Domain-Specific Engineering of Domain-Specific
Languages

‘Raphael Mannadiar
+ McGill University
3480 University Street
Montreal, Quebec, Canada
rmanna@cs.mcgill.ca

ABSTRACT

Domain-specific modelling (DSM) enables experts of arbi-
trary domains to perform modelling tasks using familiar
constructs. This contrasts with common code-centric de-
velopment approaches where programmers deal with object-
oriented approximations of higher level concepts. Domain-
specific concepts and their relationships are captured by
domain-specific languages (DSLs). Unfortunately, it is com-
mon practice for DSLs to be specified within the object-
oriented mindsets of classes and associations. This approach
not only contradicts the model-driven engineering (MDE)
philosophy of development using domain-specific concepts —
in this case, the domain and concepts of DSLs —, it is also
faced with the same obstacle as past UML-to-code gener-
ation efforts; namely, that UML models are too generic to
enable complete program synthesis. In the context of DSL
engineering, this obstacle translates to the necessity for DSL
designers to explicitly define DSL semantics manually (e.g.,
via coded generators and/or model transformations). In this
work, we propose a novel approach to DSL design where low
level modelling formalisms are seamlessly woven together to
form new DSLs whose semantics are fully automatically gen-
erated.

Categories and Subject Descriptors

D.2 [Software Engineering]: Software Architectures; D.2.11

[Software Engineering]: Software Architectures—domain-
specific architectures, information hiding, languages

General Terms

Design, Languages, Standardization

Keywords

Language design, Language weaving, Metamodelling tem-
plates, Fully generated semantics, Multi-paradigm modelling,
Google Android

1. INTRODUCTION

Domain-specific modelling (DSM) allows domain-experts
to play active roles in development efforts. It provides them
with means to manipulate constructs they are familiar with
and automate the many error-prone and time consuming
translation steps that characterize code-centric development
efforts — most notably, the manual mapping between the (of-
ten far away) problem and solution domains — This auto-

ttHans Vangheluwe
1 University of Antwerp
Middelheimlaan 1
2020 Antwerpen, Belgium

hv@cs.mcgill.ca

mated transformation of domain-specific models (DSms") to
complete artifacts (e.g., executable programs, other models)
is enabled by their tightly constrained nature — as opposed
to the general purpose nature of UML models, for instance,
which are used to model programs from any domain using
object-oriented constructs —. Empirical evidence suggests
increases in productivity of up to one order of magnitude
when using DSM as opposed to traditional code-driven de-
velopment approaches [15, 12, 14].

Despite the stated merits of DSM, the guiding principles
that enable full artifact generation from DSms have yet to be
incorporated into the work flow of domain-specific language
(DSL) engineering. Although much effort has been spent on
enabling domain experts with powerful and high level facil-
ities, the implementation of these facilities remains fixed at
a rather low level of abstraction. Modern DSL engineering
techniques are still rooted in the object-oriented mindsets of
entities and relations and thus, the means, constructs and
techniques used to describe DSLs are more akin to UML
modelling than to DSM. A direct consequence of this is that,
much like common UML models do not hold sufficient in-
formation to generate complete programs, those of DSLs do
not hold sufficient information for the full semantics of the
modelled languages to be automatically synthesized. Hence,
it falls upon the DSL engineer to explicitly specify language
semantics manually using coded generators and/or model
transformations.

Not only is the task of manually defining DSL semantics
non-trivial, it is also repetitive: it is conceivable that numer-
ous languages share some semantics. Consider, for instance,
the subset of all DSLs where the notions of state and tran-
sition exist. It is sensible to assume that model transfor-
mations or coded generators for these languages will have
some amount of similarity and even overlap. Non-trivial
yet repetitive problems are prime targets for automation via
DSM. Given a number of low level formalisms that encom-
pass commonly recurring concepts in DSLs (e.g., Statecharts
for states and transitions [11]) and the means to translate
these formalisms to low-level artifacts (e.g., a Statechart
to code transformation), it would be possible to automat-
ically generate the full semantics of new DSLs constructed
exclusively in terms of these “domain-specific” concepts . In
other words, if DSL engineers were to adopt a higher level
and more domain-specific approach to DSL specification, the

!Note that we refer to domain-specific modelling as DSM
and to a domain-specific model as a DSm.

need for them to manually define DSL semantics would be
entirely eliminated.

