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An Analysis of Solver-Based Simulation Tools

Ion Matei and Conrad Bock

Abstract

Computer-interpretable representations of systems’ structure and behavior are at the center of

designing today’s complex systems. Engineers create and review such representations using (graphical)

modeling languages that support specification, analysis, design, verification and validation of systems

that include hardware, software, data, personnel, procedures, and facilities (such as the Systems Modeling

Language, an extension of the Unified Modeling Language). However, these languages are usually not

enough in the analysis and design steps of the engineering process and they must be enhanced with

domain specific tools for simulation and performance analysis. These tools are often used separately

and sequentially, which reduces the efficiency of the design process. As a result, there is an increasing

need for integrating different simulating tools under one common framework. In this report, we analyze

a set of general purpose simulation and performance analysis tools for dynamical systems. We study

their common constructs and their semantics in order to build an abstract model of these tools. This

abstract representation is aimed to facilitate the integration of multiple simulation tools into a common

framework.

I. Introduction

Simulation tools for dynamical systems are software applications for modeling, simulation

and analysis of electrical, mechanical or thermodynamic systems. Within these tools systems are

modeled using block diagrams formed by blocks and connections between blocks. On a block

diagram, physical elements (such as mechanical or electrical components) are represented using

rectangles or sometimes icons. Connection lines between blocks represent the actual physical

connections such as electrical line, mechanical connection, heat flow, etc. Blocks have associated

a physical behavior described by differential equations.

Disclaimer: Commercial equipment and materials might be identified to adequately specify certain procedures. In no case

does such identification imply recommendation or endorsement by the U.S. National Institute of Standards and Technology, nor

does it imply that the materials or equipment identified are necessarily the best available for the purpose.
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In this report we present the main characteristics of a set of general purpose simulation tools.

We cover both free and commercial simulation tools, considering also their popularity in industry

and academia. The chosen simulation tools are described in what follows.

Scicos (Scilab Connected Object Simulator) [10], [9] is a Scilab [2] package for modeling and

simulation of explicit and implicit dynamical systems including both continuous and discrete sub-

systems. Scilab is a scientific software package for numerical computations providing a powerful

open computing environment for engineering and scientific applications. Developed since 1990

by researchers from INRIA (French National Institute for Research in Computer Science and

Control), and ENPC (National School of Bridges and Roads), it is now maintained and developed

by Scilab Consortium since its creation in May 2003.

Simulink [8], developed by MathWorks, is a commercial tool for modeling, simulating and

analyzing multidomain dynamic systems, widely used in control theory and digital signal pro-

cessing for multidomain simulation and Model-Based Design. It offers tight integration with

MATLAB [7] environment and can either drive MATLAB or be scripted from it. MATLAB is a

high-level technical computing language and interactive environment for algorithm development,

data visualization, data analysis, and numeric computation.

Dymola (Dynamic Modeling Laboratory) [1] is a tool for modeling and simulation the dy-

namic behavior and complex interactions between systems of many engineering fields, such

as mechanical, electrical, thermodynamic, hydraulic, pneumatic, thermal and control systems.

The Dymola environment uses the open Modelica [11] modeling language, an object-oriented,

equation based language to model complex physical systems.

SystemBuild [6], a product of National Instruments, provides graphical framework for modeling

and simulating complex dynamic systems, as well as specifying and testing control and software

algorithms. SystemBuild has a hierarchical block-diagram modeling paradigm designed for

development of complex models based on a library of primitive blocks and based on XMath [5],

a mathematical analysis, visualization and scripting software environment.

Our goal is to emphasize the common constructs and their semantics. It is not intended to

provide a detailed analysis of each of these tools, but rather to be to be used as a starting

point for creating an abstract representation of these tools that can be used for integration with

graphical modeling languages such as the Systems Modeling Language, an extension of the

Unified Modeling Language (SysML/UML).
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The rest of the report is organized as follows. In Section II we briefly discuss the graphical user

interface of the simulation tools. Section III presents the main constructs of used to build models

of systems, while Section IV analysis the simulation tools from the perspective of numerical

simulation.

