::Block, SysML::Block Property, SysML::ValueType, SysML::Constraint Property, SysML::Constraint Parameter, UML::SimpleTime Package	Blocks, Constraint Blocks, Interactions	1.0

6.5.3.5	Parametric model	Y	The parametric diagram supports modeling of constraints which bind parameters of the constraints to value properties.	SysML::Constraint Block, SysML::Constraint Property SysML::Constraint Parameter, SysML::Block Property, UML::Connector, SysML::Nested	Constraint Blocks	1.0
	a	Y	Constraints blocks and their usages (constraint properties) specify the mathematical relationships/constraints between constraint parame- ters.	ConnectorEnd SysML::Constraint- Block, SysML::Constraint- Parameter	Constraint Blocks	1.0
	b	Partial	Mathematical and logical expressions can be defined in SysML in a reference lan- guage, but there is no inter- preter built into SysML. The range of values can be speci- fied via value properties and probability distributions per 6.5.3.2a-c.	SysML::Block Property, SysML::Distribution- Definition	Blocks	1.0
	С	Y	The reference language for interpreting the constraint can be included as part of the Con- straintBlock along with the compartment for the expres- sion.	SysML::Constraint- Block	Constraint Blocks	1.0
6.5.3.6	Probe	N	No specific mechanization has been provided. In the testing profile, there is a mechanism to capture data and create actions in response to the data. This will be investigated in a future version of SysML.			N
6.5.4	Requirement	N/A	The requirements diagram provides the basic capability for relating text based require- ments to other SysML models.		Require- ments	1.0

6.5.4.1	Requirement specification	Y	A requirement is a stereotype of a class in SysML. The vari- ous subtypes of requirement are specified as subclasses of the the requirement stereotype and can include specific prop- erties and constraints on what model elements can satisfy the subclass of requirement. A sample set of subclasses of requirements are included in the NonNormative Extensions Annex C.	SysML::Requirement	Requirements, Non- Normative Extensions, Profiles & Model Libraries	1.0
	Note 1	Y	Values and tolerances can be specified as part of the text property or via property values and distributions per 6.5.3.2a- c.	Requirement.text, SysML::Value Property	Require- ments, Blocks	1.0
	Note 2	Y	There is no explicit subclass of requirement as a stakeholder need, but a requirement can be named or subclassed as "stakeholderNeed."	SysML::Require- ment	Requirements, Non- Normative Extensions	1.0
	Note 3	Y	User defined requirements can be added via subclasses to specify any type of life cycle requirement of interest to the modeler.	SysML:: Requirement	Requirements, Non- Normative Extensions, Profiles & Model Libraries	1.0
	a	Y	Operational requirement	SysML:: Requirement	Requirements, Non- Normative Extensions	1.0
	b	Y	Functional requirement	SysML::functional- Requirement	Requirements, Non- Normative Extensions	1.0
	c	Y	Interface requirement	SysML::interface Requirement	Requirements, Non- Normative Extensions	1.0
	d	Y	Performance requirement	SysML::perfor- manceRequirement	Requirements, Non- Normative Extensions	1.0

	е	Y	Activation/Deactivation (Con- trol) requirement	SysML:: Requirement	Requirements, Non- Normative Extensions	1.0
	f	Y	Storage requirement	SysML:: Requirement	Requirements, Non- Normative Extensions	1.0
	8	Y	Physical requirement	SysML::physical Requirement	Requirements, Non- Normative Extensions	1.0
	h	Y	Design constraint	SysML:: Requirement	Requirements, Non- Normative Extensions	1.0
	i	Y	Specialized requirement	SysML:: Requirement	Requirements, Non- Normative Extensions	1.0
	j	Y	Measure of effectiveness	SysML::moe	Requirements, NonNormative Extensions	1.0
6.5.4.2	Requirement properties	Y	A requirement includes default properties for id and text. Other properties can be added via stereotype properties.	SysML::Requirement	Requirements, Non- Normative Extensions, Profiles & Model Libraries	1.0
6.5.4.3	Requirement relationships	Y	The requirement relationships include the relationships containment, trace, deriv- eReqt, satisfy, verify and refine relationships.		Require- ments	1.0
	a	Y	A derive relationship relates a derived (target) requirement to a source requirement.	SysML::deriveReqt	Requirements	1.0
	b	Y	A satisfy relationship relates the model elements (i.e. the design) to the requirements that are satisfied.	SysML::satisfy	Requirements	1.0