The rest of this paper is structured as follows. In Sec-
tion 2, we survey the current state-of-the-art of DSL and
semantics specification and engineering techniques. In Sec-
tion 3, we propose a set of low level modelling formalisms
that form a “basis” for (re-)constructing — ideally — any con-
ceivable DSL. In Section 4, we detail how new DSLs can
be related to the “base formalisms” from Section 3 such that
their full semantics become implicit. In Section 5, we discuss
how instance models of these DSLs are turned into complete
and meaningful artifacts. In Section 6, we detail how a non-
trivial formalism for modelling mobile device applications
can be defined under our approach. Finally, in Section 7, we
discuss future work and provide some closing remarks.

2. BACKGROUND AND RELATED WORK

Domain-specific languages can essentially be broken down
into three components. Their abstract syntaz describes lan-
guage concepts and the relationships between them, as well
as constraints that encode domain rules. Their concrete syn-
tawes® provide graphical and/or textual representations of
abstract syntax elements. Finally, their meaning or seman-
tics are commonly defined operationally or denotationally®.
Operational semantics often encode system behaviour and
can be described as a collection of “items” each denoting the
transformation from one valid system state to another (e.g.,
for Petri Nets, one such rule could describe the model be-
fore and after the firing of an enabled transition). As for
denotational semantics, they essentially define the meaning
of a DSL by mapping its concepts onto formalisms for which
operational or denotational semantics are well defined (e.g.,
code, mathematics, Petri Nets).

The most popular means of DSL abstract syntax specifi-
cation and communication today are UML class diagrams®*
and human readable textual notations (HUTNs). The for-
mer are strongly privileged by visual metamodelling tools
and are the preferred means of DSL graphical representation
in modern publications [8, 14, 5, 15, 2, 12, 9, 13]. The lat-
ter are privileged by textual metamodelling tools; example
HUTNSs include TXL [6], Stratego/XT [3] and MetaDepth

[7].

Recently, several researchers have studied the problem of
DSL combination. On the one hand, DSL combination is
desired for merging distinct views of a single system (e.g.,
a UML class diagram describing a system’s structure with
Statecharts describing its behaviour). In [16], Vallecillo ar-
gues that it is unrealistic to model large and complex sys-
tems with a single instance model of a single DSL, and that
instead it is preferable to model different facets of such sys-
tems with distinct instance models of distinct DSLs. Thus,
the broad survey of model and metamodel combination ap-
proaches Vallecillo provides, as well as his own viewpoint
unification technique are mostly aimed at the merging of

2 A single DSL may have more than one concrete syntax.
3Denotational semantics are commonly referred to as trans-
lational semantics.

4For our purposes, Entity-Relationship diagrams can be en-
compassed within UML class diagrams.

interrelated models and metamodels. On the other hand,
other authors have tackled the problem of DSL combina-
tion from an engineering perspective, studying how recur-
ring structures can be turned into generic building blocks.
In [10], Emerson and Sztipanovits target the reuse of parts
or all of existing metamodels to address the repeated redefi-
nition of popular metamodelling patterns. Their technique,
template instantiation, consists in presenting the metamod-
eller with a library of templates that each capture some
common abstract syntax pattern (e.g., composition hierar-
chies of composite and atomic objects, Statechart-style mod-
elling). The metamodeller can then instantiate these tem-
plates with his own domain-specific concepts yielding ap-
propriately customized metamodel patterns in a timely and
more standardized manner.