II. Graphical user interface

Commonly, the graphical user interface (GUI) for the simulation tools examined includes at

least two windows: a main window where the models are constructed (sometimes called the block

diagram window) and a window containing libraries of predefined, dedicated blocks, organized

based on their functionality or domain application. Some simulation tools call their libraries

palettes (in the case of Scicos and SystemBuild) or package (in the case of Dymola). Common

libraries include: Sources (for signal generation), Sinks (for signal plotting), Signal Routing,

Continuous (for representing continuous systems), Discrete (for representing discrete systems),

Mathematical Operation and Ports and Subsystems (to provide support for conditionally executed

systems). Some tools include domain specific libraries. A unique characteristic of Dymola is

that its libraries are organized in terms of domains (mechanics, thermodynamics, etc.). Figures

1 through 4 show parts of the GUI of the four simulation tools.

III. Constructs for systems modeling

In this section we describe the main constructs used for modeling dynamical systems, which

are present in all studied simulation tools. The simulation tools are based on four constructs,

organized in a hierarchical structure, namely: ports, links, blocks, subsystems and models. At the

top of the hierarchy we have the model, followed by subsystems and blocks. Subsystems are

blocks composed of other blocks. Ports act as interfaces for blocks and subsystems, while links

are used to connect blocks and subsystems in a model. In the following we present in more

detail the aforementioned structural constructs, together with their associated semantics. Figure

5 shows a typical model structure.

A. Ports

Ports are graphical constructs of a simulation tool that act as interfaces for blocks or subsys-

tems, to allow them to interact with other blocks and subsystems. Depending on the simulation
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Fig. 1: Simulink library of blocks

Fig. 2: Scicos library of blocks
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Fig. 3: Dymola library of blocks and main window

Fig. 4: SystemBuild projects window
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Fig. 5: Model hierarchical structure

tool, they can be input, output, bidirectional (in simulation tools based on Modelica), or control

ports. Control ports are block interface through which signals that activate or deactivate a block

are received. They can exist as stand-alone constructs, and can be explicitly included in blocks

or subsystems to specify interfaces.

Ports have associated variables for communication with other blocks. Input and output vari-

ables are associated with input and output ports, respectively. Variables that satisfy the flow

conservation law (Kirchhoff law) (also called flow variables) are associated with bidirectional

ports. A semantic constraint of Modelica language is that if a port has flow variables, it can not

be an input/output port nor any of the other non-flow variables of the port can be defined as

inputs/outputs. We will elaborate more on the semantics of bidirectional ports in next subsection,

which describes the connections between blocks. Control ports have associated control variables,

which affects the behavior of a block or subsystem (more on this in the subsections dedicated to

blocks and subsystems). Figure 6 shows the graphical representation of different types of ports

in Simulink.

Fig. 6: Different types of ports
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B. Links

Links are graphical constructs that connect blocks. Depending on the simulation tool, the links

can be directed or undirected. Dymola is among the few simulation tools that support undirected

links (since is based on Modelica), supporting differential algebraic equations (DAE)1 and the

concept of flow. The majority of simulation tools supports only directed links, which connect

the output of a block to the input of another block. Given a block a with output ya and a

block b, with input ub (see Figure 7), connecting the output of block a to the input of block b

(mathematically) means that

ub = ya,

and that block a determines a value for the input of block b. When connecting outputs to inputs

some constraints apply: a block input can only be connected to one output, an output can not be

directly connected to the input of the same block; an output can be connected to several inputs.

Fig. 7: Connecting inputs and outputs between blocks

As mentioned in the previous section in the case of Modelica language based tools (such as

Dymola, OpenModelica) based on the Modelica language, blocks can have bidirectional ports,

which can have special type of variables called flow variables. The semantics of connecting

two ports with flow variables is expressed through the following example. Let a and b be two

blocks with two bidirectional ports, with variables ua, ia, and ub, ib, respectively, where ia and

ib are flow variables. Connecting the ports of the blocks a and b (Figure 8) has the following

semantics:

ua = ub,

1Differential algebraic equations are a general form of differential equations for vector-valued functions x, in one independent

variable t, F(ẋ(t), x(t), t) = 0.
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ia+ ib = 0.