	C	Y	Goals, capabilities, or usages of systems are often expressed using use cases. Subgoals can be represented using the include and extend relationships between use cases. Requirements can be related to use cases using the refine relationship. Requirements use the containment relation- ship to breakdown an existing requirement into its containing requirements.	UML:UseCase, UML::Include, SysML::Requirement, UML:refine	Require- ments, Use Case	1.0
6.5.4.4	Problem	Y	A problem is an extension of a comment that can be attached to any model element. Note: This could also be used to represent issues.	SysML::Problem	Model Elements	2.0
6.5.4.5	Problem association	Y	Refer to 6.5.4.4	SysML::Problem	Model Elements	2.0
6.5.4.6	Problem cause	N				2.0
6.5.5	Verification	N/A	The following responses to the Verification requirements will include references to the Testing Profile [OMG Adopted Specification ptc/03-08-03] which is not currently part of SysML but is intended to be evaluated for integration with version 1.1 of SysML [refer to white paper on integrating SysML with Testing Profile]		Require- ments	
6.5.5.1	Verification Process					

	a	Y	The SysML verify relationship between one or more system requirements and one or more test cases represents the method for verifying that a system design satisfies its requirements. A verified system design implies that the system will satisfy its requirements if the component parts satisfy their allocated requirements. An alternative approach to capture the verify relationship is to associate a test case with a satisfy relationship using the rationale.	SysML::Verify, SysML::Rationale	Requirements, Model Elements	1.0
	b	Y	The SysML verify relationship between one or more requirement(s) and one or more test case(s) is used to verify that the implemented system design instances satisfy their requirements. Alternatively, a reference to a TestCase using SysML:Rationale may be attached to a satisfy relationship.	SysML::Verify SysML::Rationale	Require- ments, Model Elements	1.0
	С	Y	A derive relationship between the requirement being validated and the higher level requirement or need may have a Rationale attached that references the validation method(s).	SysML:deriveReqt SysML::Rationale	Require- ments, Model Elements	1.0
	Note 1	Y	Verification methods of analysis and similarity may be modeled as a Rationale with reference to the specific analysis report or other reference data. Verification methods including Test, Inspection, and Demonstration may be modeled as a TestCase.	SysML::Rationale, SysML::TestCase	Require- ments	1.0
	Note 2	Partial	Validation methods are user defined. A rationale can reference the user defined methods.	SysML::Rationale	Model Elements	1.0
6.5.5.2	Test case	Partial	A test case refers to the method for verifying a require- ment. Note: The testing profile associates a test case with a behavior that can include the specific method and associ- ated input stimulus and response.	SysML::TestCase	Requirements	1.0

	Note 1	Partial	Refer to above note on the testing profile.			1.x
	Note 2	Partial	The test criteria can be established via the require- ment			1.x
	Note 3	Partial	Test cases can contain other test cases, like any other named element.	SysML::TestCase	Require- ments	1.0
6.5.5.3	Verification result	Partial	The result of a SysML:TestCase may be expressed through its verdict attribute (Testing Profile)	SysML::TestCase, SysML::Verdict	Requirements	1.0
6.5.5.4	Requirement verification	Partial	A constraint may be used to relate the required value to the verification result.	SysML::Constraint Property; SysML::TestCase, SysML::Rationale	Requirements, Constraint Blocks	1.0
6.5.5.5	Verification procedure	Partial	A rationale can be associated with the test case or the satisfy relationship between a require- ment and a design, and reference a verification procedure. Note: The testing profile will associate a behav- ior with a test case which can be implemented by a specific procedure.	SysML::TestCase, SysML::Rationale	Requirements, Model Elements	1.x
	Note					
6.5.5.6	Verification system	Partial	A verification system can be modeled as any other system (block) or it can be modeled as the system environment. However, the future integration with the testing profile is intended to provide explicit modeling of the verification system.	SysML::Block	Blocks	2.0
6.5.6	Other	N/A				
6.5.6.1	General relationships	Y	SysML includes several standard UML relationships as described below.			
	a	Y	An association relationship.	UML::Association	Blocks	1.0
	b	Y	A package contains package- able elements and can repre- sent collections of elements.	UML::Package, UML::Packageable Element; UML::owned Member	Class	1.0

	С	Partial	Blocks can be decomposed into parts that are typed by other blocks using composition (refer to Reqt 6.5.1.1). The completeness of the decomposition is not explicitly represented.	SysML::Block, SysML::Block Property, UML::Association (composition)	Blocks	1.0
	d	Y	A dependency relationship.	UML::Dependency	Model Elements	1.0
	e	Y	Generalization/specialization relationship. Generalization sets provide the means to par- tition specializations to support further categorization.	UML::Generalization, UML::Generalization Set	Blocks	1.0
	f	Y	Instantiation is modeled using Instance Specifications to uniquely identify a classifier. Instances are represented as a property specific value with a unique set of values.	UML::Instance Specification, UML::InstanceValue	Blocks	1.0
6.5.6.2	Model views	Partial	A view represents the model from a particular viewpoint. Both the view and the view- point are represented in SysML. The view is a stereo- type of package that identifies the set of model elements that conform to the viewpoint, and the viewpoint specifies the stakeholders, their purpose, concerns and the construction rules (language and methods) to specify the view. Note: The model elements that depict the view are visually represented in diagrams, tables, and other notation. Integrity between model views is accomplished by creating a well formed model. This in part results from the constraints imposed by the language, and in part is defined by the specific meth- odology and tools that are employed. Navigation among views results from a tool ven- dor implementation.	SysML::View, SysML::Viewpoint SysML::Conform	Model Elements	1.0
6.5.6.3	Diagram types				Diagram Appendix	1.0