Finally, although modern DSL syntax engineering does
lack in formality, the most ad hoc step of any DSM project
remains the definition of a DSL’s semantics. The common
approach — at least, for DSms of executable systems — is to
encode the denotational semantics of a language within a
hand-crafted code generator® [14, 15, 12, 17]. In [13], we ar-
gue and demonstrate that modelling — as opposed to coding
— the mapping onto lower level modelling formalisms (via
layered model transformations) is more modular, adheres
more closely to the multi-paradigm modelling (MPM) prin-
ciples [8], and considerably facilitates advanced tasks like
model and transformation debugging. Nevertheless, despite
improving upon coded generators, the approach we propose
still relies on the ad hoc manual specification of semantic
mappings. In [4], the notion of semantic anchoring is ex-
plored in the context of formalizing and semi-automating
DSL semantics specification. First, library-like reusable se-
mantic units are defined to capture commonly occurring
semantic patterns. Then, syntactic templates — much like
those from [10] — are mapped onto appropriate semantic
units by tool developers. The result is a language engineer-
ing environment where partial semantics can be generated.

The approach we present in this work is in fact a combi-
nation and extension of past and current work on template
instantiation and semantic anchoring with the specific aim
of fully automating DSL semantics specification while rein-
forcing the process with deeper and more structured roots.

3. ABASISFORDSL DESIGN

In past work, we demonstrated how separate concerns
(e.g., layout and behaviour) within a single DSm could be
isolated and mapped onto concern-specific lower level for-
malisms (e.g., Statecharts for behaviour), and later woven
back together into complete artifacts [13]. Our current claims
are that (1) any conceivable DSL is in fact nothing more than
a combination of a finite set of lower level formalisms, and
(2) that the knowledge of how these formalisms are com-
bined to form a given DSL is sufficient to infer that DSL’s
full semantics. These claims introduce several questions:

1. Which modelling formalisms form this basis for DSL
design?

5Thus, the semantics of high-level models is defined in terms
of the well understood semantics of low-level programming
languages.

VisualElement

+1d: String
+height: String
+width: String

contains
I I
Widget Container
+text: String +lavouT:]Fnum
contains
I I I 1
|Butl:on ”Label ” Input ” List | Canvas

+name: String

Figure 1: The Layout metamodel (as a UML class diagram).

2. How can new DSLs be defined in terms of these base
formalisms?

3. How can complete artifacts be generated from instance
models of these DSLs (without the need to manually
define DSL semantics)?

This section will explore the first of these questions. The
remainder will be discussed in Sections 4 and 5.

From our experience designing metamodels and their se-
mantic mappings to lower level formalisms, and keeping with
the traditional mathematical interpretation of what is a ba-
sis (i.e., a minimal set of d-dimensional vectors that can be
added to produce any vector in]Rd)7 we are able to list a
few formalisms that a basis for DSL design could hardly do
without.

Statecharts are useful for the modelling of reactive be-
haviour. They provide notions of event- and timeout- trig-
gered transitions between possibly composite states with en-
try and exit actions. Furthermore, they are able to capture
concurrency through orthogonal components.

Petri Nets are useful for modelling distributed processes
and their synchronization. They provide notions of concur-
rent and non-deterministic resource consumption and pro-
duction.

Causal Block Diagrams (CBDs) are useful for mod-
elling physical systems. They provide notions of continuous
flow of data between primitive mathematical operators. Fur-
thermore, they can be easily integrated into discrete systems
by making use of their zero-crossing detection constructs to
implement thresholding.

Layout is a formalism we introduce here for modelling
user interfaces. Its metamodel is presented in Figure 1.
Essentially, a Canvas can contain Containers which can in
turn contain other Containers and/or Widgets. This sim-
ple metamodel could of course be extended with additional
features to gain in expressiveness.

Action Code is a formalism we introduce here for mod-
elling API method calls and user-provided code; its meta-
model is presented in Figure 2.

API call User Code

+function: String | [tbody: String
tparameters: List

Figure 2: The Action Code metamodel (as a UML class
diagram).

The five formalisms above enable the modelling of deter-
minism and non-determinism, states and transitions, dis-
crete and continuous systems, user interfaces, APIs and code-
based escape semantics. Appropriately combined, they can
thus produce a wide variety of expressive languages. Means
of achieving this combination are discussed in the following
section.

4. RELATING DSL AND BASE FORMAL-
| SM

Given a set of base formalisms, the next question to an-
swer is how they can aid in defining new DSLs. Keeping in
mind our initial goal of fully automating the specification
of DSLs semantics, this question can be rephrased to: “how
can domain-specific concepts be related to base formalisms
tightly enough to enable the automatic generation of DSL-
to-base-formalism transformations”?