In other words, the non-flow variable must be equal (but without the unidirectional characteristic

as in the case of inputs and outputs) and the flow variables must satisfy the flow conservation

law, namely the Kirchhoff law.

Fig. 8: Connecting inputs and outputs between blocks

C. Blocks

Blocks are graphical constructs with an associated dynamical behavior, that can be viewed as

atomic elements on which models are build upon. A block has a vector of inputs u, a vector of

outputs y and a vector of states x, which depend on time. The inputs, outputs and states do not

have to all be present simultaneously (i.e., there can be blocks with outputs, but no inputs, with

inputs, but no outputs, with inputs and outputs, but no states, or with no inputs and outputs, but

with states). Often, the inputs and outputs of a simulation tools are called signals. Blocks with

states x, are also called blocks with memory. A block can also have a set of parameters θ, that

affect the behavior of the block. For example in the case of a state-space representation of a

linear, time-invariant system given by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, (1)

y(t) = Cx(t)+Du(t), (2)

the parameter θ refers to the matrices A, B, C and D and to the initial condition x0.

Blocks have ports (also called pins or connectors by some applications), through which signals

are exchanged with other blocks; signals which can be continuous or discrete, vector valued or

scalar.

The state vector can contain continuous (xc) and discrete (xd) states, x′ = [x′c, x
′
d], where by x′

we denote the transpose of the column vector x. The behavior of a block can be mathematically
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(a) (b) (c) (d)

Fig. 9: (a) Dymola block; (b) Simulink block; (c) Scicos block; (d) SystemBuild block.

described as a hybrid system, that is a combination of continuous and discrete ordinary differential

equations (ODE):

y(t) = h(t, xc(t), xdtk
,u(t), θ), x(0) = x0, (3)

ẋc(t) = f (t, xc(t), xdtk
,u(t), θ), (4)

xdtk+1
= g(t, xc(t), xdtk

,u(t), θ), (5)

where x′ = [x′c, x
′
d] is the state vector containing both the continuous and discrete components,

and x0 is the initial condition of the state vector. Note that t represents continuous time, while

tk represents discrete time. From equations (3) and (4) we note that y(t) and xc(t) change

continuously with time t, while the discrete component of the state xdtk
changes only at discrete

times instants (Figure 10 shows an example of the state evolution in the case of a hybrid

system, where the continuous and discrete components of the state are scalars). However, no

simulation tools can perform continuous updates, and therefore x(t) and consequently y(t) must

be approximated through numerical integration. This involves computing the state at a set of

discrete time instants, depending on the integration method. Also note that xd, the discrete

component of the state, is assumed constant between tk and tk+1, for any k. The mathematical

model previously described is supported by all simulation tools. Some simulation tools (such as

Dymola or SystemBuild) support not only ODEs, but also DAEs. In this case, (3) and (4) can

be replaced by

y(t) = h(t, ẋc(t), xc(t), xdtk
,u(t), θ), x(0) = x0, (6)

0 = f (t, ẋc(t), x(t), xdtk
,u(t), θ). (7)
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Fig. 10: Example of the state evolution in the case of a hybrid system

Some simulation tools go even further, by accommodating over-determined differential algebraic

equations (ODAE). In such case, in addition to (6) and (7), a new equation is added

0 = fc(t, ẋc(t), xc(t), xdtk
,u(t), θ), (8)

where fc is a function reflecting additional constraints on the state and input of the system.

It is important to note that the behavior of a block can be viewed from two perspectives:

the ideal (mathematical) behavior and simulated behavior. Each perspective has associated a

time, a mathematical time and a simulation time, respectively which are often different. From

the mathematical perspective, the state and output changes are assumed to occur instantly.