	<i>a</i>		The standard UML diagram types that are needed to sup- port the requirements have been included in SysML. Some additional diagram types pro- vide some redundant capabili- ties, but have been preserved to allow flexibility in represen- tations and methodologies. For example, the sequence dia- grams along with activity and state diagrams provide over- lapping capability for repre- senting behavior. A few diagram types have not been included explicitly in SysML, although they are not pre- cluded from use along with SysML.	N/A	Diagram Appendix	1.0
	b		The requirements diagram and parametric diagram have been added to address the require- ments of this RFP. In addition, an informal mechanism has been added to represent dia- gram usages. This enables renaming and constraining the usage of a particular diagram type for a particular usage.	SysML::Diagram Usage	Diagram Appendix	1.0
6.5.6.4	System role	Partial	A part in a block represents the role for a classifier in the con- text of the enclosing block. It defines the relationship between an instance of the classifier that types the part and an instance of the block that encloses the part. This is a primary mechanism for provid- ing a unique context for a part of a whole (enclosing block). The part may use only a sub- set of the behavior and proper- ties of the class that types the part. However, the specific mechanism for containing the subset has not been explicitly defined.	SysM::Block, SysML:Block Property	Blocks	1.0
6.6	Optional Requirements	N/A				
6.6.1	Topology	Ν				
	a	N				2.0

	b	Ν				2.0
6.6.2	Documentation	Y	A document (stereotype of artifact).	UML::Document	Diagram Appendix	1.0
	а	Y	The document stereotype can include stereotype properties to represent information about the document.	UML::Document	Profiles & Model Libraries	1.0
	b	Y	The trace relationship relates a document to other model elements.	UML::Trace	Diagram Appendix	1.0
	С	Ν	The ability to represent the text of the document in terms of the descriptions provided by the related (traced) model ele- ments is accomplished by a tool implementation.			
6.6.3	Trade-off studies and analysis	Partial	Parametric diagrams can depict the relationship between measures of effectiveness and various system properties (including probability distributions on their values) to evaluate the effectiveness of a particular system model. Specific constructs for criteria, weighting, and alternatives are planned for a future version of SysML to support modeling of trade studies.	SysML::moe, SysML::objective Function, SysML::Constraint Property	Constraint Blocks, Non- Normative Extensions	1.0
	a	Y	Alternative models can be specified via organization of models/packages. Model libraries can be used to estab- lish reusable portions of the model.	UML::Model, UML::Package	Model Elements, Profiles & Model Libraries	1.0
	b	Partial	Criteria can be modeled as properties typed by value types or as Requirements	SysML::Block Property, SysML::ValueType, SysML::Require- ment	Blocks, Require- ments	1.0, 2.0
	С	Y	Measures of effectiveness are modeled as a subclass of block property that represents a value property. A constraint can represent the objective function.	SysML::moe, SysML::Constraint- Property	Non- Normative Extensions, Constraint Blocks	1.0
6.6.4	Spatial representation	N				

6.6.4.1	Spatial reference	N				
6.6.4.2	Geometric relationships	N				
6.6.5	Dynamic structure	Partial				
	a	Y	The action semantics provide the capability for creating and destroying objects.	UML::CreateObject Action, UML::DestroyObject Action	Action (UML Spec)	1.0
	b	Partial	The capability is partially provided by 6.6.5a.			2.0
	с	N				2.0
	d	N				2.0
6.6.6	Executable semantics	Partial	The action semantics are intended to provide execution semantics. There is no formal graphical syntax for this.	UML::Action	Action in UML Spec	1.0
6.6.7	Other behavior modeling paradigms	Y	A UML behavior is a general- ized behavior that can accom- modate a wide range of behavior modeling paradigms. This include function based, state based, and message based behavior (sequence diagrams).	UML::Behavior	Activities, Interactions, State Machines	1.0
6.6.8	Integration with domain-specific models	Partial	SysML is a general purpose language that will integrate with other types of domain specific models. This is accomplished in part by map- ping SysML via XMI to the AP233 data interchange stan- dard. In addition, the paramet- ric diagram is intended to provide a capability to inte- grate with domain specific engineering analysis models.		Model Interchange	1.x, 2.0
6.6.9	Testing Model	Partial	SysML is intended to be inte- grated with the UML Testing Profile. Refer to Response to Reqt 6.5.5 above.	SysML::TestCase	Requirement	2.0
6.6.10	Management Model	N				