‘We propose an approach that builds on Emerson and Szti-
panovits’ template instantiation technique from [10]. In
their work, templates are little more than syntactic sugar
that enable the reuse of common metamodelling patterns.
We instead propose to promote syntactically and semanti-
cally rich templates to the foreground of DSL design. These
semantic templates (STs) are no longer placeholders for iso-
lated structures but instead “interfaces” to base formalisms.
Each base formalism “exposes” a set of STs that encode the
unambiguous mapping of arbitrary domain-specific concepts
onto concepts from the given base formalism.

Instantiating a ST accomplishes two tasks. First, it cre-
ates appropriate classes and associations in an internal UML
class diagram representation of the DSL at hand. Second, it
creates relationships between classes representing domain-
specific entities and those from the internal UML class di-
agram representation of the given base formalism’s meta-
model. In practice, model transformation facilities can be
exploited to implement these tasks. The STs themselves are
matched by transformation rule pre-conditions while the im-
plied classes and associations — examples of which are given
in Table 1 — are produced by rule post-conditions. Although
UML class diagrams still have a role to play in metamodel
representation, they are no longer first class artifacts but are
rather relegated to internal representations meant as input
for metamodelling tools (e.g., to generate domain-specific
model editors) and to facilitate later model transformations.
In the limit, the DSL engineer need not be aware of the con-
tent or even of the existence of the underlying UML class
diagram. Table 1 overviews example STs for the formalisms

in our proposed basis as well as the syntactic and semantic
implications they carry.

The question of how STs should be presented to the DSL
engineer remains. Two options come to mind. The first is
to present the list of all base formalisms to the user and
have him choose which ones he wishes to build his language
on. For instance, a DSL engineer could indicate he wishes
to base his language on Petri Nets and Layout. He would
then be presented with generic STs and ST's specific to both
selected base formalisms. The second option is to group STs
by feature. In this case, the user could select required fea-
tures (e.g., non-determinism, escape semantics) from a list®
and then be presented with possible formalisms, or even di-
rectly with STs.

Past attempts at using templates, especially in the con-
text of programming, were met with much reserve because
of how restrictive the resulting development environments
were. Given appropriate tool support, our method need
not be subject to this limitation: providing DSL engineers
with means to specify ST's for their own languages would en-
able these new languages to themselves be used as base for-
malisms thereby enabling the potentially unlimited increase
in expressiveness and flexibility of the available collection of
STs. It is our hope that future tools will be bundled with
a wide array of available semantically-templated base for-
malisms along with facilities to define new ones.

Although we have explained how DSLs can be constructed
by combining specific low level formalisms, the manner in
which their semantics can be automatically derived remains
unaddressed. We shed light on this point in the following
section.

5. FROM MODELSTO ARTIFACTS

We have discussed which formalisms constitute our basis
for DSL design and how new DSLs can be built by instanti-
ating STs associated to base formalisms. We now focus on
the question of how to generate complete artifacts from in-
stance models of DSLs built using our approach without the
need to manually define DSL semantics. We faced a similar
challenge in [13] where layout and behavioural concerns were
tangled in DSms of mobile device applications. The essence
of the solution we presented there was two-fold”. The first
task was to iteratively project portions of DSms onto ap-
propriate lower level formalisms and then onto code. The
second was to automatically weave message passing facilities
into the generated code to enable communication between
the synthesized artifacts corresponding to each of the earlier
projections.

The solution we propose here is nearly identical, with the
sole difference that it no longer falls upon the DSL designer
to manually define coded generators and/or model transfor-
mations to map hand-picked portions of DSms onto lower
level formalisms. Indeed, the fact that DSLs are completely

5This assumes that base formalisms are tagged with the fea-
tures they provide and that means to visualize these tags
exist.