However, from the perspective of the simulator (solver), the changes in the outputs and state

happen as a result of numerical calculations that will not take place instantly, since they may

involve complex numerical computations.

Many simulation tools support hybrid systems by combining continuous and discrete blocks.

In the case of a continuous block, its (mathematical) behavior is given by

y(t) = h(t, x(t),u(t), θ), x(0) = x0, (9)

ẋ(t) = f (t, x(t),u(t), θ), (10)

while in the case of a discrete block, the mathematical behavior is given by

ytk = h(t, xtk ,utk , θ), x(0) = x0, (11)
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xtk+1 = f (t, xtk ,utk , θ), (12)

where tk is the discrete time. The discrete time instants are determined by the sample time T

and the offset ∆, such that tk = k ·T +∆, where k is a positive integer. As mentioned earlier, the

output of a discrete block is assumed to be constant between two discrete time instants. This

suggest that a zero-order hold (ZOH)2 is implicitly assumed as part of the discrete block and

therefore, the output of a discrete block is a piecewise continuous function.

Although the input of a discrete block can be continuous, the variations of the input between

two sample-times are ignored and only the value of the input u(t) at the time instant tk is used

to compute xtk+1 .

Each block has a set of graphical interface parameters such as: name, description, port

locations, orientation, foreground/background color, position of the block in the block diagram

window, position of the block name, font and font size. In addition, all simulation tools support

operations on blocks, such as creating a new block, copying a block, moving a block, resizing

a block or deleting a block.

Besides blocks with memory (internal state), simulation tools have a variety of blocks without

memory. These blocks perform mathematical operations (such as summation, multiplications,

dot-products, etc.), generate, plot or route signals or perform logic operations. Additional infor-

mation about memoryless blocks can be found in [6], [8], [1].

D. Subsystem

A subsystem (also called a superblock by some simulation tools) is a graphical construct

used to simplify the representation of a group of blocks. Subsystems have ports, which are

internally connected through links to the variables (inputs, outputs, flow variables) of some

of their constituent blocks. They can be composed of both continuous and discrete blocks, and

therefore can represent hybrid systems. The behavior of the subsystem is dictated by the behavior

of the constituent blocks.

2The zero-order hold is a mathematical model that describes the effect of converting a discrete-time signal to a continuous-time

signal by holding each sample value for one sample interval
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Fig. 11: Example of a subsystem in Simulink

1) Special type of subsystems: In the previous sections, the behavior of hybrid blocks was

described, where the blocks were assumed to process data without interruption (at every time

sample) from the beginning to the end of the simulation. There exist however subsystems that

are not constantly active throughout the simulation, but rather become active as a result of an

event. There are three types of such subsystems: triggered subsystems, enabled subsystems,

and triggered and enabled subsystems. These subsystems, also called conditionally executed

subsystems, receive control signals (through control ports) that determine when they execute.

Simulink, Scicos and System Build simulation tools provide “ready to use” triggered and enabled

subsystems. Dymola supports user-defined triggered and enabled blocks/subsystems.

(a) (b)

Fig. 12: (a) Enabled and Triggered symbols for systems in SystemBuild; (b) Triggered and

Enabled subsystem in Simulink.

Triggered subsystems execute when an event is detected. The event consists of the control

signal crossing zero in a positive direction, negative direction or both. Both output and states

are updated when an event is detected, while in between events they are held constant. Due to

the event based nature of the execution, the triggered subsystems can only be discrete (or with
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sample time inherited from the output of another system).

Enabled subsystems execute (the states and outputs are updated) as long the control signal has

a positive value. Note that although a systems may be disabled, its output can be made available.

When a subsystem is enabled, it may be set to re-initialize its state or the keep its state at the

previous value. Enabled subsystems can be both discrete and continuous in nature.

Subsystems can be both enabled and triggers by having two control signals. In such case

triggering events determine the execution of the subsystem only if the subsystem is enabled, that

is, the enabling signal is positive at the moment of the triggering event.