"Note that though we isolate both components of our solu-
tion here, their practical implementations were entangled.

defined in terms of base formalisms provides the necessary
information for this mapping to be fully generated: the lower
level formalisms to project onto, which parts of DSms to
project and how to project them are implicitly encoded in
the STs that define their DSL (see Section 6 for concrete ex-
amples). Thus, the artifact synthesis pipeline now consists
in automatically projecting implicitly specified (and possi-
bly non-disjoint) portions p; of DSms onto appropriate base
formalisms f; from which the desired artifacts a; (e.g., Java
code) can be generated. A simplistic yet effective approach
is to generate instances of the appropriate base formalisms
from DSms using the information contained within the STs
— which by definition is sufficient to do so —. We achieve this
using automatically synthesized model transformations that
reflect the STs. This approach has the added advantage that
it enables the maintenance of traceability links between en-
tities at various levels of abstraction. In [13], we argue this
facilitates tasks such as model animation and debugging.

Our approach shares the caveat of the reviewed template
instantiation and semantic anchoring techniques: tool sup-
port is paramount. The array of possible targets for artifact
synthesis from DSms is only as wide as the array of avail-
able targets for artifact synthesis from instance models of
base formalisms. Luckily, these were selected among very
popular and longstanding languages which have received
considerable attention by tool developers and researchers
alike and for which numerous compilers to various targets
already exist. Reusing these however might well be pre-
vented by difficulties commonly encountered during tool in-
tegration endeavors; namely, incompatible data formats and
insufficient APIs. Nevertheless, these formalisms and their
compilation remain well understood and well documented.
Reimplemented versions of the said base formalism compil-
ers within tools that support our approach to DSL design
will be transparently usable for any DSM effort with no fur-
ther attention paid to tool integration. Thus, the potential
for effort reuse and raise of abstraction under our approach
is enormous.

In explaining our solution to artifact synthesis, we men-
tioned that for each projection p; of a DSm onto a base
formalism f;, artifacts a; are generated, and that these ar-
tifacts are instrumented with message passing facilities to
communicate with each other. This presents further ques-
tions. How and when can artifacts communicate with each
other? What type of information and/or commands will
given artifacts be responsive too? To address these chal-
lenges, we push the idea of “STs as interfaces to base for-
malisms” into a new and orthogonal direction. Base for-
malisms are no longer described solely by a set of STs that
enable mapping higher level concepts onto them, they are
also characterized by a collection of input and output events.
Table 2 shows a tentative list of events produced and con-
sumed by each base formalism. A single additional generic
template now suffices to capture how synthesized artifacts
should emit and respond to these events: On event el, pro-
duce event e2, where both events need not be associated to
the same artifact. Modellers and metamodellers can now
describe how artifacts generated from the behavioural and
layout components of a DSm should communicate (as shown
in Section 6). The final piece of the puzzle is for events emit-
ted by one artifact to be properly received by its intended

Formalism

Semantic Template Impact

Statecharts A transition to B

Creates classes for A and B if they don’t already exist. “Imports” the class dia-
gram for Statecharts and creates inheritance relationships between A and State-
charts.State and between B and Statecharts.State if they don’t already exist.
Among many other things, the latter implies that instances of classes A and B in
DSms can be connected via Statecharts.Transitions.

Petri Nets A have
infinite)

(finite |
capacity

Creates a class for A if it doesn’t already exist. Imports the class diagram for Petri
Nets and creates an inheritance relationship between A and PetriNets.Place. The
(k) inherited PetriNets.Place.capacity attribute is either set to infinite or to k.

<generic> A are types of B Creates classes for A and B if they don’t already exist. Creates inheritance relation-
ships between A and B.
Table 1: Sample base formalism and generic semantic templates.
| Formalism Produces Consumes SendMessage | DialNumber IIViewWebPage||ExecuteCode||ExitAppIication|
+dest: string |[+dest_number: String|[+url: string |[+code: Text |
Statecharts enteredState:s, handleEvent:e +message: String
exitedState:s
Dotri Nets transitionFired:t firelransition:t|x Tacton]
CBDs outputChanged: [0o,v] setInput:[i,v]
Layout guiEventFired:e drawCanvas:c VisualElement
Action codeReturned:r runCode: c it g Executionstep
Code Y. eontains :

Table 2: A tentative list of events produced and consumed
by each base formalism.

recipient(s). We addressed this issue in the past by weav-
ing a message passing infrastructure into generated artifacts.
This infrastructure is essentially composed of an event man-
ager which is aware of the artifacts and whom the artifacts
are aware of. In short, at execution time, events are sent to
this event manager who then dispatches them appropriately.

We have explained which modelling formalisms form a
basis for DSL design, how to define new DSLs in terms of the
formalisms in that basis and how complete artifacts can be
generated from instance models of these DSLs without their
designers having to manually define their semantics. The
following section demonstrates our approach in a concrete
example.

6. CASE STUDY

In [13], we introduced PhoneApps, a DSL for modelling
mobile device applications that captures both the visual
interface and behavioural concerns of such applications®.
Figure 3 shows its metamodel. Essentially, timed, condi-
tional and user-prompted transitions describe the flow of
control between Containers — that can contain other Con-
tainers and Widgets — and Actions — mobile device spe-
cific features (e.g., sending text messages, dialing numbers)
— with each screen in the synthesized application modelled
as a top-level Container (i.e., a Container contained in no
other). With a series of manually defined graph transfor-
mations, PhoneApps models were translated to increasingly
lower level formalisms until a complete Google Android [1]
application was synthesized. In this section, we describe how
the PhoneApps metamodel can be redefined in terms of base
formalism STs.

80ur DSL is strongly inspired by that presented in [12].

%

Widget Container

+1s_coded: Boolean +layout: ENUM
+code: Text +orientation: ENUM

[P StartsHerer
| L StartApplication

[TextButton| [TextLabel | [TextField | List

[+text: string| [+text: String] [+text: String] [+is_clickable: Boolean
+options: List<Strings

Figure 3: The PhoneApps metamodel (as a UML class dia-
gram).

The PhoneApps language combines three basic compo-
nents: visual interface, behaviour and mobile device func-
tions. These can be respectively captured using the Lay-
out, Statecharts and Action Code base formalisms. A more
domain-specific approach — which more closely reflects the
version of the DSL presented in [13] — would be to model
mobile device features at a higher-level of abstraction than
coded function calls. To this end, we introduce a new for-
malism, Google Android API. We view this formalism as a
third-party (e.g., Google) provided semantically-templated
base formalism. It also serves the purpose of demonstrating
how arbitrary new languages can graft themselves onto the
list of available base formalisms. Table 3 shows a possible
reconstruction of the PhoneApps DSL using STs.

A class diagram very similar to that shown in Figure 3
can trivially be generated from Table 3 using rules similar
to those from Table 1. We refrain from showing it to re-
assert the fact that a set of STs can and does fully capture a
DSL (and more). Indeed, Table 3 defines the abstract syn-
tax and the semantics of the PhoneApps metamodel. The
STs contain all the required information for communicating
instances of the four base formalisms in play to be gener-
ated. Their semantics transformations being defined — as
they are instances of base formalisms —, the semantics of
any PhoneApps model is also defined. Thus, the manual
definition of projections and mappings of PhoneApps mod-
els onto lower level formalisms is no longer necessary.

Formalism

Template

<generic> Actions and Screens are types of Steps.
Statecharts Steps transition to Steps.

Layout Screens are canvases.

<generic> Dials, SMSs, Browses and UserCodes are

types of Actionms.

G. Android API Dials make phone calls.

G. Android API SMSs send text messages.

G. Android API Browses open browsers.

Action Code UserCodes are coded.

<generic> On event enteredState:s, produce
event drawCanvas:s.
<generic> On event enteredState:s, produce

event runCode:s.

Table 3: The PhoneApps metamodel (as a set of semantic
templates).

7. CONCLUSION AND FUTURE WORK

We proposed a novel approach to defining domain-specific
languages based on the combination of low level formalisms
that capture commonly recurring DSL features. These base
formalisms expose a set of semantic templates and events
that enable the full synthesis of communicating base for-
malism instances from domain-specific models. Given the
existence of “base formalism to target artifact” transforma-
tions, DSms can be transformed to the said target artifacts
without the DSL designer having to manually define DSL
semantics (e.g., via coded generators and/or model transfor-
mations). Our approach to DSL engineering adheres closely
to the model-driven engineering philosophy of development
using domain-specific concepts by privileging the use of el-
ementary language constructs over that of generic object-
oriented constructs. Furthermore, we improve on related
techniques by enabling the full generation of DSL seman-
tics — as opposed to only their partial generation — and by
rooting language design in well understood and studied for-
malisms (e.g., Statecharts, Petri Nets).