E. Model

A model of a system is represented as a block diagram. It is created using using subsys-

tem/block references, (representing instances/usages of existing subsystems/blocks) connected by

links. Semantically speaking, block diagrams define time-based relationships between variables

of composing blocks (such as inputs, outputs, states). It has no inputs or outputs and it has

two important parameters related to simulation: the simulation time and the solver type. The

simulation time sets the simulation duration, and has an initial time and a final time (that can

be infinity). The solver type determines the algorithm used for numerical integration. Further

discussion about this is provided in the next section.

IV. Model simulation

As mentioned earlier, a model has an ideal, mathematical behavior and a simulated behavior. In

this section we discuss the simulated behavior, i.e. what actually happens during simulation. The

simulation is based on a numerical solver that performs numerical integration. Before a solver

can be used for numerical simulations, the graphical model is translated into an appropriate

representation, suitable for the numerical simulation, Figure 13 shows the two stages of the

model simulation.

A. Model translation

The translation stage is composed of several steps. First the parameters of the blocks are

evaluated and the resulting numerical values are used in the actual blocks. In the second step the

hierarchial model is flatted. In this step all subsystems with the exception of the conditionally
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Fig. 13: Model simulation

executed ones, such as triggered or enabled subsystems are replaced by the blocks they represent.

The conditionally executed blocks can not be replaced with their content, since their behavior

is determined at the time of execution.

The next step is the scheduling of the block execution, where the order in which blocks are

executed is determined. The scheduling algorithm uses computational attributes (such as the type

of the block or the sample rate) to establish an execution priority and has procedures to detect

and avoid algebraic loops3. Some simulation tools allow users to set the priority of blocks, taken

into account during the execution process.

Finally, the model is checked for correctness, for example the vector length of the outputs of

each block is checked to ensure that is of the same length as expected by the input of the blocks

it drives, the expected data type of the inputs are met. The steps involved in model translation

are summarized in Figure 14.

B. Numerical integration

After the previous steps, the transformed model is passed to the solver for numerical inte-

gration. In the numerical integration stage the key task performed is key task of computing

(approximating) the state derivatives of the blocks (in the case where they have a continuous

component). Several steps are involved in numerical integration.

3An algebraic loop in a model is a loop consisting of elements without ”memory like” functions. To calculate the variables

in this loop, the variable values themselves are needed.
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Fig. 14: Model translation

First, the outputs of each block are calculated according to the order determined by the

scheduling algorithm, as functions of the current input and state values. Next, state derivatives

are computed, based on the current time, state and input values. Finally, state derivatives are

used to compute the new state vector at the next time point, and to update the sampled blocks.

Figure 15 depicts the steps of the the numerical integration stage.

Fig. 15: Numerical integration

The simulation tools offer a variety of solvers to perform the numerical integration whose

efficiency depends on the type of ODE they solve. The solvers must ensure that the outputs

of discrete blocks are updated at time instants synchronized with the sample-period of the

blocks, i.e. the numerical integration must be stopped for the update of the discrete states

and then re-initialized. There are two main categories of solver: variable-step and fixed-step

solvers. Variable-step solvers can dynamically change the time intervals over which numerical

integration takes place, depending on the behavior of the block. The adjustment depends on the

approximation error and on events that determine sudden changes in the behavior of the blocks.

These types of algorithms are suitable for hybrid systems, where sudden changes in behavior

are not unusual. Different variable-step solvers are based on different forms of the Runge-Kutta,



16

Adams-Bashforth-Moulton, or Rosenbrock formulas [3]. Fixed-step solvers use the same sample-

period during simulation. They can not detect sudden changes in the behavior of the blocks. They

are typically based on Dormand-Price, Runge-Kutta, Bogacki-Shampine, or Euler formulas [3].

It may be the case that the inputs of a block have different sample times. In such cases, if the

smallest sample-time is a common divisor of the rest of the sample-times, it is used as sample

time for the block. If not, the greatest common divisor is used, and if the computation of this

quantity is not possible, the block is considered continuous.