The basis for language design we propose might not be
complete. A wise first step towards completing it might be
to categorize — ideally all — existing formalisms into a mini-
mal set of distinct “classes of formalisms”. It is our hope that
future work will address any lackings our basis may have as
the array of expressible DSLs under our approach is only as
wide as the expressiveness of the said basis. We have pro-
totyped the concepts described in this paper in our tool for
multi-formalism and meta-modelling, AToM? [8] (which na-
tively supports the Statecharts, Petri Nets and Causal Block
Diagrams formalisms as well as many others). We will fully
integrate our proposed ST-based approach to DSL design in
AToM?’s successor, AToMPM.

8. REFERENCES

[1] Google android. http://code.google.com/android/.

[2] Colin Atkinson and Thomas Kiihne. Reducing
accidental complexity in domain models. Software and
Systems Modeling (SoSym), 7:345-359, 2008.

[3] Martin Bravenboer, Karl Trygve Kalleberg, Rob
Vermaas, and Eelco Visser. Stratego/XT 0.17. A

(10]

(11]

(12]

language and toolset for program transformation.
Science of Computer Programming, 72:52-70, 2008.
Kai Chen, Janos Sztipanovits, and Sandeep Neema.
Toward a semantic anchoring infrastructure for
domain-specific modeling languages. In International
Conference On Embedded Software, pages 35—43, 2005.
Antonio Cicchetti, Davide Di Ruscio, and Alfonso
Pierantonio. A metamodel independent approach to
difference representation. Journal of Object Technology
(JOT), 6:165-185, 2007.

James R. Cordy. The txl source transformation
language. Science of Computer Programming,
61:190-210, 2006.

Juan de Lara and Esther Guerra. Deep
meta-modelling with MetaDepth. In TOOLS Europe
2010: 48th International Conference on Objects,
Models, Components, Patterns, volume LNCS 6141,
pages 1-20, 2010.

Juan de Lara, Hans Vangheluwe, and Manuel
Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in AToM?. Software and
Systems Modeling (SoSym), 3:194-209, 2004.

Bart De Decker, Jorn Lapon, Mohamed Layouni,
Raphael Mannadiar, Vincent Naessens, Hans
Vangheluwe, Pieter Verhaeghe, and Kristof Verslype
(Ed.). Advanced applications for e-ID cards in
flanders. adapid deliverable D12. Technical report, KU
Leuven, 2009.

Matthew Emerson and Janos Sztipanovits. Techniques
for metamodel composition. In 6th Workshop on
Domain Specific Modeling at OOPSLA, pages
123-139, 2006.

David Harel. Statecharts: A visual formalism for
complex systems. The Science of Computer
Programming, 8:231-274, 1987.

Steven Kelly and Juha-Pekka Tolvanen.
Domain-Specific Modeling : Enabling Full Code
Generation. Wiley-Interscience, 2008.

Raphael Mannadiar and Hans Vangheluwe. Modular
synthesis of mobile device applications from
domain-specific models. In The 7th International
Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MOMPES), 2010.
MetaCase. Domain-specific modeling with MetaEdit+:
10 times faster than UML.
http://www.metacase.com/resources.html; June 2009.
Laurent Safa. The making of user-interface designer a
proprietary DSM tool. In 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM), page 14,
http://www.dsmforum.org/events/DSMO07/papers.html,
2007.

Antonio Vallecillo. On the combination of domain
specific modeling languages. In Furopean Conference
on Modeling Foundations and Applications (ECMFA),
volume LNCS 6138, pages 305-320, 2010.

Hui Wu, Jeff Gray, and Marjan Mernik.
Grammar-driven generation of domain-specific
language debuggers. Software : Practice and
Ezperience, 38:1073-1103, 2008.