To support numerical integration, blocks are endowed with a set of functions that are used

at different steps in the numerical integration process. these functions can be summarized as

follows:

1) Initialization is called once at the start of the simulation. It determines the initial conditions

and sampling-times.

2) State Derivative Computation computes the state derivative ẋc.

3) State Update computes the current state of the block in the case of continuous blocks, and

the next state in the case of of discrete block.

4) Output update computes the output vector y.

5) Finalize performs operations related to the termination of the simulation.

In some simulation tools, blocks have explicit functions for computing the Jacobian of the

system (useful when solving implicit system) and for monitoring the occurrence of state events.

C. Comments on the numerical integration of a particular set of systems

In this subsection we discuss stiff systems, systems with algebraic loops and systems with

state events, from the numerical integration point of view.

1) Stiff systems: Although a default solver is assigned at the beginning of a simulation

execution, users can select an integration algorithm, better suited to the dynamics of the system.

Great care must be shown when simulating stiff systems, which present both slow and fast

dynamics that “conventional algorithms” are not able to capture. These systems are prone to

numerical instability unless step-size is carefully chosen. Solvers for stiff equations apply the

iterative Newton-Raphson method at each time step, which requires the evaluation of the Jacobian

of the system and consequently can be very expensive numerically. More sophisticated methods

automatically switch between stiff and non-stiff methods to achieve good performance in both
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cases. Common solvers for stiff-equations are typically based on Rosenbrock methods, Bulirsch-

Stoer-Bader-Deufhard semi-implicit methods, implicit Runge-Kutta methods and backward dif-

ferential formulas methods [4].

2) Systems with algebraic loops: As mentioned earlier, during the simulation process, great

care must be taken when dealing with algebraic loops. Algebraic loops happens when an input

port of a block with direct feedthrough4 is driven by the output of the same block, either

directly or through other blocks. They also appear when dealing with DAE, which model implicit

systems5 of the form

f (ẋ, x, t) = 0,

with initial conditions ẋ(0) = ẋ0, x(0) = x0.

There are two approaches in dealing with algebraic loops. If an explicit method is used (that is

a method for solving ODE), then a delay is introduced in order to break the loop. Unfortunately,

this approach does not always work, since the delay may make the system unstable. Another

approach is to use a solver specifically designed for solving implicit systems. The solver for

implicit systems works as follows. First, at each time instant, the differential ẋ is approximated by

a backward differentiation formula. Next, the approximation is substituted in f (ẋ, x, t), resulting

in a nonlinear algebraic equation. Finally, the nonlinear equation is solved by a Newton-Raphson

iterative method.

Remark 4.1: Note that there are cases where the presence of algebraic loops does not harm

the numerical simulation. One such example is loops involving triggered systems. At the time

of the trigger, the inputs of the system are assumed sufficiently stable to be used to update the

output.

3) State events: As described previously, a block can represent a hybrid system, where the

state is determined by combinations of discrete and continuous dynamics. The evolution of the

state of hybrid systems often suffers sudden changes that are represented as discontinuities in the

state evolution (also called state events). From the point of view of numerical integration, when

4Blocks with input ports with direct feedthrough are blocks for which the outputs cannot be computed without knowing the

values of the signals entering the blocks at the input ports.

5An implicit system is a system where the state differential can not be explicitly represented using conventional mathematical

functions, but is a solution of some equation for the state derivative in terms of the state and input.
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such discontinuities appear, the integration process has to be stopped, the state re-initialized

(with the value of the state after the sudden change) and then integration is restarted. Therefore,

it is very important to be able to detect the time instants when discontinuities occur. Simulation

tools use zero-crossing to detect discontinuities in the signals.

V. Conclusions

In this report we present an overview of the main characteristics of simulation tools for

dynamical systems. We focus on the main concepts of the hierarchical structure of the simulation

tools and on the steps involved in a simulation of a model. The goal of this report is to lay the

ground for creating a abstract representation of the simulation tools which can be used within a

framework for system modeling, analysis and simulation, such as SysML/UML.
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